Search This Blog

Saturday, January 27, 2024

Arctic methane emissions

From Wikipedia, the free encyclopedia
Arctic methane concentrations in the atmosphere up to September 2020. A peak of 1988 parts per billion was reached in October 2019.

Arctic methane release is the release of methane from seas and soils in permafrost regions of the Arctic. While it is a long-term natural process, methane release is exacerbated by global warming. This results in a positive feedback cycle, as methane is itself a powerful greenhouse gas.

The Arctic region is one of the many natural sources of the greenhouse gas methane. Global warming could potentially accelerate its release, due to both release of methane from existing stores, and from methanogenesis in rotting biomass. Large quantities of methane are stored in the Arctic in natural gas deposits and as undersea clathrates. When permafrost thaws as a consequence of warming, large amounts of organic material can become available for methanogenesis and may ultimately be released as methane. Clathrates also degrade on warming and release methane directly.

Atmospheric methane concentrations are 8–10% higher in the Arctic than in the Antarctic atmosphere. During cold glacier epochs, this gradient decreases to practically insignificant levels. Land ecosystems are considered the main sources of this asymmetry, although it has been suggested in 2007 that "the role of the Arctic Ocean is significantly underestimated." Soil temperature and moisture levels have been found to be significant variables in soil methane fluxes in tundra environments.

Contribution to climate change

Main sources of global methane emissions (2008-2017) according to the Global Carbon Project

Main sources of global methane emissions (2008-2017) according to the Global Carbon Project

Due to the relatively short lifetime of atmospheric methane, its global trends are more complex than those of carbon dioxide. NOAA annual records have been updated since 1984, and they show substantial growth during the 1980s, a slowdown in annual growth during the 1990s, a plateau (including some years of declining atmospheric concentrations) in the early 2000s and another consistent increase beginning in 2007. Since around 2018, there has been a consistent acceleration in annual methane increases, with the 2020 increase of 15.06 parts per billion breaking the previous record increase of 14.05 ppb set in 1991, and 2021 setting an even larger increase of 18.34 ppb.

These trends alarm climate scientists, with some suggesting that they represent a climate change feedback increasing natural methane emissions well beyond their preindustrial levels. However, there is currently no evidence connecting the Arctic to this recent acceleration. In fact, a 2021 study indicated that the role of the Arctic was typically overerestimated in global methane accounting, while the role of tropical regions was consistently underestimated. The study suggested that tropical wetland methane emissions were the culprit behind the recent growth trend, and this hypothesis was reinforced by a 2022 paper connecting tropical terrestrial emissions to 80% of the global atmospheric methane trends between 2010 and 2019.

Nevertheless, the Arctic's role in global methane trends is considered very likely to increase in the future. There is evidence for increasing methane emissions since 2004 from a Siberian permafrost site into the atmosphere linked to warming.

Causes

Loss of permafrost

PMMA chambers used to measure methane and CO2 emissions in Storflaket peat bog near Abisko, northern Sweden.
Carbon cycle accelerates in the wake of abrupt thaw (orange) relative to the previous state of the area (blue, black).

Global warming in the Arctic accelerates methane release from both existing stores and methanogenesis in rotting biomass. Methanogenesis requires thoroughly anaerobic environments, which slows down the mobilization of old carbon. A 2015 Nature review estimated that the cumulative emissions from thawed anaerobic permafrost sites were 75–85% lower than the cumulative emissions from aerobic sites, and that even there, methane emissions amounted to only 3% to 7% of CO2 emitted in situ. While they represented between 25% and 45% of the CO2's potential impact on climate over a 100-year timescale, the review concluded that aerobic permafrost thaw still had a greater warming impact overall. In 2018, however, another study in Nature Climate Change performed seven-year incubation experiments and found that methane production became equivalent to CO2 production once a methanogenic microbial community became established at the anaerobic site. This finding had substantially raised the overall warming impact represented by anaerobic thaw sites.

