Plastic pollution is the accumulation of plastic objects (e.g.: plastic bottles and much more) in the Earth's environment that adversely affects wildlife, wildlife habitat, and humans. Plastics that act as pollutants are categorized into micro-, meso-, or macro debris, based on size. Plastics are inexpensive and durable, and as a result levels of plastic production by humans are high. However, the chemical structure of most plastics renders them resistant to many natural processes of degradation and as a result they are slow to degrade. Together, these two factors have led to a high prominence of plastic pollution in the environment.
Plastic pollution can afflict land, waterways and oceans. It is
estimated that 1.1 to 8.8 million metric tons (MT) of plastic waste
enters the ocean from costal communities each year. Living organisms, particularly marine animals,
can be harmed either by mechanical effects, such as entanglement in
plastic objects or problems related to ingestion of plastic waste, or
through exposure to chemicals within plastics that interfere with their
physiology. Humans are also affected by plastic pollution, such as
through disruption of various hormonal mechanisms.
As of 2018, about 380 million tons of plastic is produced
worldwide each year. From the 1950s up to 2018, an estimated 6.3 billion
tons of plastic has been produced worldwide, of which an estimated 9%
has been recycled and another 12% has been incinerated.
In the UK alone, more than 5 million tonnes of plastic are consumed
each year, of which only an estimated one-quarter is recycled, with the
remainder going to landfills. This large amount of plastic waste inevitably enters the environment, with studies suggesting that the bodies of 90% of seabirds contain plastic debris.
In some areas there have been significant efforts to reduce the
prominence of plastic pollution, through reducing plastic consumption
and promoting plastic recycling.
Some researchers suggest that by 2050 there could be more plastic than fish in the oceans by weight.
Types of plastic debris
There are three major forms of plastic that contribute to plastic pollution: microplastics
as well as mega- and macro-plastics. Mega- and micro plastics have
accumulated in highest densities in the Northern Hemisphere,
concentrated around urban centers and water fronts. Plastic can be found
off the coast of some islands because of currents carrying the debris.
Both mega- and macro-plastics are found in packaging,
footwear, and other domestic items that have been washed off of ships
or discarded in landfills. Fishing-related items are more likely to be
found around remote islands. These may also be referred to as micro-, meso-, and macro debris.
Plastic debris is categorized as either primary or secondary.
Primary plastics are in their original form when collected. Examples of
these would be bottle caps, cigarette butts, and microbeads.
Secondary plastics, on the other hand, account for smaller plastics
that have resulted from the degradation of primary plastics.
Microdebris
Microdebris are plastic pieces between 2 mm and 5 mm in size.
Plastic debris that starts off as meso- or macrodebris can become
microdebris through degradation and collisions that break it down into
smaller pieces. Microdebris is more commonly referred to as nurdles.
Nurdles are recycled to make new plastic items, but they easily end up
released into the environment during production because of their small
size. They often end up in ocean waters through rivers and streams.
Microdebris that come from cleaning and cosmetic products are also
referred to as scrubbers. Because microdebris and scrubbers are so small
in size, filter-feeding organisms often consume them.
Primary microplastics, a type of microdebris, known as Nurdles
enter the ocean by means of spills during transportation or from land
based sources. These micro-plastics can accumulate in the oceans and
allow for the accumulation of Persistent Bio-accumulating Toxins such as
DDT and PCB's which are hydrophobic in nature and can cause adverse
health affects.
A 2004 study by Richard Thompson from the University of Plymouth, UK, found a great amount of microdebris on the beaches and waters in Europe, the Americas, Australia, Africa, and Antarctica.
Thompson and his associates found that plastic pellets from both
domestic and industrial sources were being broken down into much smaller
plastic pieces, some having a diameter smaller than human hair.
If not ingested, this microdebris floats instead of being absorbed into
the marine environment. Thompson predicts there may be 300,000 plastic
items/km2 of sea surface and 100,000 plastic particles/km2 of seabed.
International pellet watch collected samples of polythene pellets from
30 beaches from 17 countries which were then analysed for organic
micro-pollutants. It was found that pellets found on beaches in America,
Vietnam and southern Africa contained compounds from pesticides
suggesting a high use of pesticides in the areas.
