Search This Blog

Thursday, October 8, 2015

Solar wind


From Wikipedia, the free encyclopedia


Ulysses measures the variable speed of the slow and fast solar wind at 400 and 750 km/s, respectively.

The solar wind is a stream of charged particles released from the upper atmosphere of the Sun. This plasma consists of mostly electrons, protons and alpha particles with energies usually between 1.5 and 10 keV; embedded in the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar longitude. Its particles can escape the Sun's gravity because of their high energy, from the high temperature of the corona and magnetic, electrical and electromagnetic phenomena in it.

The solar wind flows outward supersonically to great distances, filling a region known as the heliosphere, an enormous bubble-like volume surrounded by the interstellar medium. Other related phenomena include the aurora (northern and southern lights), the plasma tails of comets that always point away from the Sun, and geomagnetic storms that can change the direction of magnetic field lines and create strong currents in power grids on Earth.

History

The existence of a continuous stream of particles flowing outward from the Sun was first suggested by British astronomer Richard C. Carrington. In 1859, Carrington and Richard Hodgson independently made the first observation of what would later be called a solar flare. This is a sudden outburst of energy from the Sun's atmosphere. On the following day, a geomagnetic storm was observed and Carrington suspected that there might be a connection. George FitzGerald later suggested that matter was being regularly accelerated away from the Sun and was reaching the Earth after several days.[1]


Laboratory simulation of the magnetosphere's influence on the Solar Wind; these auroral-like Birkeland currents were created in a terrella, a magnetised anode globe in an evacuated chamber.

In 1910 British astrophysicist Arthur Eddington essentially suggested the existence of the solar wind, without naming it, in a footnote to an article on Comet Morehouse.[2] The idea never fully caught on even though Eddington had also made a similar suggestion at a Royal Institution address the previous year. In the latter case, he postulated that the ejected material consisted of electrons while in his study of Comet Morehouse he supposed them to be ions.[2]

The first person to suggest that they were both was Kristian Birkeland. His geomagnetic surveys showed that auroral activity was nearly uninterrupted. As these displays and other geomagnetic activity were being produced by particles from the Sun, he concluded that the Earth was being continually bombarded by "rays of electric corpuscles emitted by the Sun".[1] In 1916, Birkeland proposed that, "From a physical point of view it is most probable that solar rays are neither exclusively negative nor positive rays, but of both kinds". In other words, the solar wind consists of both negative electrons and positive ions.[3] Three years later in 1919, Frederick Lindemann also suggested that particles of both polarities, protons as well as electrons, come from the Sun.[4]

Around the 1930s, scientists had determined that the temperature of the solar corona must be a million degrees Celsius because of the way it stood out into space (as seen during total eclipses). Later spectroscopic work confirmed this extraordinary temperature. In the mid-1950s Sydney Chapman calculated the properties of a gas at such a temperature and determined it was such a superb conductor of heat that it must extend way out into space, beyond the orbit of Earth. Also in the 1950s, Ludwig Biermann became interested in the fact that no matter whether a comet is headed towards or away from the Sun, its tail always points away from the Sun. Biermann postulated that this happens because the Sun emits a steady stream of particles that pushes the comet's tail away.[5] Wilfried Schröder claimed that Paul Ahnert was the first to relate solar wind to comet tail direction based on observations of the comet Whipple-Fedke (1942g).[6]

Eugene Parker realised that the heat flowing from the Sun in Chapman's model and the comet tail blowing away from the Sun in Biermann's hypothesis had to be the result of the same phenomenon, which he termed the "solar wind".[7][8] Parker showed in 1958 that even though the Sun's corona is strongly attracted by solar gravity, it is such a good heat conductor that it is still very hot at large distances. Since gravity weakens as distance from the Sun increases, the outer coronal atmosphere escapes supersonically into interstellar space. Furthermore, Parker was the first person to notice that the weakening effect of the gravity has the same effect on hydrodynamic flow as a de Laval nozzle: it incites a transition from subsonic to supersonic flow.[9]

Opposition to Parker's hypothesis on the solar wind was strong. The paper he submitted to the Astrophysical Journal in 1958 was rejected by two reviewers. It was saved by the editor Subrahmanyan Chandrasekhar (who later received the 1983 Nobel Prize in physics).

In January 1959, the Soviet satellite Luna 1 first directly observed the solar wind and measured its strength.[10][11][12] They were detected by hemispherical ion traps. The discovery, made by Konstantin Gringauz, was verified by Luna 2, Luna 3 and by the more distant measurements of Venera 1. Three years later its measurement was performed by Neugebauer and collaborators using the Mariner 2 spacecraft.[13]

In the late 1990s the Ultraviolet Coronal Spectrometer (UVCS) instrument on board the SOHO spacecraft observed the acceleration region of the fast solar wind emanating from the poles of the Sun and found that the wind accelerates much faster than can be accounted for by thermodynamic expansion alone. Parker's model predicted that the wind should make the transition to supersonic flow at an altitude of about 4 solar radii from the photosphere; but the transition (or "sonic point") now appears to be much lower, perhaps only 1 solar radius above the photosphere, suggesting that some additional mechanism accelerates the solar wind away from the Sun. The acceleration of the fast wind is still not understood and cannot be fully explained by Parker's theory. The gravitational and electromagnetic explanation for this acceleration is, however, detailed in an earlier paper by 1970 Nobel laureate for Physics, Hannes Alfvén.[14][15]

The first numerical simulation of the solar wind in the solar corona including closed and open field lines was performed by Pneuman and Kopp in 1971. The magnetohydrodynamics equations in steady state were solved iteratively starting with an initial dipolar configuration.[16]

In 1990, the Ulysses probe was launched to study the solar wind from high solar latitudes. All prior observations had been made at or near the Solar System's ecliptic plane.[17]

Emissions

While early models of the solar wind relied primarily on thermal energy to accelerate the material, by the 1960s it was clear that thermal acceleration alone cannot account for the high speed of solar wind. An additional unknown acceleration mechanism is required and likely relates to magnetic fields in the solar atmosphere.