Since methanogenesis requires anaerobic environments, it is frequently associated with Arctic lakes, where the emergence of bubbles of methane can be observed. Lakes produced by the thaw of particularly ice-rich permafrost are known as thermokarst lakes. Not all of the methane produced in the sediment of a lake reaches the atmosphere, as it can get oxidized in the water column or even within the sediment itself. However, 2022 observations indicate that at least half of the methane produced within thermokarst lakes reaches the atmosphere. Another process which frequently results in substantial methane emissions is the erosion of permafrost-stabilized hillsides and their ultimate collapse. Altogether, these two processes - hillside collapse (also known as retrogressive thaw slump, or RTS) and thermokarst lake formation - are collectively described as abrupt thaw, as they can rapidly expose substantial volumes of soil to microbial respiration in a matter of days, as opposed to the gradual, cm by cm, thaw of formerly frozen soil which dominates across most permafrost environments. This rapidity was illustrated in 2019, when three permafrost sites which would have been safe from thawing under the "intermediate" Representative Concentration Pathway 4.5 for 70 more years had undergone abrupt thaw. Another example occurred in the wake of a 2020 Siberian heatwave, which was found to have increased RTS numbers 17-fold across the northern Taymyr Peninsula – from 82 to 1404, while the resultant soil carbon mobilization increased 28-fold, to an average of 11 grams of carbon per square meter per year across the peninsula (with a range between 5 and 38 grams).

Until recently, Permafrost carbon feedback (PCF) modeling had mainly focused on gradual permafrost thaw, due to the difficulty of modelling abrupt thaw, and because of the flawed assumptions about the rates of methane production. Nevertheless, a study from 2018, by using field observations, radiocarbon dating, and remote sensing to account for thermokarst lakes, determined that abrupt thaw will more than double permafrost carbon emissions by 2100. And a second study from 2020, showed that under the scenario of continually accelerating emissions (RCP 8.5), abrupt thaw carbon emissions across 2.5 million km2 are projected to provide the same feedback as gradual thaw of near-surface permafrost across the whole 18 million km2 it occupies. Thus, abrupt thaw adds between 60 and 100 gigatonnes of carbon by 2300, increasing carbon emissions by ~125–190% when compared to gradual thaw alone.[30]

Methane emissions from thawed permafrost appear to decrease as bog matures over time.
However, there is still scientific debate about the rate and the trajectory of methane production in the thawed permafrost environments. For instance, a 2017 paper suggested that even in the thawing peatlands with frequent thermokarst lakes, less than 10% of methane emissions can be attributed to the old, thawed carbon, and the rest is anaerobic decomposition of modern carbon. A follow-up study in 2018 had even suggested that increased uptake of carbon due to rapid peat formation in the thermokarst wetlands would compensate for the increased methane release. Another 2018 paper suggested that permafrost emissions are limited following thermokarst thaw, but are substantially greater in the aftermath of wildfires. In 2022, a paper demonstrated that peatland methane emissions from permafrost thaw are initially quite high (82 milligrams of methane per square meter per day), but decline by nearly three times as the permafrost bog matures, suggesting a reduction in methane emissions in several decades to a century following abrupt thaw.

In 2011, preliminary computer analyses suggested that permafrost emissions could be equivalent to around 15% of anthropogenic emissions.

A 2018 perspectives article discussing tipping points in the climate system activated around 2 °C (3.6 °F) of global warming suggested that at this threshold, permafrost thaw would add a further 0.09 °C (0.16 °F) to global temperatures by 2100, with a range of 0.04–0.16 °C (0.072–0.288 °F) In 2021, another study estimated that in a future where zero emissions were reached following an emission of a further 1000 Pg C into the atmosphere (a scenario where temperatures ordinarily stay stable after the last emission, or start to decline slowly) permafrost carbon would add 0.06 °C (0.11 °F) (with a range of 0.02–0.14 °C (0.036–0.252 °F)) 50 years after the last anthropogenic emission, 0.09 °C (0.16 °F) (0.04–0.21 °C (0.072–0.378 °F)) 100 years later and 0.27 °C (0.49 °F) (0.12–0.49 °C (0.22–0.88 °F)) 500 years later. However, neither study was able to take abrupt thaw into account.

