Phytoplankton /ˌfaɪtoʊˈplæŋktən/ are the autotrophic (self-feeding) components of the plankton community and a key part of oceans, seas and freshwater basin ecosystems. The name comes from the Greek words φυτόν (phyton), meaning "plant", and πλαγκτός (planktos), meaning "wanderer" or "drifter". Most phytoplankton are too small to be individually seen with the unaided eye.
However, when present in high enough numbers, some varieties may be
noticeable as colored patches on the water surface due to the presence
of chlorophyll within their cells and accessory pigments (such as phycobiliproteins or xanthophylls) in some species.
Types
Phytoplankton
are extremely diverse, varying from photosynthesising bacteria
(cyanobacteria), to plant-like diatoms, to armour-plated
coccolithophores. The dominating phytoplankton in today's oceans are the diatoms and dinoflagellates.
Ecology
Carbon
Phytoplankton are photosynthesizing
microscopic biotic organisms that inhabit the upper sunlit layer of
almost all oceans and bodies of fresh water on Earth. They are agents
for "primary production", the creation of organic compounds from carbon dioxide dissolved in the water, a process that sustains the aquatic food web.
Phytoplankton obtain energy through the process of photosynthesis and must therefore live in the well-lit surface layer (termed the euphotic zone) of an ocean, sea, lake, or other body of water. Phytoplankton account for about half of all photosynthetic activity on Earth. Their cumulative energy fixation in carbon compounds (primary production) is the basis for the vast majority of oceanic and also many freshwater food webs (chemosynthesis is a notable exception).
While almost all phytoplankton species are obligate photoautotrophs, there are some that are mixotrophic and other, non-pigmented species that are actually heterotrophic (the latter are often viewed as zooplankton). Of these, the best known are dinoflagellate genera such as Noctiluca and Dinophysis, that obtain organic carbon by ingesting other organisms or detrital material.
Oxygen production
Phytoplankton absorb energy from the Sun and nutrients from the water to produce their own food. In the process of photosynthesis, phytoplankton release molecular oxygen (O
2) into the water. It is estimated that between 50% and 85% of the world's oxygen is produced via phytoplankton photosynthesis. The rest is produced via photosynthesis on land by plants. Furthermore, phytoplankton photosynthesis has controlled the atmospheric CO
2/O
2 balance since the early Precambrian Eon.
2) into the water. It is estimated that between 50% and 85% of the world's oxygen is produced via phytoplankton photosynthesis. The rest is produced via photosynthesis on land by plants. Furthermore, phytoplankton photosynthesis has controlled the atmospheric CO
2/O
2 balance since the early Precambrian Eon.
Minerals
Phytoplankton are crucially dependent on minerals. These are primarily macronutrients such as nitrate, phosphate or silicic acid, whose availability is governed by the balance between the so-called biological pump and upwelling of deep, nutrient-rich waters. Phytoplankton nutrient composition drives and is driven by the Redfield ratio of macronutrients generally available throughout the surface oceans. However, across large regions of the World Ocean such as the Southern Ocean, phytoplankton are also limited by the lack of the micronutrient iron. This has led to some scientists advocating iron fertilization as a means to counteract the accumulation of human-produced carbon dioxide (CO2) in the atmosphere. Large-scale experiments have added iron (usually as salts such as iron sulphate) to the oceans to promote phytoplankton growth and draw atmospheric CO2
into the ocean. However, controversy about manipulating the ecosystem
and the efficiency of iron fertilization has slowed such experiments.
Vitamin B
Phytoplankton depend on Vitamin B for survival. Areas in the ocean have been identified as having a major lack of Vitamin B, and correspondingly, phytoplankton.
Temperature
The effects of anthropogenic
warming on the global population of phytoplankton is an area of active
research. Changes in the vertical stratification of the water column,
the rate of temperature-dependent biological reactions, and the
atmospheric supply of nutrients are expected to have important effects
on future phytoplankton productivity.
pH
The effects of
anthropogenic ocean acidification on phytoplankton growth and community
structure has also received considerable attention. Phytoplankton such
as coccolithophores contain calcium carbonate cell walls that are
sensitive to ocean acidification. Because of their short generation
times, evidence suggests some phytoplankton can adapt to changes in pH
induced by increased carbon dioxide on rapid time-scales (months to
years).