Macrodebris
Plastic debris is categorized as macrodebris when it is larger than 20 mm. These include items such as plastic grocery bags.
Macrodebris are often found in ocean waters, and can have a serious
impact on the native organisms. Fishing nets have been prime pollutants.
Even after they have been abandoned, they continue to trap marine
organisms and other plastic debris. Eventually, these abandoned nets
become too difficult to remove from the water because they become too
heavy, having grown in weight up to 6 tons.
Decomposition of plastics
Plastics themselves contribute to approximately 10% of discarded
waste. Many kinds of plastics exist depending on their precursors and
the method for their polymerization. Depending on their chemical
composition, plastics and resins have varying properties related to
contaminant absorption and adsorption. Polymer degradation
takes much longer as a result of saline environments and the cooling
effect of the sea. These factors contribute to the persistence of
plastic debris in certain environments.
Recent studies have shown that plastics in the ocean decompose faster
than was once thought, due to exposure to sun, rain, and other
environmental conditions, resulting in the release of toxic chemicals
such as bisphenol A. However, due to the increased volume of plastics in the ocean, decomposition has slowed down. The Marine Conservancy has predicted the decomposition rates of several plastic products. It is estimated that a foam plastic cup will take 50 years, a plastic beverage holder will take 400 years, a disposable nappy will take 450 years, and fishing line will take 600 years to degrade.
Persistent organic pollutants
It was estimated that global production of plastics is approximately 250 mt/yr. Their abundance has been found to transport persistent organic pollutants, also known as POPs. These pollutants have been linked to an increased distribution of algae associated with red tides.
Effects on the environment
The distribution of plastic debris is highly variable as a result of
certain factors such as wind and ocean currents, coastline geography,
urban areas, and trade routes. Human population in certain areas also
plays a large role in this. Plastics are more likely to be found in
enclosed regions such as the Caribbean. It serves as a means of
distribution of organisms to remote coasts that are not their native
environments. This could potentially increase the variability and
dispersal of organisms in specific areas that are less biologically
diverse. Plastics can also be used as vectors for chemical contaminants
such as persistent organic pollutants and heavy metals.
Plastic Pollution as one of the cause of Climate change
In 2019 a new report "Plastic and Climate" was published. According to the report plastic wiil contribute Greenhouse gases in the equivalent of 850 million tons of Carbon dioxide
(CO2) to the atmosphere in 2019. In current trend, annual emissions
will grow to 1.34 billion tons by 2030. By 2050 plastic could emit 56
billion tons of greenhouse gas emissions, as much as 14 percent of the earth’s remaining carbon budget.
Effects of plastic on land
Chlorinated plastic can release harmful chemicals into the surrounding soil, which can then seep into groundwater or other surrounding water sources and also the ecosystem of the world. This can cause serious harm to the species that drink the water.
Landfill areas contain many different types of plastics. In these landfills, there are many microorganisms which speed up the biodegradation of plastics. The microorganisms include bacteria such as Pseudomonas, nylon-eating bacteria, and Flavobacteria. These bacteria break down nylon through the activity of the nylonase enzyme. Breakdown of biodegradable plastics releases methane, a very powerful greenhouse gas that contributes significantly to global warming.
Effects of plastic on oceans
In 2012, it was estimated that there was approximately 165 million tons of plastic pollution in the world's oceans. One type of plastic that is of concern in terms of ocean plastic pollution is nurdles. Nurdles are manufactured plastic pellets (a type of microplastic) used in the creation of plastic products and are often shipped via cargo ship.
Many billions of nurdles are spilled into oceans each year, and it has
been estimated that globally, around 10% of beach litter consists of
nurdles. Plastics in oceans typically degrade within a year, but not entirely. In the process, toxic chemicals such as bisphenol A and polystyrene can leach into waters from some plastics. Polystyrene pieces and nurdles are the most common types of plastic pollution in oceans, and combined with plastic bags and food containers make up the majority of oceanic debris.
