In computer programming, a runtime system, also called runtime environment, primarily implements portions of an execution model. This is not to be confused with the runtime lifecycle phase of a program, during which the runtime system is in operation.
Most programming languages have some form of runtime system that provides an environment in which programs run. This environment may address a number of issues including the management of application memory, how the program accesses variables, mechanisms for passing parameters between procedures, interfacing with the operating system, and otherwise. The compiler makes assumptions depending on the specific runtime system to generate correct code. Typically the runtime system will have some responsibility for setting up and managing the stack and heap, and may include features such as garbage collection, threads or other dynamic features built into the language.
Overview
Every
programming language specifies an execution model, and many implement
at least part of that model in a runtime system. One possible definition
of runtime system behavior is, among others, any behavior not directly
attributable to the program itself. This definition includes, as part
of the runtime system, things such as putting parameters onto the stack
before a function call, the behavior of disk I/O, and parallel execution of related behaviors.
By this definition, essentially every language has a runtime system, including compiled languages, interpreted languages, and embedded domain-specific languages. Even API invoked stand alone execution models such as Pthreads (POSIX threads) have a runtime system that is the implementation of execution model's behavior.
Most scholarly papers on runtime systems focus on the
implementation details of parallel runtime systems. A notable example
of a parallel runtime system is that of Cilk, a popular parallel programming model.
In addition, the proto-runtime toolkit was created to simplify the creation of parallel runtime systems.
In addition to the execution model behavior, a runtime system may also perform support services such as type checking, debugging, or code generation and optimization.
The runtime system is also the gateway by which a running program interacts with the runtime environment,
which contains not only state values that are accessible during program
execution, but also active entities that can be interacted with during
program execution like disk drives and people via keyboards. For
example, environment variables
are features of many operating systems, and are part of the runtime
environment; a running program can access them via the runtime system.
Likewise, hardware devices such as a DVD drive are active entities that a
program can interact with via a runtime system.
A unique application of a runtime environment (RTE) is within an operating system (OS) that only
allows that RTE to run, meaning from boot until power-down the entire
OS is dedicated to only the application(s) running within that RTE. Any
other code that tries to run or any failures in the application(s)
break the RTE which breaks the OS which stops all processing and
requires a re-boot. If the boot is from read-only memory, an extremely
secure, simple, single-mission system is created.
Examples for such kind of directly bundled runtime systems include:
- Between 1983 and 1984, Digital Research offered several of their business and educations applications for the IBM PC on bootable floppy diskettes bundled with SpeedStart CP/M-86, a reduced version of CP/M-86 as runtime environment.
- Some stand-alone versions of Ventura Publisher (1986-1993), Artline (1988-1991), Timeworks Publisher (1988-1991) and ViewMAX (1990-1992) contained special runtime versions of Digital Research's GEM as their runtime environment.
- In the late 1990s JP Software's command line processor 4DOS was optionally available in a special runtime version to be linked with BATCOMP pre-compiled and encrypted batch jobs in order to create unmodifyable executables from batch scripts and run them on systems without 4DOS installed.
Examples
As a simple example of a basic runtime system, the runtime system of the C language
is a particular set of instructions inserted into the executable image
by the compiler. Among other things, these instructions manage the
processor stack, create space for local variables, and copy
function-call parameters onto the top of the stack. There are often no
clear criteria for deciding which language behavior is considered inside
the runtime system versus which behavior is part of the source program.
For C, the setup of the stack is part of the runtime system, as
opposed to part of the semantics of an individual program, because it
maintains a global invariant that holds over all executions. This
systematic behavior implements the execution model of the language, as opposed to implementing semantics of the particular program text which is directly translated into code that computes results.
One way to observe this separation between the semantics of a
particular program and the runtime environment is to compile a program
into an object file
containing all the functions versus compiling an entire program to an
executable binary. The object file will only contain assembly code
relevant to those functions, while the executable binary will contain
additional code used to implement the runtime environment. The object
file, on one hand, may be missing information from the runtime
environment that will be resolved by linking.
