Search This Blog

Tuesday, August 21, 2018

Philosophy of science

From Wikipedia, the free encyclopedia

Philosophy of science is a sub-field of philosophy concerned with the foundations, methods, and implications of science. The central questions of this study concern what qualifies as science, the reliability of scientific theories, and the ultimate purpose of science. This discipline overlaps with metaphysics, ontology, and epistemology, for example, when it explores the relationship between science and truth.

There is no consensus among philosophers about many of the central problems concerned with the philosophy of science, including whether science can reveal the truth about unobservable things and whether scientific reasoning can be justified at all. In addition to these general questions about science as a whole, philosophers of science consider problems that apply to particular sciences (such as biology or physics). Some philosophers of science also use contemporary results in science to reach conclusions about philosophy itself.

While philosophical thought pertaining to science dates back at least to the time of Aristotle, philosophy of science emerged as a distinct discipline only in the 20th century in the wake of the logical positivism movement, which aimed to formulate criteria for ensuring all philosophical statements' meaningfulness and objectively assessing them. Thomas Kuhn's 1962 book The Structure of Scientific Revolutions was also formative, challenging the view of scientific progress as steady, cumulative acquisition of knowledge based on a fixed method of systematic experimentation and instead arguing that any progress is relative to a "paradigm," the set of questions, concepts, and practices that define a scientific discipline in a particular historical period.[1] Karl Popper and Charles Sanders Peirce moved on from positivism to establish a modern set of standards for scientific methodology.

Subsequently, the coherentist approach to science, in which a theory is validated if it makes sense of observations as part of a coherent whole, became prominent due to W. V. Quine and others. Some thinkers such as Stephen Jay Gould seek to ground science in axiomatic assumptions, such as the uniformity of nature. A vocal minority of philosophers, and Paul Feyerabend (1924–1994) in particular, argue that there is no such thing as the "scientific method", so all approaches to science should be allowed, including explicitly supernatural ones. Another approach to thinking about science involves studying how knowledge is created from a sociological perspective, an approach represented by scholars like David Bloor and Barry Barnes. Finally, a tradition in continental philosophy approaches science from the perspective of a rigorous analysis of human experience.

Philosophies of the particular sciences range from questions about the nature of time raised by Einstein's general relativity, to the implications of economics for public policy. A central theme is whether one scientific discipline can be reduced to the terms of another. That is, can chemistry be reduced to physics, or can sociology be reduced to individual psychology? The general questions of philosophy of science also arise with greater specificity in some particular sciences. For instance, the question of the validity of scientific reasoning is seen in a different guise in the foundations of statistics. The question of what counts as science and what should be excluded arises as a life-or-death matter in the philosophy of medicine. Additionally, the philosophies of biology, of psychology, and of the social sciences explore whether the scientific studies of human nature can achieve objectivity or are inevitably shaped by values and by social relations.

Introduction

Defining science

Karl Popper in the 1980s

Distinguishing between science and non-science is referred to as the demarcation problem. For example, should psychoanalysis be considered science? How about so-called creation science, the inflationary multiverse hypothesis, or macroeconomics? Karl Popper called this the central question in the philosophy of science.[2] However, no unified account of the problem has won acceptance among philosophers, and some regard the problem as unsolvable or uninteresting.[3][4] Martin Gardner has argued for the use of a Potter Stewart standard ("I know it when I see it") for recognizing pseudoscience.[5]

Early attempts by the logical positivists grounded science in observation while non-science was non-observational and hence meaningless.[6] Popper argued that the central property of science is falsifiability. That is, every genuinely scientific claim is capable of being proven false, at least in principle.[7]

An area of study or speculation that masquerades as science in an attempt to claim a legitimacy that it would not otherwise be able to achieve is referred to as pseudoscience, fringe science, or junk science.[8] Physicist Richard Feynman coined the term "cargo cult science" for cases in which researchers believe they are doing science because their activities have the outward appearance of it but actually lack the "kind of utter honesty" that allows their results to be rigorously evaluated.[9]