One study estimated that there are more than 5 trillion plastic
pieces (defined into the four classes of small microplastics, large
microplastics, meso- and macroplastics) afloat at sea.
The litter that is being delivered into the oceans is toxic to
marine life, and humans. The toxins that are components of plastic
include diethylhexyl phthalate, which is a toxic carcinogen, as well as lead, cadmium, and mercury.
Plankton, fish, and ultimately the human race, through the food
chain, ingest these highly toxic carcinogens and chemicals. Consuming
the fish that contain these toxins can cause an increase in cancer,
immune disorders, and birth defects.
The majority of the litter near and in the ocean is made up of
plastics and is a persistent pervasive source of marine pollution. According to Dr. Marcus Eriksen of The 5 Gyres
Institute, there are 5.25 trillion particles of plastic pollution that
weigh as much as 270,000 tons (2016). This plastic is taken by the ocean
currents and accumulates in large vortexes known as ocean gyres. The majority of the gyres become pollution dumps filled with plastic.
Sources of ocean-based plastic pollution
Almost 20% of plastic debris that pollutes ocean water, which translates to 5.6 million tons, comes from ocean-based sources. MARPOL, an international treaty, "imposes a complete ban on the at-sea disposal of plastics". Merchant ships expel cargo, sewage,
used medical equipment, and other types of waste that contain plastic
into the ocean. In the United States, the Marine Plastic Pollution
Research and Control Act of 1987 prohibits discharge of plastics in the
sea, including from naval vessels.
Naval and research vessels eject waste and military equipment that are
deemed unnecessary. Pleasure crafts release fishing gear and other
types of waste, either accidentally or through negligent handling. The
largest ocean-based source of plastic pollution is discarded fishing
gear (including traps and nets), estimated to be up to 90% of plastic
debris in some areas.
Continental plastic litter enters the ocean largely through storm-water runoff, flowing into watercourses or directly discharged into coastal waters. Plastic in the ocean has been shown to follow ocean currents which eventually form into what is known as Great Garbage Patches.
Knowledge of the routes that plastic follows in ocean currents comes
from accidental container drops from ship carriers. For example, in May
1990 The Hansa Carrier,
sailing from Korea to the United States, broke apart due to a storm,
ultimately resulting in thousands of dumped shoes; these eventually
started showing up on the U.S western coast, and Hawaii.
Land-based sources of ocean plastic pollution
Estimates for the contribution of land-based plastic vary widely.
While one study estimated that a little over 80% of plastic debris in
ocean water comes from land-based sources, responsible for 0.8 million
tonnes (790,000 long tons; 880,000 short tons) every year.
In 2015, Jambeck et al. calculated that 275 million tonnes (271,000,000
long tons; 303,000,000 short tons) of plastic waste was generated in
192 coastal countries in 2010, with 4.8 to 12.7 million tonnes
(12,500,000 long tons; 14,000,000 short tons) entering the ocean - a
percentage of only up to 5%.
In a study published by Science, Jambeck et al
(2015) estimated that the 10 largest emitters of oceanic plastic
pollution worldwide are, from the most to the least, China, Indonesia,
Philippines, Vietnam, Sri Lanka, Thailand, Egypt, Malaysia, Nigeria, and
Bangladesh.
In a study published by Environmental Science & Technology, Schmidt et al
(2017) calculated that the Yangtze, Indus, Yellow River, Hai River,
Nile, Ganges, Pearl River, Amur, Niger, and the Mekong "transport 88–95%
of the global [plastics] load into the sea."
A source that has caused concern is landfills. Most waste in the form of plastic in landfills are single-use items such as packaging. Discarding plastics this way leads to accumulation.
Although disposing of plastic waste in landfills has less of a gas
emission risk than disposal through incineration, the former has space
limitations. Another concern is that the liners acting as protective
layers between the landfill and environment can break, thus leaking
toxins and contaminating the nearby soil and water.
Landfills located near oceans often contribute to ocean debris because
content is easily swept up and transported to the sea by wind or small
waterways like rivers and streams. Marine debris
can also result from sewage water that has not been efficiently
treated, which is eventually transported to the ocean through rivers.