The Sun's corona, or extended outer layer, is a region of plasma that is heated to over a million kelvins. As a result of thermal collisions, the particles within the inner corona have a range and distribution of speeds described by a Maxwellian distribution. The mean velocity of these particles is about 145 km/s, which is well below the solar escape velocity of 618 km/s. However, a few of the particles achieve energies sufficient to reach the terminal velocity of 400 km/s, which allows them to feed the solar wind. At the same temperature, electrons, due to their much smaller mass, reach escape velocity and build up an electric field that further accelerates ions way from the Sun.[18]

The total number of particles carried away from the Sun by the solar wind is about 1.3×1036 per second.[19] Thus, the total mass loss each year is about (2–3)×1014 solar masses,[20] or about one billion kilograms per second. This is equivalent to losing a mass equal to the Earth every 150 million years.[21] However, only about 0.01% of the Sun's total mass has been lost through the solar wind.[22] Other stars have much stronger stellar winds that result in significantly higher mass loss rates.

Components and speed

The solar wind is divided into two components, respectively termed the slow solar wind and the fast solar wind. The slow solar wind has a velocity of about 400 km/s, a temperature of 1.4–1.6×106 K and a composition that is a close match to the corona. By contrast, the fast solar wind has a typical velocity of 750 km/s, a temperature of 8×105 K and it nearly matches the composition of the Sun's photosphere.[23] The slow solar wind is twice as dense and more variable in intensity than the fast solar wind. The slow wind also has a more complex structure, with turbulent regions and large-scale structures.[19][24]

The slow solar wind appears to originate from a region around the Sun's equatorial belt that is known as the "streamer belt". Coronal streamers extend outward from this region, carrying plasma from the interior along closed magnetic loops.[25][26] Observations of the Sun between 1996 and 2001 showed that emission of the slow solar wind occurred between latitudes of 30–35° around the equator during the solar minimum (the period of lowest solar activity), then expanded toward the poles as the minimum waned. By the time of the solar maximum, the poles were also emitting a slow solar wind.[27]

The fast solar wind is thought to originate from coronal holes, which are funnel-like regions of open field lines in the Sun's magnetic field.[28] Such open lines are particularly prevalent around the Sun's magnetic poles. The plasma source is small magnetic fields created by convection cells in the solar atmosphere. These fields confine the plasma and transport it into the narrow necks of the coronal funnels, which are located only 20,000 kilometers above the photosphere. The plasma is released into the funnel when these magnetic field lines reconnect.[29]

Solar wind pressure

The wind exerts a pressure at 1 AU typically in the range of 1–6 nPa (1–6×109 N/m2), although it can readily vary outside that range.

The dynamic pressure is a function of wind speed and density. The formula is

P = 1.6726×106 * n * V2

where pressure P is in nPa (nanopascals), n is the density in particles/cm3 and V is the speed in km/s of the solar wind.[30]

Coronal mass ejection

Both the fast and slow solar wind can be interrupted by large, fast-moving bursts of plasma called interplanetary coronal mass ejections, or ICMEs. ICMEs are the interplanetary manifestation of solar coronal mass ejections, which are caused by release of magnetic energy at the Sun. CMEs are often called "solar storms" or "space storms" in the popular media. They are sometimes, but not always, associated with solar flares, which are another manifestation of magnetic energy release at the Sun. ICMEs cause shock waves in the thin plasma of the heliosphere, launching electromagnetic waves and accelerating particles (mostly protons and electrons) to form showers of ionizing radiation that precede the CME.
When a CME impacts the Earth's magnetosphere, it temporarily deforms the Earth's magnetic field, changing the direction of compass needles and inducing large electrical ground currents in Earth itself; this is called a geomagnetic storm and it is a global phenomenon. CME impacts can induce magnetic reconnection in Earth's magnetotail (the midnight side of the magnetosphere); this launches protons and electrons downward toward Earth's atmosphere, where they form the aurora.

ICMEs are not the only cause of space weather. Different patches on the Sun are known to give rise to slightly different speeds and densities of wind depending on local conditions. In isolation, each of these different wind streams would form a spiral with a slightly different angle, with fast-moving streams moving out more directly and slow-moving streams wrapping more around the Sun. Fast moving streams tend to overtake slower streams that originate westward of them on the Sun, forming turbulent co-rotating interaction regions that give rise to wave motions and accelerated particles, and that affect Earth's magnetosphere in the same way as, but more gently than, CMEs.

Solar System effects

The heliospheric current sheet results from the influence of the Sun's rotating magnetic field on the plasma in the solar wind.

Over the Sun's lifetime, the interaction of its surface layers with the escaping solar wind has significantly decreased its surface rotation rate.[31] The wind is considered responsible for comets' tails, along with the Sun's radiation.[32] The solar wind contributes to fluctuations in celestial radio waves observed on the Earth, through an effect called interplanetary scintillation.[33]

Magnetospheres

Schematic of Earth's magnetosphere. The solar wind flows from left to right.