In 2020, a study of the northern permafrost peatlands (a smaller subset of the entire permafrost area, covering 3.7 million km2 out of the estimated 18 million km2) would amount to ~1% of anthropogenic radiative forcing by 2100, and that this proportion remains the same in all warming scenarios considered, from 1.5 °C (2.7 °F) to 6 °C (11 °F). It had further suggested that after 200 more years, those peatlands would have absorbed more carbon than what they had emitted into the atmosphere.

The IPCC Sixth Assessment Report estimates that carbon dioxide and methane released from permafrost could amount to the equivalent of 14–175 billion tonnes of carbon dioxide per 1 °C (1.8 °F) of warming. For comparison, by 2019, annual anthropogenic emission of carbon dioxide alone stood around 40 billion tonnes.

Nine probable scenarios of greenhouse gas emissions from permafrost thaw during the 21st century, which show a limited, moderate and intense CO2 and CH4 emission response to low, medium and high-emission Representative Concentration Pathways. The vertical bar uses emissions of selected large countries as a comparison: the right-hand side of the scale shows their cumulative emissions since the start of the Industrial Revolution, while the left-hand side shows each country's cumulative emissions for the rest of the 21st century if they remained unchanged from their 2019 levels.

A 2021 assessment of the economic impact of climate tipping points estimated that permafrost carbon emissions would increase the social cost of carbon by about 8.4%.  However, the methods of that assessment have attracted controversy: when researchers like Steve Keen and Timothy Lenton had accused it of underestimating the overall impact of tipping points and of higher levels of warming in general, the authors have conceded some of their points.

In 2021, a group of prominent permafrost researchers like Merritt Turetsky had presented their collective estimate of permafrost emissions, including the abrupt thaw processes, as part of an effort to advocate for a 50% reduction in anthropogenic emissions by 2030 as a necessary milestone to help reach net zero by 2050. Their figures for combined permafrost emissions by 2100 amounted to 150–200 billion tonnes of carbon dioxide equivalent under 1.5 °C (2.7 °F) of warming, 220–300 billion tonnes under 2 °C (3.6 °F) and 400–500 billion tonnes if the warming was allowed to exceed 4 °C (7.2 °F). They compared those figures to the extrapolated present-day emissions of Canada, the European Union and the United States or China, respectively. The 400–500 billion tonnes figure would also be equivalent to the today's remaining budget for staying within a 1.5 °C (2.7 °F) target. One of the scientists involved in that effort, Susan M. Natali of Woods Hole Research Centre, had also led the publication of a complementary estimate in a PNAS paper that year, which suggested that when the amplification of permafrost emissions by abrupt thaw and wildfires is combined with the foreseeable range of near-future anthropogenic emissions, avoiding the exceedance (or "overshoot") of 1.5 °C (2.7 °F) warming is already implausible, and the efforts to attain it may have to rely on negative emissions to force the temperature back down.

An updated 2022 assessment of climate tipping points concluded that abrupt permafrost thaw would add 50% to gradual thaw rates, and would add 14 billion tons of carbon dioxide equivalent emissions by 2100 and 35 billion tons by 2300 per every degree of warming. This would have a warming impact of 0.04 °C (0.072 °F) per every full degree of warming by 2100, and 0.11 °C (0.20 °F) per every full degree of warming by 2300. It also suggested that at between 3 °C (5.4 °F) and 6 °C (11 °F) degrees of warming (with the most likely figure around 4 °C (7.2 °F) degrees) a large-scale collapse of permafrost areas could become irreversible, adding between 175 and 350 billion tons of CO2 equivalent emissions, or 0.2–0.4 °C (0.36–0.72 °F) degrees, over about 50 years (with a range between 10 and 300 years).

A major review published in the year 2022 concluded that if the goal of preventing 2 °C (3.6 °F) of warming was realized, then the average annual permafrost emissions throughout the 21st century would be equivalent to the year 2019 annual emissions of Russia. Under RCP4.5, a scenario considered close to the current trajectory and where the warming stays slightly below 3 °C (5.4 °F), annual permafrost emissions would be comparable to year 2019 emissions of Western Europe or the United States, while under the scenario of high global warming and worst-case permafrost feedback response, they would nearly match year 2019 emissions of China.