Plastic items that have been improperly discarded can also be carried to
oceans through storm waters.
Plastic pollution in the Pacific Ocean
In the Pacific Gyre, specifically 20°N-40°N latitude, large bodies with floating marine debris can be found.
Models of wind patterns and ocean currents indicate that the plastic
waste in the northern Pacific is particularly dense where the
Subtropical Convergence Zone (STCZ), 23°N-37°N latitude, meets a
southwest-northeast line, found north of the Hawaiian archipelago.
In the Pacific, there are two mass buildups: the western garbage
patch and the eastern garbage patch, the former off the coast of Japan
and the latter between Hawaii and California. The two garbage patches are both part of the great Pacific garbage patch, and are connected through a section of plastic debris off the northern coast of the Hawaiian islands. It is approximated that these garbage patches contain 100 million tons of debris.
The waste is not compact, and although most of it is near the surface
of the pacific, it can be found up to more than 100 feet deep in the
water.
Research published in April 2017 reported "the highest density of plastic rubbish anywhere in the world" on remote and uninhabited Henderson Island in South Pacific as a result of the South Pacific Gyre. The beaches contain an estimated 37.7 million items of debris together weighing 17.6 tonnes. In a study transect on North Beach, each day 17 to 268 new items washed up on a 10-metre section. The study noted that purple hermit crabs (Coenobita spinosus) make their homes in plastic containers washed up on beaches.
Plastic pollution in tap water
A 2017 study found that 83% of tap water samples taken around the world contained plastic pollutants. This was the first study to focus on global drinking water pollution with plastics, and showed that with a contamination rate of 94%, tap water in the United States was the most polluted, followed by Lebanon and India. European countries such as the United Kingdom, Germany and France had the lowest contamination rate, though still as high as 72%. This means that people may be ingesting between 3,000 and 4,000 microparticles of plastic from tap water per year. The analysis found particles of more than 2.5 microns in size, which is 2500 times bigger than a nanometer.
It is currently unclear if this contamination is affecting human
health, but if the water is also found to contain nano-particle
pollutants, there could be adverse impacts on human well-being,
according to scientists associated with the study.
However, plastic tap water pollution remains under-studied, as
are the links of how pollution transfers between humans, air, water, and
soil.
Effects on animals
Plastic pollution has the potential to poison animals, which can then adversely affect human food supplies. Plastic pollution has been described as being highly detrimental to large marine mammals, described in the book Introduction to Marine Biology as posing the "single greatest threat" to them. Some marine species, such as sea turtles, have been found to contain large proportions of plastics in their stomach. When this occurs, the animal typically starves, because the plastic blocks the animal's digestive tract. Sometimes Marine mammals are entangled in plastic products such as nets, which can harm or kill them.
Entanglement
Entanglement in plastic debris has been responsible for the deaths of many marine organisms, such as fish, seals, turtles, and birds. These animals get caught in the debris and end up suffocating or drowning. Because they are unable to untangle themselves, they also die from starvation or from their inability to escape predators. Being entangled also often results in severe lacerations and ulcers. In a 2006 report known as Plastic Debris in the World's Oceans, it was estimated that at least 267 different animal species have suffered from entanglement and ingestion of plastic debris. It has been estimated that over 400,000 marine mammals perish annually due to plastic pollution in oceans. Marine organisms get caught in discarded fishing equipment, such as ghost nets.
Ropes and nets used to fish are often made of synthetic materials such
as nylon, making fishing equipment more durable and buoyant. These
organisms can also get caught in circular plastic packaging materials,
and if the animal continues to grow in size, the plastic can cut into
their flesh. Equipment such as nets can also drag along the seabed,
causing damage to coral reefs.
Ingestion
Marine animals
Sea turtles are affected by plastic pollution. Some species are consumers of jelly fish, but often mistake plastic bags for their natural prey. This plastic debris can kill the sea turtle by obstructing the oesophagus. Baby sea turtles are particularly vulnerable according to a 2018 study by Australian scientists.