Where the solar wind intersects with a planet that has a well-developed magnetic field (such as Earth, Jupiter and Saturn), the particles are deflected by the Lorentz force. This region, known as the magnetosphere, causes the particles to travel around the planet rather than bombarding the atmosphere or surface. The magnetosphere is roughly shaped like a hemisphere on the side facing the Sun, then is drawn out in a long wake on the opposite side. The boundary of this region is called the magnetopause, and some of the particles are able to penetrate the magnetosphere through this region by partial reconnection of the magnetic field lines.[18]


Noon meridian section of magnetosphere.

The solar wind is responsible for the overall shape of Earth's magnetosphere. Fluctuations in its speed, density, direction, and entrained magnetic field strongly affect Earth's local space environment. For example, the levels of ionizing radiation and radio interference can vary by factors of hundreds to thousands; and the shape and location of the magnetopause and bow shock wave upstream of it can change by several Earth radii, exposing geosynchronous satellites to the direct solar wind. These phenomena are collectively called space weather.

From the European Space Agency’s Cluster mission, a new study has taken place that proposes that it is easier for the solar wind to infiltrate the magnetosphere than previously believed. A group of scientists directly observed the existence of certain waves in the solar wind that were not expected. A recent study shows that these waves enable incoming charged particles of solar wind to breach the magnetopause. This suggests that the magnetic bubble forms more as a filter than a continuous barrier. This latest discovery occurred through the distinctive arrangement of the four identical Cluster spacecraft, which fly in a controlled configuration through near-Earth space. As they sweep from the magnetosphere into interplanetary space and back again, the fleet provides exceptional three-dimensional insights on the phenomena that connect the sun to Earth.

The research characterized variances in formation of the interplanetary magnetic field (IMF) largely influenced by Kelvin-Helmholtz waves (which occur at the interface of two fluids) as a result of differences in thickness and numerous other characteristics of the boundary layer. Experts believe that this was the first occasion that the appearance of Kelvin-Helmholtz waves at the magnetopause had been displayed at high latitude dawnward orientation of the IMF. These waves are being seen in unforeseen places under solar wind conditions that were formerly believed to be undesired for their generation. These discoveries show how Earth’s magnetosphere can be penetrated by solar particles under specific IMF circumstances. The findings are also relevant to studies of magnetospheric progressions around other planetary bodies. This study suggests that Kelvin-Helmholtz waves can be a somewhat common, and possibly constant, instrument for the entrance of solar wind into terrestrial magnetospheres under various IMF orientations.[34]

Atmospheres

The solar wind affects other incoming cosmic rays interacting with planetary atmospheres. Moreover, planets with a weak or non-existent magnetosphere are subject to atmospheric stripping by the solar wind.

Venus, the nearest and most similar planet to Earth, has 100 times denser atmosphere, with little or no geo-magnetic field. Space probes discovered a comet-like tail that extends to Earth's orbit.[35]
Earth itself is largely protected from the solar wind by its magnetic field, which deflects most of the charged particles; however some of the charged particles are trapped in the Van Allen radiation belt. A smaller number of particles from the solar wind manage to travel, as though on an electromagnetic energy transmission line, to the Earth's upper atmosphere and ionosphere in the auroral zones. The only time the solar wind is observable on the Earth is when it is strong enough to produce phenomena such as the aurora and geomagnetic storms. Bright auroras strongly heat the ionosphere, causing its plasma to expand into the magnetosphere, increasing the size of the plasma geosphere and injecting atmospheric matter into the solar wind. Geomagnetic storms result when the pressure of plasmas contained inside the magnetosphere is sufficiently large to inflate and thereby distort the geomagnetic field.

Mars is larger than Mercury and four times farther from the Sun, although it is thought that the solar wind has stripped away up to a third of its original atmosphere, leaving a layer 1/100th as dense as the Earth's. It is believed the mechanism for this atmospheric stripping is gas caught in bubbles of magnetic field, which are ripped off by solar winds.[36]

Moons and planetary surfaces


Apollo's SWC experiment

Mercury, the nearest planet to the Sun, bears the full brunt of the solar wind, and since its atmosphere is vestigial and transient, its surface is bathed in radiation.

Mercury has an intrinsic magnetic field, so under normal solar wind conditions, the solar wind cannot penetrate its magnetosphere and particles only reach the surface in the cusp regions. During coronal mass ejections, however, the magnetopause may get pressed into the surface of the planet, and under these conditions, the solar wind may interact freely with the planetary surface.

The Earth's Moon has no atmosphere or intrinsic magnetic field, and consequently its surface is bombarded with the full solar wind. The Project Apollo missions deployed passive aluminum collectors in an attempt to sample the solar wind, and lunar soil returned for study confirmed that the lunar regolith is enriched in atomic nuclei deposited from the solar wind. These elements may prove useful resources for lunar colonies.[37]

Outer limits

The solar wind "blows a bubble" in the interstellar medium (the rarefied hydrogen and helium gas that permeates the galaxy). The point where the solar wind's strength is no longer great enough to push back the interstellar medium is known as the heliopause and is often considered to be the outer border of the Solar System. The distance to the heliopause is not precisely known and probably depends on the current velocity of the solar wind and the local density of the interstellar medium, but it is far outside Pluto's orbit. Scientists hope to gain perspective on the heliopause from data acquired through the Interstellar Boundary Explorer (IBEX) mission, launched in October 2008.