Food web
Phytoplankton
serve as the base of the aquatic food web, providing an essential
ecological function for all aquatic life. Under future conditions of
anthropogenic warming and ocean acidification, changes in phytoplankton
mortality may be significant. One remarkable Of the many food chains in the ocean – remarkable due to the small number of links – is that of phytoplankton sustaining krill (a crustacean similar to a tiny shrimp), which in turn sustain baleen whales.
Structural and functional diversity
The term phytoplankton encompasses all photoautotrophic microorganisms in aquatic food webs. However, unlike terrestrial communities, where most autotrophs are plants, phytoplankton are a diverse group, incorporating protistan eukaryotes and both eubacterial and archaebacterial prokaryotes. There are about 5,000 known species of marine phytoplankton. How such diversity evolved despite scarce resources (restricting niche differentiation) is unclear.
In terms of numbers, the most important groups of phytoplankton include the diatoms, cyanobacteria and dinoflagellates, although many other groups of algae are represented. One group, the coccolithophorids, is responsible (in part) for the release of significant amounts of dimethyl sulfide (DMS) into the atmosphere. DMS is oxidized to form sulfate which, in areas where ambient aerosol particle concentrations are low, can contribute to the population of cloud condensation nuclei, mostly leading to increased cloud cover and cloud albedo according to the so-called CLAW Hypothesis. Different types of phytoplankton support different trophic levels within varying ecosystems. In oligotrophic oceanic regions such as the Sargasso Sea or the South Pacific Gyre, phytoplankton is dominated by the small sized cells, called picoplankton and nanoplankton (also referred to as picoflagellates and nanoflagellates), mostly composed of cyanobacteria (Prochlorococcus, Synechococcus) and picoeucaryotes such as Micromonas. Within more productive ecosystems, dominated by upwelling or high terrestrial inputs, larger dinoflagellates are the more dominant phytoplankton and reflect a larger portion of the biomass.
Growth strategy
In the early twentieth century, Alfred C. Redfield found the similarity of the phytoplankton’s elemental composition to the major dissolved nutrients in the deep ocean.
Redfield proposed that the ratio of carbon to nitrogen to phosphorus
(106:16:1) in the ocean was controlled by the phytoplankton’s
requirements, as phytoplankton subsequently release nitrogen and
phosphorus as they are remineralized. This so-called “Redfield ratio” in describing stoichiometry
of phytoplankton and seawater has become a fundamental principle to
understand marine ecology, biogeochemistry and phytoplankton evolution. However, the Redfield ratio is not a universal value and it may diverge due to the changes in exogenous nutrient delivery and microbial metabolisms in the ocean, such as nitrogen fixation, denitrification and anammox.
The dynamic stoichiometry shown in unicellular algae reflects
their capability to store nutrients in an internal pool, shift between
enzymes with various nutrient requirements and alter osmolyte
composition. Different cellular components have their own unique stoichiometry characteristics,
for instance, resource (light or nutrients) acquisition machinery such
as proteins and chlorophyll contain a high concentration of nitrogen but
low in phosphorus. Meanwhile, growth machinery such as ribosomal RNA
contains high nitrogen and phosphorus concentrations.
Based on allocation of resources, phytoplankton is classified
into three different growth strategies, namely survivalist, bloomer
and generalist. Survivalist phytoplankton has a high ratio of more than N:P
(30) and contains an abundance of resource-acquisition machinery to
sustain growth under scarce resources. Bloomer phytoplankton has a low
N:P ratio (less than 10), contains a high proportion of growth machinery, and
is adapted to exponential growth. Generalist phytoplankton has similar
N:P to the Redfield ratio and contain relatively equal
resource-acquisition and growth machinery.
Environmental controversy
A 2010 study published in Nature
reported that marine phytoplankton had declined substantially in the
world's oceans over the past century. Phytoplankton concentrations in
surface waters were estimated to have decreased by about 40% since 1950,
at a rate of around 1% per year, possibly in response to ocean warming. The study generated debate among scientists and led to several communications and criticisms, also published in Nature.
In a 2014 follow-up study, the authors used a larger database of
measurements and revised their analysis methods to account for several
of the published criticisms, but ultimately reached similar conclusions
to the original Nature study.
These studies and the need to understand the phytoplankon in the ocean
led to the creation of the Secchi Disk Citizen Science study in 2013. The Secchi Disk study is a global study of phytoplankton conducted by seafarers (sailors, anglers, divers) involving a Secchi Disk and a smartphone app.