So too are whales. Large amounts of plastics have been found in the stomachs of beached whales. Plastic debris started appearing in the stomach of the sperm whale since the 1970s, and has been noted to be the cause of death of several whales. In June 2018, more than 80 plastic bags were found inside a dying pilot whale that washed up on the shores of Thailand. In March 2019, a dead Cuvier's beaked whale washed up in the Philippines with 88 lbs of plastic in its stomach. In April 2019, following the discovery of a dead sperm whale off of Sardinia with 48 pounds of plastic in its stomach, the World Wildlife Foundation
warned that plastic pollution is one of the most dangerous threats to
sea life, noting that five whales have been killed by plastic over a two
year period.
Some of the tiniest bits of plastic are being consumed by small fish, in a part of the pelagic zone in the ocean called the Mesopelagic zone,
which is 200 to 1000 metres below the ocean surface, and completely
dark. Not much is known about these fish, other than that there are many
of them. They hide in the darkness of the ocean, avoiding predators and
then swimming to the ocean's surface at night to feed. Plastics found in the stomachs of these fish were collected during Malaspina's circumnavigation, a research project that studies the impact of global change on the oceans.
A study conducted by Scripps Institution of Oceanography showed
that the average plastic content in the stomachs of 141 mesopelagic fish
over 27 different species was 9.2%. Their estimate for the ingestion
rate of plastic debris by these fish in the North Pacific was between
12000 and 24000 tons per year. The most popular mesopelagic fish is the lantern fish. It resides in the central ocean gyres,
a large system of rotating ocean currents. Since lantern fish serve as a
primary food source for the fish that consumers purchase, including
tuna and swordfish, the plastics they ingest become part of the food
chain. The lantern fish is one of the main bait fish in the ocean, and
it eats large amounts of plastic fragments, which in turn will not make
them nutritious enough for other fish to consume.
Deep sea animals have been found with plastics in their stomachs.
Birds
Plastic pollution does not only affect animals that live solely in oceans. Seabirds are also greatly affected. In 2004, it was estimated that gulls in the North Sea had an average of thirty pieces of plastic in their stomachs.
Seabirds often mistake trash floating on the ocean's surface as prey.
Their food sources often has already ingested plastic debris, thus
transferring the plastic from prey to predator. Ingested trash can
obstruct and physically damage a bird's digestive system, reducing its
digestive ability and can lead to malnutrition, starvation, and death.
Toxic chemicals called polychlorinated biphenyls
(PCBs) also become concentrated on the surface of plastics at sea and
are released after seabirds eat them. These chemicals can accumulate in
body tissues and have serious lethal effects on a bird's reproductive
ability, immune system, and hormone balance. Floating plastic debris can
produce ulcers, infections and lead to death. Marine plastic pollution
can even reach birds that have never been at the sea. Parents may
accidentally feed their nestlings plastic, mistaking it for food. Seabird chicks are the most vulnerable to plastic ingestion since they can't vomit up their food like the adult seabirds.
After the initial observation that many of the beaches in New
Zealand had high concentrations of plastic pellets, further studies
found that different species of prion
ingest the plastic debris. Hungry prions mistook these pellets for
food, and these particles were found intact within the birds' gizzards and proventriculi. Pecking marks similar to those made by northern fulmars in cuttlebones have been found in plastic debris, such as styrofoam, on the beaches on the Dutch coast, showing that this species of bird also mistake plastic debris for food.
An estimate of 1.5 million Laysan albatrosses, which inhabit Midway Atoll, all have plastics in their digestive system. Midway Atoll is halfway between Asia and North America, and north of the Hawaiian archipelago.
In this remote location, the plastic blockage has proven deadly to
these birds. These seabirds choose red, pink, brown, and blue plastic
pieces because of similarities to their natural food sources. As a
result of plastic ingestion, the digestive tract can be blocked
resulting in starvation. The windpipe can also be blocked, which results
in suffocation.
The debris can also accumulate in the animal's gut, and give them a
false sense of fullness which would also result in starvation. On the
shore, thousands of birds corpses can be seen with plastic remaining
where the stomach once was. The durability of the plastics is visible
among the remains. In some instances, the plastic piles are still
present while the bird's corpse has decayed.