Notable events

  • From May 10 to May 12, 1999, NASA's Advanced Composition Explorer (ACE) and WIND spacecraft observed a 98% decrease of solar wind density. This allowed energetic electrons from the Sun to flow to Earth in narrow beams known as "strahl", which caused a highly unusual "polar rain" event, in which a visible aurora appeared over the North Pole. In addition, Earth's magnetosphere increased to between 5 and 6 times its normal size.[38]
  • On 13 December 2010, Voyager 1 determined that the velocity of the solar wind, at its location 10.8 billion miles from Earth had slowed to zero. "We have gotten to the point where the wind from the Sun, which until now has always had an outward motion, is no longer moving outward; it is only moving sideways so that it can end up going down the tail of the heliosphere, which is a comet-shaped-like object," said Voyager project scientist Edward Stone.[39][40]

Wednesday, October 7, 2015

Solar cycle


From Wikipedia, the free encyclopedia

Line graph showing historical sunspot number count, Maunder and Dalton minima, and the Modern Maximum
400 year sunspot history, including the Maunder Minimum

"The current prediction for Sunspot Cycle 24 gives a smoothed sunspot number maximum of about 69 in the late Summer of 2013. The smoothed sunspot number reached 68.9 in August 2013 so the official maximum will be at least this high. The smoothed sunspot number has been rising again towards this second peak over the last five months and has now surpassed the level of the first peak (66.9 in February 2012). Many cycles are double peaked but this is the first in which the second peak in sunspot number was larger than the first. We are currently over five years into Cycle 24. The current predicted and observed size makes this the smallest sunspot cycle since Cycle 14 which had a maximum of 64.2 in February of 1906."[1] The monthly sunspot number was still rising as of March 2014.[2]

The solar cycle or solar magnetic activity cycle is the nearly periodic 11 year change in the Sun's activity (including changes in the levels of solar radiation and ejection of solar material) and appearance (changes in the number of sunspots, flares and other manifestations).

They have been observed (by changes in the sun's appearance and by changes seen on Earth, such as auroras) for centuries.

The changes on the sun cause effects in space, in the atmosphere and on the Earth's surface. While it is the dominant variable in solar activity, aperiodic fluctuations also occur.
Evolution of magnetism on the Sun.

Definition

Solar cycles have an average duration of about 11 years. Solar maximum and solar minimum refer respectively to periods of maximum and minimum sunspot counts. Cycles span from one minimum to the next.

Observational history

Samuel Heinrich Schwabe (1789–1875). German astronomer, discovered the solar cycle through extended observations of sunspots
Rudolf Wolf (1816–1893), Swiss astronomer, carried out historical reconstruction of solar activity back to the seventeenth century

The solar cycle was discovered in 1843 by Samuel Heinrich Schwabe, who after 17 years of observations noticed a periodic variation in the average number of sunspots.[3] Rudolf Wolf compiled and studied these and other observations, reconstructing the cycle back to 1745, eventually pushing these reconstructions to the earliest observations of sunspots by Galileo and contemporaries in the early seventeenth century.

Following Wolf's numbering scheme, the 1755–1766 cycle is traditionally numbered "1". Wolf created a standard sunspot number index, the Wolf index, which continues to be used today.

The period between 1645 and 1715, a time of few sunspots,[4] is known as the Maunder minimum, after Edward Walter Maunder, who extensively researched this peculiar event, first noted by Gustav Spörer.

In the second half of the nineteenth century Richard Carrington and by Spörer independently noted the phenomena of sunspots appearing at different latitudes at different parts of the cycle.

The cycle's physical basis was elucidated by Hale and collaborators, who in 1908 showed that sunspots were strongly magnetized (the first detection of magnetic fields beyond the Earth). In 1919 they showed that the magnetic polarity of sunspot pairs:
  • Is constant throughout a cycle;
  • Is opposite across the equator throughout a cycle;
  • Reverses itself from one cycle to the next.
Hale's observations revealed that the complete magnetic cycle spans two solar cycles, or 22 years, before returning to its original state. However, because nearly all manifestations are insensitive to polarity, the "11-year solar cycle" remains the focus of research.

In 1961 the father-and-son team of Harold and Horace Babcock established that the solar cycle is a spatiotemporal magnetic process unfolding over the Sun as a whole. They observed that the solar surface is magnetized outside of sunspots; that this (weaker) magnetic field is to first order a dipole; and that this dipole undergoes polarity reversals with the same period as the sunspot cycle. Horace's Babcock model described the Sun's oscillatory magnetic field, with a quasi-steady periodicity of 22 years.[2][3] It covered the oscillatory exchange of energy between poloidal and toroidal solar magnetic field ingredients. The two halves of the 22-year cycle are not identical, typically alternating cycles show higher (lower) sunspot counts (the "Gnevyshev–Ohl Rule."[5])

Cycle history


Reconstruction of solar activity over 11,400 years. Period of equally high activity over 8,000 years ago marked.

