A robotic telescope is an astronomical telescope and detector system that makes observations without the intervention of a human. In astronomical disciplines, a telescope qualifies as robotic
if it makes those observations without being operated by a human, even
if a human has to initiate the observations at the beginning of the
night, or end them in the morning. It may have software agent(s) using Artificial Intelligence that assist in various ways such as automatic scheduling. A robotic telescope is distinct from a remote telescope, though an instrument can be both robotic and remote.
Design
Robotic
telescopes are complex systems that typically incorporate a number of
subsystems. These subsystems include devices that provide telescope
pointing capability, operation of the detector (typically a CCD camera), control of the dome or telescope enclosure, control over the telescope's focuser, detection of weather
conditions, and other capabilities. Frequently these varying subsystems
are presided over by a master control system, which is almost always a
software component.
Robotic telescopes operate under closed loop or open loop
principles. In an open loop system, a robotic telescope system points
itself and collects its data without inspecting the results of its
operations to ensure it is operating properly. An open loop telescope is
sometimes said to be operating on faith, in that if something goes
wrong, there is no way for the control system to detect it and
compensate.
A closed loop system has the capability to evaluate its
operations through redundant inputs to detect errors. A common such
input would be position encoders on the telescope's axes of motion, or
the capability of evaluating the system's images to ensure it was
pointed at the correct field of view when they were exposed.
Most robotic telescopes are small telescopes. While large observatory instruments may be highly automated, few are operated without attendants.
History of professional robotic telescopes
Robotic telescopes were first developed by astronomers after electromechanical interfaces to computers became common at observatories.
Early examples were expensive, had limited capabilities, and included a
large number of unique subsystems, both in hardware and software. This
contributed to a lack of progress in the development of robotic
telescopes early in their history.
By the early 1980s, with the availability of cheap computers,
several viable robotic telescope projects were conceived, and a few were
developed. The 1985 book, Microcomputer Control of Telescopes,
by Mark Trueblood and Russell M. Genet, was a landmark engineering study
in the field. One of this book's achievements was pointing out many
reasons, some quite subtle, why telescopes could not be reliably pointed
using only basic astronomical calculations. The concepts explored in
this book share a common heritage with the telescope mount error
modeling software called Tpoint, which emerged from the first generation of large automated telescopes in the 1970s, notably the 3.9m Anglo-Australian Telescope.
Since the late 1980s, the University of Iowa has been in the forefront of robotic telescope development on the professional side. The Automated Telescope Facility (ATF), developed in the early 1990s, was located on the roof of the physics building at the University of Iowa in Iowa City. They went on to complete the Iowa Robotic Observatory, a robotic and remote telescope at the private Winer Observatory in 1997. This system successfully observed variable stars and contributed observations to dozens of scientific papers. In May 2002, they completed the Rigel Telescope. The Rigel was a 0.37-meter (14.5-inch) F/14 built by Optical Mechanics, Inc. and controlled by the Talon program. Each of these was a progression toward a more automated and utilitarian observatory.
One of the largest current networks of robotic telescopes is RoboNet, operated by a consortium of UK universities. The Lincoln Near-Earth Asteroid Research (LINEAR) Project is another example of a professional robotic telescope. LINEAR's competitors, the Lowell Observatory Near-Earth-Object Search, Catalina Sky Survey, Spacewatch, and others, have also developed varying levels of automation.
In 2002, the RAPid Telescopes for Optical Response (RAPTOR)
project pushed the envelope of automated robotic astronomy by becoming
the first fully autonomous closed–loop robotic telescope. RAPTOR was
designed in 2000 and began full deployment in 2002. Theproject was
headed by Tom Vestrand and his team: James Wren, Robert White, P.
Wozniak, and Heath Davis. Its first light on one of the wide field
instruments was in late 2001, with the second wide field system came
online in late 2002. Closed loop operations began in 2003. Originally
the goal of RAPTOR was to develop a system of ground-based telescopes
that would reliably respond to satellite triggers and more importantly,
identify transients in real-time and generate alerts with source
locations to enable follow-up observations with other, larger,
telescopes. It has achieved both of these goals quite successfully. Now
RAPTOR has been re-tuned to be the key hardware element of the Thinking Telescopes Technologies Project.
Its new mandate will be the monitoring of the night sky looking for
interesting and anomalous behaviors in persistent sources using some of
the most advanced robotic software ever deployed. The two wide field
systems are a mosaic of CCD cameras. The mosaic covers and area of
approximately 1500 square degrees to a depth of 12th magnitude. Centered
in each wide field array is a single fovea system with a field of view
of 4 degrees and depth of 16th magnitude. The wide field systems are
separated by a 38 km baseline. Supporting these wide field systems are
two other operational telescopes. The first of these is a cataloging
patrol instrument with a mosaic 16 square degree field of view down to
16 magnitude. The other system is a .4m OTA with a yielding a depth of
19-20th magnitude and a coverage of .35 degrees. Three additional
systems are currently undergoing development and testing and deployment
will be staged over the next two years. All of the systems are mounted
on custom manufactured, fast-slewing mounts capable of reaching any
point in the sky in 3 seconds. The RAPTOR System is located on site at
Los Alamos National Laboratory (USA) and has been supported through the
Laboratory's Directed Research and Development funds.