Similar to humans, animals exposed to plasticizers
can experience developmental defects. Specifically, sheep have been
found to have lower birth weights when prenatally exposed to bisphenol
A. Exposure to BPA can shorten the distance between the eyes of a
tadpole. It can also stall development in frogs and can result in a
decrease in body length. In different species of fish, exposure can
stall egg hatching and result in a decrease in body weight, tail length,
and body length.
Effects on humans
Due to the use of chemical additives during plastic production,
plastics have potentially harmful effects that could prove to be
carcinogenic or promote endocrine disruption. Some of the additives are used as phthalate plasticizers and brominated flame retardants. Through biomonitoring, chemicals in plastics, such as BPA
and phthalates, have been identified in the human population. Humans
can be exposed to these chemicals through the nose, mouth, or skin.
Although the level of exposure varies depending on age and geography,
most humans experience simultaneous exposure to many of these chemicals.
Average levels of daily exposure are below the levels deemed to be
unsafe, but more research needs to be done on the effects of low dose
exposure on humans.
A lot is unknown on how severely humans are physically affected by
these chemicals. Some of the chemicals used in plastic production can
cause dermatitis upon contact with human skin. In many plastics, these toxic chemicals are only used in trace amounts,
but significant testing is often required to ensure that the toxic
elements are contained within the plastic by inert material or polymer.
It can also affect humans in which it may create an eyesore that interferes with enjoyment of the natural environment.
Clinical significance
Due to the pervasiveness of plastic products, most of the human
population is constantly exposed to the chemical components of plastics.
95% of adults in the United States have had detectable levels of BPA in
their urine. Exposure to chemicals such as BPA have been correlated with disruptions in fertility, reproduction, sexual maturation, and other health effects. Specific phthalates have also resulted in similar biological effects.
Thyroid hormone axis
Bisphenol A affects gene expression related to the thyroid hormone axis, which affects biological functions such as metabolism and development. BPA can decrease thyroid hormone receptor
(TR) activity by increasing TR transcriptional corepressor activity.
This then decreases the level of thyroid hormone binding proteins that
bind to triiodothyronine. By affecting the thyroid hormone axis, BPA
expoure can lead to hypothyroidism.
Sex hormones
BPA can disrupt normal, physiological levels of sex hormones. It does this by binding to globulins that normally bind to sex hormones such as androgens and estrogens,
leading to the disruption of the balance between the two. BPA can also
affect the metabolism or the catabolism of sex hormones. It often acts
as an antiandrogen or as an estrogen, which can cause disruptions in gonadal development and sperm production.
Reduction efforts
Efforts to reduce the use of plastics and to promote plastic recycling have occurred. Some supermarkets charge their customers for plastic bags, and in some places more efficient reusable or biodegradable
materials are being used in place of plastics. Some communities and
businesses have put a ban on some commonly used plastic items, such as bottled water and plastic bags.
In January 2019 a "Global Alliance to End Plastic Waste" has been
created. The alliance wants to clean the environment from existing waste
and increase recycling, but it does not mention reduction in plastic
production as one of its targets.
Biodegradable and degradable plastics
The use of biodegradable plastics has many advantages and disadvantages. Biodegradables are biopolymers that degrade in industrial composters. Biodegradables do not degrade as efficiently in domestic composters, and during this slower process, methane gas may be emitted.
There are also other types of degradable materials that are not
considered to be biopolymers, because they are oil-based, similar to
other conventional plastics. These plastics are made to be more
degradable through the use of different additives, which help them
degrade when exposed to UV rays or other physical stressors. Yet biodegradation-promoting additives for polymers have been shown not to significantly increase biodegradation.
Although biodegradable and degradable plastics have helped reduce
plastic pollution, there are some drawbacks. One issue concerning both
types of plastics is that they do not break down very efficiently in
natural environments. There, degradable plastics that are oil-based may
break down into smaller fractions, at which point they do not degrade
further.