Sunspot numbers over the past 11,400 years have been reconstructed using Carbon-14-based dendroclimatology. The level of solar activity beginning in the 1940s is exceptional – the last period of similar magnitude occurred around 9,000 years ago (during the warm Boreal period).[6][7][8] The Sun was at a similarly high level of magnetic activity for only ~10% of the past 11,400 years. Almost all earlier high-activity periods were shorter than the present episode.[7]

Solar activity events recorded in radiocarbon. Present period is on right. Values since 1900 not shown.
Major events and approximate dates
Event Start End
Homeric minimum[9] 950BC 800BC
Oort minimum 1040 1080
Medieval maximum 1100 1250
Wolf minimum 1280 1350
Spörer Minimum 1450 1550
Maunder Minimum 1645 1715
Dalton Minimum 1790 1820
Modern Maximum 1900 present

A list of historical Grand minima of solar activity[6] came around 690 AD, 360 BC, 770 BC, 1390 BC, 2860 BC, 3340 BC, 3500 BC, 3630 BC, 3940 BC, 4230 BC, 4330 BC, 5260 BC, 5460 BC, 5620 BC, 5710 BC, 5990 BC, 6220 BC, 6400 BC, 7040 BC, 7310 BC, 7520 BC, 8220 BC and 9170 BC. Since observations began, cycles have ranged from 9–14 years. Significant amplitude variations also occur.

It was first thought that 28 cycles had spanned the 309 years between 1699 and 2008, giving an average length of 11.04 years, but recent research has showed that the longest of these (1784–1799) seems actually to have been two cycles,[10][11] meaning that one of the two had to have lasted less than 8 years.

Recent cycles

Cycle 24

The current solar cycle began on January 4, 2008, with minimal activity until early 2010.[12][13] It is on track to have the lowest recorded sunspot activity since accurate records began in 1750. The cycle featured a "double-peaked" solar maximum. The first peak was reached 99 in 2011 and the second in early 2014 at 101.[14]

Cycle 23

This cycle lasted 11.6 years, beginning in May 1996 and ending in January 2008. The maximum smoothed sunspot number (monthly number of sunspots averaged over a twelve-month period) observed during the solar cycle was 120.8 (March 2000), and the minimum was 1.7.[15] A total of 805 days had no sunspots during this cycle.[16][17][18]

Phenomena

Various solar phenomena follow the solar cycle, including sunspots and coronal mass ejections.

Sunspots


A drawing of a sunspot in the Chronicles of John of Worcester.

The Sun's apparent surface, the photosphere, radiates more actively when there are more sunspots. Satellite monitoring of solar luminosity revealed a direct relationship between the Schwabe cycle and luminosity with a peak-to-peak amplitude of about 0.1%.[19] Luminosity decreases by as much as 0.3% on a 10-day timescale when large groups of sunspots rotate across the Earth's view and increase by as much as 0.05% for up to 6 months due to faculae associated with large sunspot groups.[20]

The best information today comes from SOHO (a cooperative project of the European Space Agency and NASA), such as the MDI magnetogram, where the solar "surface" magnetic field can be seen.

As each cycle begins, sunspots appear at mid-latitudes, and then closer and closer to the equator until solar minimum is reached. This pattern is best visualized in the form of the so-called butterfly diagram. Images of the Sun are divided into latitudinal strips, and the monthly-averaged fractional surface of sunspots calculated. This is plotted vertically as a color-coded bar, and the process is repeated month after month to produce this time-series diagram. As there are peaks in sunspot number around 1955–58, James T. Struck argued for a Struck Maximum, given his discovery of the peak at this point, like Maunder and Dalton's work.[citation needed]


The sunspot butterfly diagram. This modern version is constructed (and regularly updated) by the solar group at NASA Marshall Space Flight Center.

While magnetic field changes are concentrated at sunspots, the entire sun undergoes analogous changes, albeit of smaller magnitude.

Time vs. solar latitude diagram of the radial component of the solar magnetic field, averaged over successive solar rotation. The "butterfly" signature of sunspots is clearly visible at low latitudes. Diagram constructed (and regularly updated) by the solar group at NASA Marshall Space Flight Center.

Coronal mass ejection

The solar magnetic field structures the corona, giving it its characteristic shape visible at times of solar eclipses. Complex coronal magnetic field structures evolve in response to fluid motions at the solar surface, and emergence of magnetic flux produced by dynamo action in the solar interior. For reasons not yet understood in detail, sometimes these structures lose stability, leading to coronal mass ejections into interplanetary space, or flares, caused by sudden localized release of magnetic energy driving emission of ultraviolet and X-ray radiation as well as energetic particles. These eruptive phenomena can have a significant impact on Earth's upper atmosphere and space environment, and are the primary drivers of what is now called space weather.
The occurrence frequency of coronal mass ejections and flares is strongly modulated by the cycle. Flares of any given size are some 50 times more frequent at solar maximum than at minimum. Large coronal mass ejections occur on average a few times a day at solar maximum, down to one every few days at solar minimum. The size of these events themselves does not depend sensitively on the phase of the solar cycle. A case in point are the three large X-class flares that occurred in December 2006, very near solar minimum; an X9.0 flare on Dec 5 stands as one of the brightest on record.[21]

Patterns


An overview of three solar cycles shows the relationship between the sunspot cycle, galactic cosmic rays, and the state of our near-space environment.[22]

The Waldmeier effect names the observation that cycles with larger maximum amplitudes tend to take less time to reach their maxima than cycles with smaller amplitudes;[23] maximum amplitudes are negatively correlated to the lengths of earlier cycles, aiding prediction.[24]

Solar maxima and minima also exhibit fluctuations at time scales greater than solar cycles. Increasing and decreasing trends can continue for periods of a century or more.