Estimates of oceanic phytoplankton change are highly variable.
One global ocean primary productivity study found a net increase in
phytoplankton, as judged from measured chlorophyll, when comparing observations in 1998–2002 to those conducted during a prior mission in 1979–1986.
Chlorophyll are photosynthetic pigments that are often used as an
indicator of phytoplankton biomass. However, using the same database of
measurements, other studies concluded that both chlorophyll and primary
production had declined over this same time interval. The airborne fraction of CO2
from human emissions, the percentage neither sequestered by
photosynthetic life on land and sea nor absorbed in the oceans
abiotically, has been almost constant over the past century, and that
suggests a moderate upper limit on how much a component of the carbon cycle as large as phytoplankton have declined. In the northeast Atlantic, where a relatively long chlorophyll data series is available, and the site of the Continuous Plankton Recorder (CPR) survey, a net increase was found from 1948 to 2002.
During 1998–2005, global ocean net primary productivity rose in 1998,
followed by a decline during the rest of that period, yielding a small
net increase.
Using six climate model simulations, a large multi-university study of
ocean ecosystems predicted "a global increase in primary production of
0.7% at the low end to 8.1% at the high end," by 2050 although with
"very large regional differences" including "a contraction of the highly
productive marginal sea ice biome by 42% in the Northern Hemisphere and
17% in the Southern Hemisphere." A more recent multi-model study estimated that primary production would decline by 2-20% by 2100 A.D.
Despite substantial variation in both the magnitude and spatial pattern
of change, the majority of published studies predict that phytoplankton
biomass and/or primary production will decline over the next century.
Researchers at the Woods Hole Oceanographic Institution have found phytoplankton to be a major source of methanol (CH
3OH) in the ocean in quantities that could rival or exceed that which is produced on land.
3OH) in the ocean in quantities that could rival or exceed that which is produced on land.
Temporal Distribution Of phytoplankton :
Temporal distribution of phytoplankton refers to temporary occurrence of
abnormal place (not in natural habitat).Such as,of rainy season or
during flooding water bears plankton on land from any lake. After the
season flooding plankton come back to natural habitat with
water.Sometimes, when water dry up then plankton die at the place due to
harash environmental condition. This temporary distribution is called
temporal distribution.
Aquaculture
Phytoplankton are a key food item in both aquaculture and mariculture.
Both utilize phytoplankton as food for the animals being farmed. In
mariculture, the phytoplankton is naturally occurring and is introduced
into enclosures with the normal circulation of seawater. In aquaculture,
phytoplankton must be obtained and introduced directly. The plankton
can either be collected from a body of water or cultured, though the
former method is seldom used. Phytoplankton is used as a foodstock for
the production of rotifers, which are in turn used to feed other organisms. Phytoplankton is also used to feed many varieties of aquacultured molluscs, including pearl oysters and giant clams.
A 2018 study estimated the nutritional value of natural phytoplankton
in terms of carbohydrate, protein and lipid across the world ocean using
ocean-colour data from satellites,
and found the calorific value of phytoplankton to vary considerably
across different oceanic regions and between different time of the year.
The production of phytoplankton under artificial conditions is
itself a form of aquaculture. Phytoplankton is cultured for a variety of
purposes, including foodstock for other aquacultured organisms, a nutritional supplement for captive invertebrates in aquaria. Culture sizes range from small-scale laboratory cultures of less than 1L to several tens of thousands of liters for commercial aquaculture.
Regardless of the size of the culture, certain conditions must be
provided for efficient growth of plankton. The majority of cultured
plankton is marine, and seawater of a specific gravity of 1.010 to 1.026 may be used as a culture medium. This water must be sterilized, usually by either high temperatures in an autoclave or by exposure to ultraviolet radiation, to prevent biological contamination of the culture. Various fertilizers
are added to the culture medium to facilitate the growth of plankton. A
culture must be aerated or agitated in some way to keep plankton
suspended, as well as to provide dissolved carbon dioxide for photosynthesis.
In addition to constant aeration, most cultures are manually mixed or
stirred on a regular basis. Light must be provided for the growth of
phytoplankton. The colour temperature
of illumination should be approximately 6,500 K, but values from 4,000 K
to upwards of 20,000 K have been used successfully. The duration of
light exposure should be approximately 16 hours daily; this is the most
efficient artificial day length.