Incineration
Up to 60% of used plastic medical equipment is incinerated rather than deposited in a landfill
as a precautionary measure to lessen the transmission of disease. This
has allowed for a large decrease in the amount of plastic waste that
stems from medical equipment. If plastic waste is not incinerated and
disposed of properly, a harmful amount of toxins can be released and
dispersed as a gas through air or as ash through air and waterways. Many studies have been done concerning the gaseous emissions that result from the incineration process.
Policy
Agencies such as the US Environmental Protection Agency and US Food and Drug Administration
often do not assess the safety of new chemicals until after a negative
side effect is shown. Once they suspect a chemical may be toxic, it is
studied to determine the human reference dose, which is determined to be
the lowest observable adverse effect level. During these studies, a
high dose is tested to see if it causes any adverse health effects, and
if it does not, lower doses are considered to be safe as well. This does
not take into account the fact that with some chemicals found in
plastics, such as BPA; lower doses can have a discernible effect.
Even with this often complex evaluation process, policies have been put
into place in order to help alleviate plastic pollution and its
effects. Government regulations have been implemented that ban some
chemicals from being used in specific plastic products.
In Canada, the United States, and the European Union, BPA has been banned from being incorporated in the production of baby bottles and children's cups, due to health concerns and the higher vulnerability of younger children to the effects of BPA. Taxes have been established in order to discourage specific ways of managing plastic waste. The landfill tax,
for example, creates an incentive to choose to recycle plastics rather
than contain them in landfills, by making the latter more expensive. There has also been a standardization of the types of plastics that can be considered compostable. The European Norm EN 13432, which was set by the European Committee for Standardization (CEN),
lists the standards that plastics must meet, in terms of compostability
and biodegradability, in order to officially be labeled as compostable.
Institutional arrangements in Canada
The Canadian federal government formed a current institution that
protects marine areas; this includes the mitigation of plastic
pollution. In 1997, Canada adopted legislation for oceans management and
passed the Oceans Act.
Federal governance, Regional Governance, and Aboriginal Peoples are the
actors involved in the process of decision-making and implementation of
the decision. The Regional Governance bodies are federal, provincial,
and territorial government agencies that hold responsibilities of the
marine environment. Aboriginal Peoples in Canada have treaty and
non-treaty rights related to ocean activities. According to the Canadian
government, they respect these rights and work with Aboriginal groups
in oceans management activities.
With the Oceans Act made legal, Canada made a commitment to
conserve and protect the oceans. The Ocean Acts' underlying principle is
sustainable development, precautionary and integrated management
approach to ensure that there is a comprehensive understanding in
protecting marine areas. In the integrated management approach, the
Oceans Act designates federal responsibility to the Minister of
Fisheries and Oceans Canada for any new and emerging ocean-related
activities.
The Act encourages collaboration and coordination within the government
that unifies interested parties. Moreover, the Oceans Act engages any
Canadians who are interested in being informed of the decision-making
regarding ocean environment.
In 2005, federal organizations developed the Federal Marine Protected Areas Strategy. This strategy is a collaborative approach implemented by Fisheries and Oceans Canada, Parks Canada, and Environment Canada
to plan and manage federal marine protected areas. The federal marine
protected areas work with Aboriginal groups, industries, academia,
environmental groups, and NGOs to strengthen marine protected areas. The
federal marine protected areas network consists of three core programs:
Marine Protected Areas, Marine Wildlife Areas, and National Marine Conservation Areas.
The MPA is a program to be noted because it is significant in
protecting ecosystems from the effects of industrial activities. The MPA
guiding principles are Integrated Management, ecosystem-based management approach, Adaptive Management Approach, Precautionary Principle, and Flexible Management Approach.
All five guiding principles are used collectively and simultaneously to
collaborate and respect legislative mandates of individual departments,
to use scientific knowledge and traditional ecological knowledge
(TEK) to manage human activities, to monitor and report on programs to
meet conservation objectives of MPAs, to use best available information
in the absence of scientific certainty, and to maintain a balance
between conservation needs and sustainable development objectives.
Collection
The two common forms of waste collection include curbside collection
and the use of drop-off recycling centers. About 87 percent of the
population in the United States (273 million people) have access to
curbside and drop-off recycling centers. In curbside collection, which
is available to about 63 percent of the United States population (193
million people), people place designated plastics in a special bin to be
picked up by a public or private hauling company. Most curbside programs collect more than one type of plastic resin; usually both PETE and HDPE.