The 87 year (70–100 year Gleissberg cycle, named after Wolfgang Gleißberg, is thought to be an amplitude modulation of the Schwabe Cycle,[5][25][26] The Gleisberg cycle implied that the next solar cycle have a maximum smoothed sunspot number of about 145±30 in 2010 (instead 2010 was just after the cycle's solar minimum) and that the following cycle have a maximum of about 70±30 in 2023.[27]

Associated centennial variations in magnetic fields in the Corona and Heliosphere have been detected using Carbon-14 and beryllium-10 cosmogenic isotopes stored in terrestrial reservoirs such as ice sheets and tree rings[28] and by using historic observations of Geomagnetic storm activity, which bridge the time gap between the end of the usable cosmogenic isotope data and the start of modern satellite data.[29]

These variations have been successfully reproduced using models that employ magnetic flux continuity equations and observed sunspot numbers to quantify the emergence of magnetic flux from the top of the solar atmosphere and into the Heliosphere,[30] showing that sunspot observations, geomagnetic activity and cosmogenic isotopes offer a convergent understanding of solar activity variations.


2,300 year Hallstatt solar variation cycles.

Hypothesized cycles

Periodicity of solar activity with periods longer than the sunspot cycle has been proposed,[5] including:

The 210 year Suess cycle (a.k.a. "de Vries cycle").[26] This cycle is recorded from radiocarbon studies, although "little evidence of the Suess Cycle" appears in the 400-year sunspot record.[5])
The Hallstatt cycle is hypothesized to extend for approximately 2,300 years.[31][32]

An as yet unnamed cycle may extend over 6,000 years.[33]

In carbon-14 cycles of 105, 131, 232, 385, 504, 805 and 2,241 years have been observed, possibly matching cycles derived from other sources.[34] Damon and Sonett[35] proposed carbon 14-based medium- and short-term variations of periods 208 and 88 years; as well as suggesting a 2300-year radiocarbon period that modulates the 208-year period.[36]

During the Upper Permian 240 million years ago, mineral layers created in the Castile Formation show cycles of 2,500 years.[citation needed]

Solar magnetic field

The Sun's magnetic field structures its atmosphere and outer layers all the way through the corona and into the solar wind. Its spatiotemporal variations lead to various measurable solar phenomena. Other solar phenomena are closely related to the cycle, which serves as the energy source and dynamical engine for the former.

Effects

Solar


Activity cycles 21, 22 and 23 seen in sunspot number index, TSI, 10.7cm radio flux, and flare index. The vertical scales for each quantity have been adjusted to permit overplotting on the same vertical axis as TSI. Temporal variations of all quantities are tightly locked in phase, but the degree of correlation in amplitudes is variable to some degree.

Surface magnetism

Sunspots eventually decay, releasing magnetic flux in the photosphere. This flux is dispersed and churned by turbulent convection and solar large-scale flows. These transport mechanisms lead to the accumulation of magnetized decay products at high solar latitudes, eventually reversing the polarity of the polar fields (notice how the blue and yellow fields reverse in the Hathaway/NASA/MSFC graph above).

The dipolar component of the solar magnetic field reverses polarity around the time of solar maximum and reaches peak strength at the solar minimum.

Space

Spacecraft

CMEs (coronal mass ejections) produce a radiation flux of high-energy protons, sometimes known as solar cosmic rays. These can cause radiation damage to electronics and solar cells in satellites. Solar proton events also can cause single-event upset (SEU) events on electronics; at the same, the reduced flux of galactic cosmic radiation during solar maximum decreases the high-energy component of particle flux.

CME radiation is dangerous to astronauts on a space mission who are outside the shielding produced by the Earth's magnetic field. Future mission designs (e.g., for a Mars Mission) therefore incorporate a radiation-shielded "storm shelter" for astronauts to retreat to during such an event.

Gleißberg developed a CME forecasting method that relies on consecutive cycles.[37]

Galactic cosmic ray flux

The outward expansion of solar ejecta into interplanetary space provides overdensities of plasma that are efficient at scattering high-energy cosmic rays entering the solar system from elsewhere in the galaxy. The frequency of solar eruptive events is modulated by the cycle, changing the degree of cosmic ray scattering in the outer solar system accordingly. As a consequence, the cosmic ray flux in the inner solar system is anticorrelated with the overall level of solar activity. This anticorrelation is clearly detected in cosmic ray flux measurements at the Earth's surface. The effect amounts to several percent variation over the solar cycle, greater than the typically 0.1% variation in total solar irradiance.[38][39]

Some high-energy cosmic rays entering Earth's atmosphere collide hard enough with molecular atmospheric constituents to cause occasionally nuclear spallation reactions. Fission products include radionuclides such as 14C and 10Be that settle on the Earth's surface. Their concentration can be measured in ice cores, allowing a reconstruction of solar activity levels into the distant past.[40] Such reconstructions indicate that the overall level of solar activity since the middle of the twentieth century stands amongst the highest of the past 10,000 years, and that epochs of suppressed activity, of varying durations have occurred repeatedly over that time span.