On the other hand, the code in the object file still depends on
assumptions in the runtime system; for example, a function may read
parameters from a particular register or stack location, depending on
the calling convention used by the runtime environment.
Another example is the case of using an application programming interface (API) to interact with a runtime system. The calls to that API look the same as calls to a regular software library,
however at some point during the call the execution model changes. The
runtime system implements an execution model different from that of the
language the library is written in terms of. A person reading the code
of a normal library would be able to understand the library's behavior
by just knowing the language the library was written in. However, a
person reading the code of the API that invokes a runtime system would
not be able to understand the behavior of the API call just by knowing
the language the call was written in. At some point, via some
mechanism, the execution model stops being that of the language the call
is written in and switches over to being the execution model
implemented by the runtime system. For example, the trap instruction is
one method of switching execution models. This difference is what
distinguishes an API-invoked execution model, such as Pthreads, from a
usual software library. Both Pthreads calls and software library calls
are invoked via an API, but Pthreads behavior cannot be understood in
terms of the language of the call. Rather, Pthreads calls bring into
play an outside execution model, which is implemented by the Pthreads
runtime system (this runtime system is often the OS kernel).
As an extreme example, the physical CPU itself can be viewed as
an implementation of the runtime system of a specific assembly language.
In this view, the execution model is implemented by the physical CPU
and memory systems. As an analogy, runtime systems for higher-level
languages are themselves implemented using some other languages. This
creates a hierarchy of runtime systems, with the CPU itself—or actually
its logic at the microcode layer or below—acting as the lowest-level runtime system.
Advanced features
Some
compiled or interpreted languages provide an interface that allows
application code to interact directly with the runtime system. An
example is the
Thread
class in the Java language.
The class allows code (that is animated by one thread) to do things
such as start and stop other threads. Normally, core aspects of a
language's behavior such as task scheduling and resource management are not accessible in this fashion.
Higher-level behaviors implemented by a runtime system may
include tasks such as drawing text on the screen or making an Internet
connection. It is often the case that operating systems provide these kinds of behaviors as well, and when available, the runtime system is implemented as an abstraction layer
that translates the invocation of the runtime system into an invocation
of the operating system. This hides the complexity or variations in the
services offered by different operating systems. This also implies
that the OS kernel can itself be viewed as a runtime system, and that
the set of OS calls that invoke OS behaviors may be viewed as
interactions with a runtime system.
In the limit, the runtime system may provide services such as a P-code machine or virtual machine, that hide even the processor's instruction set. This is the approach followed by many interpreted languages such as AWK, and some languages like Java, which are meant to be compiled into some machine-independent intermediate representation code (such as bytecode).
This arrangement simplifies the task of language implementation and its
adaptation to different machines, and improves efficiency of
sophisticated language features such as reflection.
It also allows the same program to be executed on any machine without
an explicit recompiling step, a feature that has become very important
since the proliferation of the World Wide Web. To speed up execution, some runtime systems feature just-in-time compilation to machine code.
A modern aspect of runtime systems is parallel execution behaviors, such as the behaviors exhibited by mutex constructs in Pthreads and parallel section constructs in OpenMP. A runtime system with such parallel execution behaviors may be modularized according to the proto-runtime approach.
History
Notable early examples of runtime systems are the interpreters for BASIC and Lisp. These environments also included a garbage collector. Forth
is an early example of a language designed to be compiled into
intermediate representation code; its runtime system was a virtual
machine that interpreted that code. Another popular, if theoretical,
example is Donald Knuth's MIX computer.
In C
and later languages that supported dynamic memory allocation, the
runtime system also included a library that managed the program's memory
pool.
In the object-oriented programming languages, the runtime system was often also responsible for dynamic type checking and resolving method references.