Scientific explanation

A closely related question is what counts as a good scientific explanation. In addition to providing predictions about future events, society often takes scientific theories to provide explanations for events that occur regularly or have already occurred. Philosophers have investigated the criteria by which a scientific theory can be said to have successfully explained a phenomenon, as well as what it means to say a scientific theory has explanatory power.
One early and influential theory of scientific explanation is the deductive-nomological model. It says that a successful scientific explanation must deduce the occurrence of the phenomena in question from a scientific law.[10] This view has been subjected to substantial criticism, resulting in several widely acknowledged counterexamples to the theory.[11] It is especially challenging to characterize what is meant by an explanation when the thing to be explained cannot be deduced from any law because it is a matter of chance, or otherwise cannot be perfectly predicted from what is known. Wesley Salmon developed a model in which a good scientific explanation must be statistically relevant to the outcome to be explained.[12][13] Others have argued that the key to a good explanation is unifying disparate phenomena or providing a causal mechanism.[13]

Justifying science

The expectations chickens might form about farmer behavior illustrate the "problem of induction."

Although it is often taken for granted, it is not at all clear how one can infer the validity of a general statement from a number of specific instances or infer the truth of a theory from a series of successful tests.[14] For example, a chicken observes that each morning the farmer comes and gives it food, for hundreds of days in a row. The chicken may therefore use inductive reasoning to infer that the farmer will bring food every morning. However, one morning, the farmer comes and kills the chicken. How is scientific reasoning more trustworthy than the chicken's reasoning?

One approach is to acknowledge that induction cannot achieve certainty, but observing more instances of a general statement can at least make the general statement more probable. So the chicken would be right to conclude from all those mornings that it is likely the farmer will come with food again the next morning, even if it cannot be certain. However, there remain difficult questions about the process of interpreting any given evidence into a probability that the general statement is true. One way out of these particular difficulties is to declare that all beliefs about scientific theories are subjective, or personal, and correct reasoning is merely about how evidence should change one's subjective beliefs over time.[14]

Some argue that what scientists do is not inductive reasoning at all but rather abductive reasoning, or inference to the best explanation. In this account, science is not about generalizing specific instances but rather about hypothesizing explanations for what is observed. As discussed in the previous section, it is not always clear what is meant by the "best explanation." Ockham's razor, which counsels choosing the simplest available explanation, thus plays an important role in some versions of this approach. To return to the example of the chicken, would it be simpler to suppose that the farmer cares about it and will continue taking care of it indefinitely or that the farmer is fattening it up for slaughter? Philosophers have tried to make this heuristic principle more precise in terms of theoretical parsimony or other measures. Yet, although various measures of simplicity have been brought forward as potential candidates, it is generally accepted that there is no such thing as a theory-independent measure of simplicity. In other words, there appear to be as many different measures of simplicity as there are theories themselves, and the task of choosing between measures of simplicity appears to be every bit as problematic as the job of choosing between theories.[15]Nicholas Maxwell has argued for some decades that unity rather than simplicity is the key non-empirical factor in influencing choice of theory in science, persistent preference for unified theories in effect committing science to the acceptance of a metaphysical thesis concerning unity in nature. In order to improve this problematic thesis, it needs to be represented in the form of a hierarchy of theses, each thesis becoming more insubstantial as one goes up the hierarchy[16].

Observation inseparable from theory

A celestial object known as the Einstein Cross.

When making observations, scientists look through telescopes, study images on electronic screens, record meter readings, and so on. Generally, on a basic level, they can agree on what they see, e.g., the thermometer shows 37.9 degrees C. But, if these scientists have different ideas about the theories that have been developed to explain these basic observations, they may disagree about what they are observing. For example, before Albert Einstein's general theory of relativity, observers would have likely interpreted the image at right as five different objects in space. In light of that theory, however, astronomers will tell you that there are actually only two objects, one in the center and four different images of a second object around the sides. Alternatively, if other scientists suspect that something is wrong with the telescope and only one object is actually being observed, they are operating under yet another theory. Observations that cannot be separated from theoretical interpretation are said to be theory-laden.[17]