Atmospheric

Solar irradiance

The total solar irradiance (TSI) is the amount of solar radiative energy incident on the Earth's upper atmosphere. TSI variations were undetectable until satellite observations began in late 1978. A series of radiometers were launched on satellites from the 1970s to the 2000s.[41] TSI measurements varied from 1360 to 1370 W/m2 across ten satellites. One of the satellites, the ACRIMSAT was launched by the ACRIM group. The controversial 1989-1991 "ACRIM gap" between non-overlapping satellites was interpolated by an ACRIM composite showing +0.037%/decade rise. Another series based on ACRIM data is produced by the PMOD group. Its series shows a -0.008%/decade downward trend.[42] This 0.045%/decade difference impacts climate models.
Solar irradiance varies systematically over the cycle,[43] both in total irradiance and in its relative components (UV vs visible and other frequencies). The solar luminosity is an estimated 0.07 percent brighter during the mid-cycle solar maximum than the terminal solar minimum. Photospheric magnetism appears to be the primary cause (96%) of 1996-2013 TSI variation.[44] The ratio of ultraviolet to visible light varies.[45]

TSI varies in phase with the solar magnetic activity cycle[46] with an amplitude of about 0.1% around an average value of about 1361.5 W/m2[47] (the "solar constant"). Variations about the average of up to −0.3% are caused by large sunspot groups and of +0.05% by large faculae and the bright network on a 7-10-day timescale[48] (see TSI variation graphics).[49] Satellite-era TSI variations show small but detectable trends.[50][51]

TSI is higher at solar maximum, even though sunspots are darker (cooler) than the average photosphere. This is caused by magnetized structures other than sunspots during solar maxima, such as faculae and active elements of the "bright" network, that are brighter (hotter) than the average photosphere. They collectively overcompensate for the irradiance deficit associated with the cooler, but less numerous sunspots. The primary driver of TSI changes on solar rotational and sunspot cycle timescales is the varying photospheric coverage of these radiatively active solar magnetic structures.[citation needed]

Energy changes in UV irradiance involved in production and loss of ozone have atmospheric effects. The 30 HPa Atmospheric pressure level changed height in phase with solar activity during solar cycles 20-23. UV irradiance increase caused higher ozone production, leading to stratospheric heating and to poleward displacements in the stratospheric and tropospheric wind systems.[52]

Short-wavelength radiation


A solar cycle: a montage of ten years' worth of Yohkoh SXT images, demonstrating the variation in solar activity during a sunspot cycle, from after August 30, 1991, to September 6, 2001. Credit: the Yohkoh mission of ISAS (Japan) and NASA (US).

With a temperature of 5870 K, the photosphere emits a proportion of radiation in the extreme ultraviolet (EUV) and above. However, hotter upper layers of the Sun's atmosphere (chromosphere and corona) emit more short-wavelength radiation. Since the upper atmosphere is not homogeneous and contains significant magnetic structure, the solar ultraviolet (UV), EUV and X-ray flux varies markedly over the cycle.

The photo montage to the left illustrates this variation for soft X-ray, as observed by the Japanese satellite Yohkoh from after August 30, 1991, at the peak of cycle 22, to September 6, 2001, at the peak of cycle 23. Similar cycle-related variations are observed in the flux of solar UV or EUV radiation, as observed, for example, by the SOHO or TRACE satellites.

Even though it only accounts for a minuscule fraction of total solar radiation, the impact of solar UV, EUV and X-ray radiation on the Earth's upper atmosphere is profound. Solar UV flux is a major driver of stratospheric chemistry, and increases in ionizing radiation significantly affect ionosphere-influenced temperature and electrical conductivity.

Solar radio flux

Emission from the Sun at centimetric (radio) wavelength is due primarily to coronal plasma trapped in the magnetic fields overlying active regions.[53] The F10.7 index is a measure of the solar radio flux per unit frequency at a wavelength of 10.7 cm, near the peak of the observed solar radio emission. F10.7 is often expressed in SFU or solar flux units (1 SFU = 10−22 W m−2 Hz−1). It represents a measure of diffuse, nonradiative coronal plasma heating. It is an excellent indicator of overall solar activity levels and correlates well with solar UV emissions.

Sunspot activity has a major effect on long distance radio communications, particularly on the shortwave bands although medium wave and low VHF frequencies are also affected. High levels of sunspot activity lead to improved signal propagation on higher frequency bands, although they also increase the levels of solar noise and ionospheric disturbances. These effects are caused by impact of the increased level of solar radiation on the ionosphere.

10.7 cm solar flux could interfere with point-to-point terrestrial communications.[54]

Clouds

The cosmic ray changes over the cycle potentially have significant atmospheric effects. Speculations about cosmic rays include:
  • Changes in ionization affect the aerosol abundance that serves as the condensation nucleus for cloud formation.[55] During solar minima more cosmic rays reach Earth, potentially creating ultra-small aerosol particles as precursors to Cloud condensation nuclei.[56] Clouds formed from greater amounts of condensation nuclei are brighter, longer lived and likely to produce less precipitation.
  • A change in cosmic rays could cause an increase in certain types of clouds, affecting Earth's albedo.[citation needed]
  • Particularly at high latitudes, with less shielding from Earth's magnetic field, cosmic ray variation may impact terrestrial low altitude cloud cover (unlike a lack of correlation with high altitude clouds), partially influenced by the solar-driven interplanetary magnetic field (as well as passage through the galactic arms over longer timeframes).[38][39][57][58] A 2002 paper rejected this hypothesis.[59]
Later papers claimed that production of clouds via cosmic rays could not be explained by nucleation particles. Accelerator results failed to produce sufficient, and sufficiently large, particles to result in cloud formation;[60][61] this includes observations after a major solar storm.[62] Observations after Chernobyl do not show any induced clouds.[63]