In 2004, some professional robotic telescopes were characterized by a lack of design creativity and a reliance on closed source and proprietary software.
The software is usually unique to the telescope it was designed for and
cannot be used on any other system. Often, robotic telescope software
developed at universities becomes impossible to maintain and ultimately obsolete because the graduate students
who wrote it move on to new positions, and their institutions lose
their knowledge. Large telescope consortia or government funded
laboratories don't tend to have this same loss of developers as
experienced by universities. Professional systems generally feature very
high observing efficiency and reliability. There is also an increasing
tendency to adopt ASCOM technology at a few professional facilities (see
following section). The need for proprietary software is usually driven
by the competition for research dollars between institutions.
History of amateur robotic telescopes
In 2004, most robotic telescopes are in the hands of amateur astronomers.
A prerequisite for the explosion of amateur robotic telescopes was the
availability of relatively inexpensive CCD cameras, which appeared on
the commercial market in the early 1990s. These cameras not only allowed
amateur astronomers to make pleasing images of the night sky, but also
encouraged more sophisticated amateurs to pursue research projects in
cooperation with professional astronomers. The main motive behind the
development of amateur robotic telescopes has been the tedium of making
research-oriented astronomical observations, such as taking endlessly
repetitive images of a variable star.
In 1998, Bob Denny conceived of a software interface standard for astronomical equipment, based on Microsoft's Component Object Model, which he called the Astronomy Common Object Model
(ASCOM). He also wrote and published the first examples of this
standard, in the form of commercial telescope control and image analysis
programs, and several freeware components. He also convinced Doug George
to incorporate ASCOM capability into a commercial camera control
software program. Through this technology, a master control system that
integrated these applications could easily be written in perl, VBScript, or JavaScript. A sample script of that nature was provided by Denny.
Following coverage of ASCOM in Sky & Telescope magazine several months later, ASCOM architects such as Bob Denny, Doug George, Tim Long, and others later influenced ASCOM into becoming a set of codified interface standards for freeware device drivers
for telescopes, CCD cameras, telescope focusers, and astronomical
observatory domes. As a result, amateur robotic telescopes have become
increasingly more sophisticated and reliable, while software costs have
plunged. ASCOM has also been adopted for some professional robotic
telescopes.
Meanwhile, ASCOM users designed ever more capable master control systems. Papers presented at the Minor Planet Amateur-Professional Workshops (MPAPW) in 1999, 2000, and 2001 and the International Amateur-Professional Photoelectric Photometry
Conferences of 1998, 1999, 2000, 2001, 2002, and 2003 documented
increasingly sophisticated master control systems. Some of the
capabilities of these systems included automatic selection of observing
targets, the ability to interrupt observing or rearrange observing
schedules for targets of opportunity, automatic selection of guide
stars, and sophisticated error detection and correction algorithms.
Remote telescope system development started in 1999, with first
test runs on real telescope hardware in early 2000. RTS2 was primary
intended for Gamma ray burst
follow-up observations, so ability to interrupt observation was core
part of its design. During development, it became an integrated
observatory management suite. Other additions included use of the Postgresql
database for storing targets and observation logs, ability to perform
image processing including astrometry and performance of the real-time
telescope corrections and a web-based user interface. RTS2 was from the
beginning designed as a completely open source
system, without any proprietary components. In order to support growing
list of mounts, sensors, CCDs and roof systems, it uses own, text based
communication protocol. The RTS2 system is described in papers
appearing in 2004 and 2006.
The Instrument Neutral Distributed Interface (INDI) was started in 2003. In comparison to the Microsoft Windows
centric ASCOM standard, INDI is a platform independent protocol
developed by Elwood C. Downey of ClearSky Institute to support control,
automation, data acquisition, and exchange among hardware devices and
software frontends.
Significance
By 2004, robotic observations accounted for an overwhelming percentage of the published scientific information on asteroid orbits and discoveries, variable star studies, supernova light curves and discoveries, comet orbits and gravitational microlensing observations.
All early phase Gamma ray burst observations were carried by robotic telescopes.
List of Robotic Telescopes
See below for further information on these professional robotic telescopes:
- TRAPPIST, 60 cm, La Silla, Chile.
- T80S, 80 cm, Tololo, Chile.
- Super-LOTIS, 60 cm, Steward Observatory on Kitt Peak, Arizona, USA.
- Liverpool Telescope (robotic telescope), 2.0 m, on La Palma, Canary Islands
- Faulkes Telescope North, 2.0 m, Haleakala Observatory, Hawaii
- Faulkes Telescope South, Siding Spring Observatory, New South Wales, Australia
- RoboNet, multiple locations
- Automated Planet Finder, 2.4 m, Lick Observatory on Mount Hamilton, California, USA.
- Slooh telescopes, various sizes & locations.
- Rapid Eye Mount telescope, 60 cm, La Silla, Chile
- TAROT-South robotic observatory, 25 cm, La Silla, Chile
- Bradford Robotic Telescope, 35.5 cm, Teide Observatory, Canary Islands
- Warner and Swasey Observatory#Nassau Station Robotic Observatory, 91 cm, Warner and Swasey Observatory, Ohio, USA
- Observatorio Astronómico de La Sagra, 3× 45 cm, Granada, Spain
- ROTSE-IIIb, 45 cm, McDonald Observatory, Texas, USA