At drop-off recycling centers, which are available to 68 percent of the
United States population (213 million people), people take their
recyclables to a centrally located facility. Once collected, the plastics are delivered to a materials recovery facility (MRF) or handler for sorting into single-resin streams to increase product value. The sorted plastics are then baled to reduce shipping costs to reclaimers.
There are varying rates of recycling per type of plastic, and in
2011, the overall plastic recycling rate was approximately 8% in the
United States. Approximately 2.7 million tons of plastics were recycled in the U.S. in 2011.
Some plastics are recycled more than others; in 2011 "29 percent of
HDPE bottles and 29 percent of PET bottles and jars were recycled."
In May 2019, a new model to collect packaging from consumers and
reuse it will begin. It is called "Loop". Consumers will drop the
package in special shipping totes and then a pick up will take it.
"Partners include Procter & Gamble, Nestlé, PepsiCo, Unilever, Mars
Petcare, The Clorox Company, The Body Shop, Coca-Cola, Mondelēz, Danone
and other firms.
Non-usage and reduction in usage
The Ministry of Drinking Water and Sanitation, Government of India, has requested various governmental departments to avoid the use of plastic bottles
to provide drinking water during governmental meetings, etc., and to
instead make arrangements for providing drinking water that do not
generate plastic waste. The state of Sikkim has restricted the usage of plastic water bottles (in government functions and meetings) and styrofoam products. The state of Bihar has banned the usage of plastic water bottles in governmental meetings.
The 2015 National Games of India, organised in Thiruvananthapuram, was associated with green protocols. This was initiated by Suchitwa Mission that aimed for "zero-waste" venues. To make the event "disposable-free", there was ban on the usage of disposable water bottles. The event witnessed the usage of reusable tableware and stainless steel tumblers. Athletes were provided with refillable steel flasks. It is estimated that these green practices stopped the generation of 120 metric tonnes of disposable waste.
The state of Maharashtra,
India effected the Maharashtra Plastic and Thermocol Products ban 23
June 2018, subjecting plastic users to fines and potential imprisonment
for repeat offenders.
In July 2018, Albania became the first country in Europe to ban lightweight plastic bags. Albania’s environment minister Blendi Klosi
said that businesses importing, producing or trading plastic bags less
than 35 microns in thickness risk facing fines between 1 million to 1.5
million lek (€7,900 to €11,800).
In January 2019, Nestlé
announced that it will phase-out the use of plastic straws starting in
February 2019 and will end the use of plastic packaging that is not
recyclable or resusable by 2025.
In January 2019, the Iceland supermarket chain, which specializes in frozen foods, pledged to "eliminate or drastically reduce all plastic packaging for its store-brand products by 2023."
In Bali, a pair of two sisters, Melati and Isabel Wijsen, have gone through efforts to ban plastic bags in 2019. Their organization Bye Bye Plastic Bags has spread to 28 locations around the world.
In 2019 The New York (state) banned single use plastic bags
and introduced a 5 cent fee for using single use paper bags. The ban
will enter into force in 2020. This will not only reduce plastic bag
usage in New York state (23,000,000,000 every year until now), but also
eliminate 12 million barrels of oil used to make plastic bags used by
the state each year.
Action for creating awareness
On 11 April 2013 in order to create awareness, artist Maria Cristina Finucci founded The Garbage Patch State at UNESCO –Paris in front of Director General Irina Bokova. First of a series of events under the patronage of UNESCO and of Italian Ministry of the Environment.
International organisations have also been raising awareness of plastic pollution.
Every year, June 5 is observed as World Environment Day to raise
awareness and increase government action on the pressing issue. In 2018,
India was host to the 43rd World Environment Day and the theme was
‘Beat Plastic Pollution' with focus on single-use or disposable plastic.
The Ministry of Environment, Forest and Climate Change of India invited
people to take care of their social responsibility and urged them to
take up green good deeds in everyday life. Several states presented
plans to ban plastic or drastically reduce the use.