Arctic sea ice decline

A 2015 study concluded that Arctic sea ice decline accelerates methane emissions from the Arctic tundra, with the emissions for 2005-2010 being around 1.7 million tonnes higher than they would have been with the sea ice at 1981–1990 levels. One of the researchers noted, "The expectation is that with further sea ice decline, temperatures in the Arctic will continue to rise, and so will methane emissions from northern wetlands."

Clathrate breakdown

Methane clathrate is released as gas into the surrounding water column or soils when ambient temperature increases
The clathrate gun hypothesis is a proposed explanation for the periods of rapid warming during the Quaternary. The hypothesis is that changes in fluxes in upper intermediate waters in the ocean caused temperature fluctuations that alternately accumulated and occasionally released methane clathrate on upper continental slopes. This would have had an immediate impact on the global temperature, as methane is a much more powerful greenhouse gas than carbon dioxide. Despite its atmospheric lifetime of around 12 years, methane's global warming potential is 72 times greater than that of carbon dioxide over 20 years, and 25 times over 100 years (33 when accounting for aerosol interactions). It is further proposed that these warming events caused the Bond Cycles and individual interstadial events, such as the Dansgaard–Oeschger interstadials.

Most deposits of methane clathrate are in sediments too deep to respond rapidly, and 2007 modelling by Archer suggests that the methane forcing derived from them should remain a minor component of the overall greenhouse effect. Clathrate deposits destabilize from the deepest part of their stability zone, which is typically hundreds of metres below the seabed. A sustained increase in sea temperature will warm its way through the sediment eventually, and cause the shallowest, most marginal clathrate to start to break down; but it will typically take on the order of a thousand years or more for the temperature change to get that far into the seabed. Further, subsequent research on midlatitude deposits in the Atlantic and Pacific Ocean found that any methane released from the seafloor, no matter the source, fails to reach the atmosphere once the depth exceeds 430 m (1,411 ft), while geological characteristics of the area make it impossible for hydrates to exist at depths shallower than 550 m (1,804 ft).

Potential Methane release in the Eastern Siberian Arctic Shelf

However, some methane clathrates deposits in the Arctic are much shallower than the rest, which could make them far more vulnerable to warming. A trapped gas deposit on the continental slope off Canada in the Beaufort Sea, located in an area of small conical hills on the ocean floor is just 290 m (951 ft) below sea level and considered the shallowest known deposit of methane hydrate. However, the East Siberian Arctic Shelf averages 45 meters in depth, and it is assumed that below the seafloor, sealed by sub-sea permafrost layers, hydrates deposits are located. This would mean that when the warming potentially talik or pingo-like features within the shelf, they would also serve as gas migration pathways for the formerly frozen methane, and a lot of attention has been paid to that possibility. Shakhova et al. (2008) estimate that not less than 1,400 gigatonnes of carbon is presently locked up as methane and methane hydrates under the Arctic submarine permafrost, and 5–10% of that area is subject to puncturing by open talik. Their paper initially included the line that the "release of up to 50 gigatonnes of predicted amount of hydrate storage [is] highly possible for abrupt release at any time". A release on this scale would increase the methane content of the planet's atmosphere by a factor of twelve, equivalent in greenhouse effect to a doubling in the 2008 level of CO2.

This is what led to the original Clathrate gun hypothesis, and in 2008 the United States Department of Energy National Laboratory system and the United States Geological Survey's Climate Change Science Program both identified potential clathrate destabilization in the Arctic as one of four most serious scenarios for abrupt climate change, which have been singled out for priority research. The USCCSP released a report in late December 2008 estimating the gravity of this risk. A 2012 study of the effects for the original hypothesis, based on a coupled climate–carbon cycle model (GCM) assessed a 1000-fold (from <1 to 1000 ppmv) methane increase—within a single pulse, from methane hydrates (based on carbon amount estimates for the PETM, with ~2000 GtC), and concluded it would increase atmospheric temperatures by more than 6 °C within 80 years. Further, carbon stored in the land biosphere would decrease by less than 25%, suggesting a critical situation for ecosystems and farming, especially in the tropics. Another 2012 assessment of the literature identifies methane hydrates on the Shelf of East Arctic Seas as a potential trigger.