Terrestrial

Organisms

The impact of the solar cycle on living organisms has been investigated (see chronobiology). Some researchers claim to have found connections with human health.[64][65]
The amount of ultraviolet UVB light at 300 nm reaching the Earth varies by as much as 400% over the solar cycle due to variations in the protective ozone layer. In the stratosphere, ozone is continuously regenerated by the splitting of O2 molecules by ultraviolet light. During a solar minimum, the decrease in ultraviolet light received from the Sun leads to a decrease in the concentration of ozone, allowing increased UVB to reach the Earth's surface.[66]

Radio communication

Skywave modes of radio communication operate by bending (refracting) radio waves (electromagnetic radiation) through the Ionosphere. During the "peaks" of the solar cycle, the ionosphere becomes increasingly ionized by solar photons and cosmic rays. This affects the propagation of the radio wave in complex ways that can either facilitate or hinder communications. 
Forecasting of skywave modes is of considerable interest to commercial marine and aircraft communications, amateur radio operators and shortwave broadcasters. These users occupy frequencies within the High Frequency or 'HF' radio spectrum that are most affected by these solar and ionospheric variances. Changes in solar output affect the maximum usable frequency, a limit on the highest frequency usable for communications.

Climate

Both long-term and short-term variations in solar activity are hypothesized to affect global climate, but it has proven extremely challenging to quantify the link between solar variation and climate.[67]
Early research attempted to correlate weather with limited success,[68] followed by attempts to correlate solar activity with global temperature. The cycle also impacts regional climate. Measurements from the SORCE's Spectral Irradiance Monitor show that solar UV variability produces, for example, colder winters in the US and southern Europe and warmer winters in Canada and northern Europe during solar minima.[69]

Three hypothetical mechanisms mediate solar variations' climate impacts:
  • Total solar irradiance ("Radiative forcing").
  • Ultraviolet irradiance. The UV component varies by more than the total, so if UV were for some (as yet unknown) reason having a disproportionate effect, this might affect climate.
  • Solar wind-mediated galactic cosmic ray changes, which may affect cloud cover.
The sunspot cycle variation of 0.1% has small but detectable effects on the Earth’s climate.[70][71][72] Camp and Tung suggest that solar irradiance correlates with a variation of 0.18 K ±0.08 K (0.32 °F ±0.14 °F) in measured average global temperature between solar maximum and minimum.[73]

The current scientific consensus is that solar variations do not play a major role in driving global warming,[67] since the measured magnitude of recent solar variation is much smaller than the forcing due to greenhouse gases.[74] Also, solar activity in the 2010s was not higher than in the 1950s (see above), whereas global warming had risen markedly. Otherwise, the level of understanding of solar impacts on weather is low.[75]

Causes

The basic causes of solar cycles are debated. While the proximate cause is a solar dynamo, the forces driving its behavior are less clear. Possibilities include a link with the tidal forces due to the gas giants Jupiter and Saturn,[76][77] or due to solar inertial motion.[78][79] Another cause of sunspots may be solar jet stream "torsional oscillation".

Models

Single dynamo

The 11-year sunspot cycle is half of a 22-year Babcock–Leighton solar dynamo cycle, which corresponds to an oscillatory exchange of energy between toroidal and poloidal solar magnetic fields. At solar-cycle maximum, the external poloidal dipolar magnetic field is near its dynamo-cycle minimum strength, but an internal toroidal quadrupolar field, generated through differential rotation within the tachocline, is near its maximum strength. At this point in the dynamo cycle, buoyant upwelling within the Convection zone forces emergence of the toroidal magnetic field through the photosphere, giving rise to pairs of sunspots, roughly aligned east–west with opposite magnetic polarities. The magnetic polarity of sunspot pairs alternates every solar cycle, a phenomenon known as the Hale cycle.[80][81]
During the solar cycle’s declining phase, energy shifts from the internal toroidal magnetic field to the external poloidal field, and sunspots diminish in number. At solar minimum, the toroidal field is, correspondingly, at minimum strength, sunspots are relatively rare and the poloidal field is at maximum strength. During the next cycle, differential rotation converts magnetic energy back from the poloidal to the toroidal field, with a polarity that is opposite to the previous cycle. The process carries on continuously, and in an idealized, simplified scenario, each 11-year sunspot cycle corresponds to a change in the polarity of the Sun's large-scale magnetic field.[82][83]

Double dynamo

In 2015, a new model of the solar cycle was published. The model draws on dynamo effects in two layers of the Sun, one close to the surface and one deep within its Convection zone. Model predictions suggest that solar activity will fall by 60 per cent during the 2030s to conditions last seen during the 'Little ice age' that began in 1645. Prior models included only the deeper dynamo.[84]

The model features paired magnetic wave components. Both components have a frequency of approximately 11 years, although their frequencies are slightly different and temporally offset. Over the cycle, the waves fluctuate between the Sun's northern and southern hemispheres.[84]

The model used principal component analysis of the Magnetic field observations from the Wilcox Solar Observatory. They examined magnetic field activity from solar cycles 21-23, covering 1976-2008. They also compared their predictions to average Sunspot numbers. The model was 97% accurate in predicting solar activity fluctuations.[84]

Exponential model

Perry and Hsu (2000) proposed a model based on emulating harmonics by multiplying the basic 11-year cycle by powers of 2, which produced results similar to Holocene behavior. Extrapolation suggested a gradual cooling during the next few centuries with intermittent minor warmups and a return to near-Little Ice Age conditions within the coming 500 years. This cool period then may be followed approximately 1,000 years later by a return to altithermal conditions similar to the previous Holocene Maximum.[85]

Archetype

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Archetype The concept of an archetyp...