A risk of seismic activity being potentially responsible for mass methane releases has been considered as well. In 2012, seismic observations destabilizing methane hydrate along the continental slope of the eastern United States, following the intrusion of warmer ocean currents, suggests that underwater landslides could release methane. The estimated amount of methane hydrate in this slope is 2.5 gigatonnes (about 0.2% of the amount required to cause the PETM), and it is unclear if the methane could reach the atmosphere. However, the authors of the study caution: "It is unlikely that the western North Atlantic margin is the only area experiencing changing ocean currents; our estimate of 2.5 gigatonnes of destabilizing methane hydrate may therefore represent only a fraction of the methane hydrate currently destabilizing globally." Bill McGuire notes, "There may be a threat of submarine landslides around the margins of Greenland, which are less well explored. Greenland is already uplifting, reducing the pressure on the crust beneath and also on submarine methane hydrates in the sediment around its margins, and increased seismic activity may be apparent within decades as active faults beneath the ice sheet are unloaded. This could provide the potential for the earthquake or methane hydrate destabilisation of submarine sediment, leading to the formation of submarine slides and, perhaps, tsunamis in the North Atlantic."
Methane releases in Laptev Sea are typically consumed within the sediment by methanotrophs. Areas with high sedimentation (top) subject their microbial communities to continual disturbance, and so they are the most likely to see active fluxes, whether with (right) or without active upward flow (left). Even so, the annual release may be limited to 1000 tonnes or less.

Research carried out in 2008 in the Siberian Arctic showed methane releases on the annual scale of millions of tonnes, which was a substantial increase on the previous estimate of 0.5 millions of tonnes per year. apparently through perforations in the seabed permafrost, with concentrations in some regions reaching up to 100 times normal levels. The excess methane has been detected in localized hotspots in the outfall of the Lena River and the border between the Laptev Sea and the East Siberian Sea. At the time, some of the melting was thought to be the result of geological heating, but more thawing was believed to be due to the greatly increased volumes of meltwater being discharged from the Siberian rivers flowing north.

By 2013, the same team of researchers used multiple sonar observations to quantify the density of bubbles emanating from subsea permafrost into the ocean (a process called ebullition), and found that 100–630 mg methane per square meter is emitted daily along the East Siberian Arctic Shelf (ESAS), into the water column. They also found that during storms, when wind accelerates air-sea gas exchange, methane levels in the water column drop dramatically. Observations suggest that methane release from seabed permafrost will progress slowly, rather than abruptly. However, Arctic cyclones, fueled by global warming, and further accumulation of greenhouse gases in the atmosphere could contribute to more rapid methane release from this source. Altogether, their updated estimate had now amounted to 17 millions of tonnes per year.

However, these findings were soon questioned, as this rate of annual release would mean that the ESAS alone would account for between 28% and 75% of the observed Arctic methane emissions, which contradicts many other studies. In January 2020, it was found that the rate at which methane enters the atmosphere after it had been released from the shelf deposits into the water column had been greatly overestimated, and observations of atmospheric methane fluxes taken from multiple ship cruises in the Arctic instead indicate that only around 3.02 million tonnes of methane are emitted annually from the ESAS. A modelling study published in 2020 suggested that under the present-day conditions, annual methane release from the ESAS may be as low as 1000 tonnes, with 2.6 – 4.5 million tonnes representing the peak potential of turbulent emissions from the shelf.

Hong et al. 2017 studied methane seepage in the shallow arctic seas at the Barents Sea close to Svalbard. Temperature at the seabed has fluctuated seasonally over the last century, between −1.8 °C (28.8 °F) and 4.8 °C (40.6 °F), it has only affected release of methane to a depth of about 1.6 meters at the sediment-water interface. Hydrates can be stable through the top 60 meters of the sediments and the current observed releases originate from deeper below the sea floor. They conclude that the increased methane flux started hundreds to thousands of years ago, noted about it, "..episodic ventilation of deep reservoirs rather than warming-induced gas hydrate dissociation." Summarizing his research, Hong stated:

The results of our study indicate that the immense seeping found in this area is a result of natural state of the system. Understanding how methane interacts with other important geological, chemical and biological processes in the Earth system is essential and should be the emphasis of our scientific community.

Methane releases specifically attributed to hydrate dissociation in the Svalbard appear to be much lower than the leaks from other methane sources.

Research by Klaus Wallmann et al. 2018 concluded that hydrate dissociation at Svalbard 8,000 years ago was due to isostatic rebound (continental uplift following deglaciation). As a result, the water depth got shallower with less hydrostatic pressure, without further warming. The study, also found that today's deposits at the site become unstable at a depth of ~ 400 meters, due to seasonal bottom water warming, and it remains unclear if this is due to natural variability or anthropogenic warming. Moreover, another paper published in 2017 found that only 0.07% of the methane released from the gas hydrate dissociation at Svalbard appears to reach the atmosphere, and usually only when the wind speeds were low. In 2020, a subsequent study confirmed that only a small fraction of methane from the Svalbard seeps reaches the atmosphere, and that the wind speed holds a greater influence on the rate of release than dissolved methane concentration on site.

Finally, a paper published in 2017 indicated that the methane emissions from at least one seep field at Svalbard were more than compensated for by the enhanced carbon dioxide uptake due to the greatly increased phytoplankton activity in this nutrient-rich water. The daily amount of carbon dioxide absorbed by the phytoplankton was 1,900 greater than the amount of methane emitted, and the negative (i.e. indirectly cooling) radiative forcing from the CO2 uptake was up to 251 times greater than the warming from the methane release.
In 2018, a perspective piece devoted to tipping points in the climate system suggested that the climate change contribution from methane hydrates would be "negligible" by the end of the century, but could amount to 0.4–0.5 °C (0.72–0.90 °F) on the millennial timescales. In 2021, the IPCC Sixth Assessment Report no longer included methane hydrates in the list of potential tipping points, and says that "it is very unlikely that CH4 emissions from clathrates will substantially warm the climate system over the next few centuries." The report had also linked terrestrial hydrate deposites to gas emission craters discovered in the Yamal Peninsula in Siberia, Russia beginning in July 2014, but noted that since terrestrial gas hydrates predominantly form at a depth below 200 metres, a substantial response within the next few centuries can be ruled out. Likewise, a 2022 assessment of tipping points described methane hydrates as a "threshold-free feedback" rather than a tipping point.

Ice sheets

A 2014 study found evidence for methane cycling below the ice sheet of the Russell Glacier, based on subglacial drainage samples which were dominated by Pseudomonadota. During the study, the most widespread surface melt on record for the past 120 years was observed in Greenland; on 12 July 2012, unfrozen water was present on almost the entire ice sheet surface (98.6%). The findings indicate that methanotrophs could serve as a biological methane sink in the subglacial ecosystem, and the region was, at least during the sample time, a source of atmospheric methane. Scaled dissolved methane flux during the 4 months of the summer melt season was estimated at 990 Mg CH4. Because the Russell-Leverett Glacier is representative of similar Greenland outlet glaciers, the researchers concluded that the Greenland Ice Sheet may represent a significant global methane source. A study in 2016 concluded that methane clathrates may exist below Greenland's and Antarctica's ice sheets, based on past evidence.

Reducing methane emissions

Mitigation of methane emissions has greatest potential to preserve Arctic sea ice if it is implemented within the 2020s.

Use of flares

ARPA-E has funded a research project from 2021-2023 to develop a "smart micro-flare fleet" to burn off methane emissions at remote locations.

A 2012 review article stated that most existing technologies "operate on confined gas streams of 0.1% methane", and were most suitable for areas where methane is emitted in pockets.

If Arctic oil and gas operations use Best Available Technology (BAT) and Best Environmental Practices (BEP) in petroleum gas flaring, this can result in significant methane emissions reductions, according to the Arctic Council.

Censorship in the United States

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Censorshi...