All observation involves both perception and cognition. That is, one does not make an observation passively, but rather is actively engaged in distinguishing the phenomenon being observed from surrounding sensory data. Therefore, observations are affected by one's underlying understanding of the way in which the world functions, and that understanding may influence what is perceived, noticed, or deemed worthy of consideration. In this sense, it can be argued that all observation is theory-laden.[17]

The purpose of science

Should science aim to determine ultimate truth, or are there questions that science cannot answer? Scientific realists claim that science aims at truth and that one ought to regard scientific theories as true, approximately true, or likely true. Conversely, scientific anti-realists argue that science does not aim (or at least does not succeed) at truth, especially truth about unobservables like electrons or other universes.[18] Instrumentalists argue that scientific theories should only be evaluated on whether they are useful. In their view, whether theories are true or not is beside the point, because the purpose of science is to make predictions and enable effective technology.
Realists often point to the success of recent scientific theories as evidence for the truth (or near truth) of current theories.[19][20] Antirealists point to either the many false theories in the history of science,[21][22] epistemic morals,[23] the success of false modeling assumptions,[24] or widely termed postmodern criticisms of objectivity as evidence against scientific realism.[19] Antirealists attempt to explain the success of scientific theories without reference to truth.[25] Some antirealists claim that scientific theories aim at being accurate only about observable objects and argue that their success is primarily judged by that criterion.[23]

Values and science

Values intersect with science in different ways. There are epistemic values that mainly guide the scientific research. The scientific enterprise is embedded in particular culture and values through individual practitioners. Values emerge from science, both as product and process and can be distributed among several cultures in the society.

If it is unclear what counts as science, how the process of confirming theories works, and what the purpose of science is, there is considerable scope for values and other social influences to shape science. Indeed, values can play a role ranging from determining which research gets funded to influencing which theories achieve scientific consensus.[26] For example, in the 19th century, cultural values held by scientists about race shaped research on evolution, and values concerning social class influenced debates on phrenology (considered scientific at the time).[27] Feminist philosophers of science, sociologists of science, and others explore how social values affect science.

History

Pre-modern

The origins of philosophy of science trace back to Plato and Aristotle[28] who distinguished the forms of approximate and exact reasoning, set out the threefold scheme of abductive, deductive, and inductive inference, and also analyzed reasoning by analogy. The eleventh century Arab polymath Ibn al-Haytham (known in Latin as Alhazen) conducted his research in optics by way of controlled experimental testing and applied geometry, especially in his investigations into the images resulting from the reflection and refraction of light. Roger Bacon (1214–1294), an English thinker and experimenter heavily influenced by al-Haytham, is recognized by many to be the father of modern scientific method.[29] His view that mathematics was essential to a correct understanding of natural philosophy was considered to be 400 years ahead of its time.[30]

Modern

Francis Bacon's statue at Gray's Inn, South Square, London

Francis Bacon (no direct relation to Roger, who lived 300 years earlier) was a seminal figure in philosophy of science at the time of the Scientific Revolution. In his work Novum Organum (1620) – an allusion to Aristotle's Organon – Bacon outlined a new system of logic to improve upon the old philosophical process of syllogism. Bacon's method relied on experimental histories to eliminate alternative theories.[31] In 1637, René Descartes established a new framework for grounding scientific knowledge in his treatise, Discourse on Method, advocating the central role of reason as opposed to sensory experience. By contrast, in 1713, the 2nd edition of Isaac Newton's Philosophiae Naturalis Principia Mathematica argued that "... hypotheses ... have no place in experimental philosophy. In this philosophy[,] propositions are deduced from the phenomena and rendered general by induction. "[32] This passage influenced a "later generation of philosophically-inclined readers to pronounce a ban on causal hypotheses in natural philosophy." [32] In particular, later in the 18th century, David Hume would famously articulate skepticism about the ability of science to determine causality and gave a definitive formulation of the problem of induction. The 19th century writings of John Stuart Mill are also considered important in the formation of current conceptions of the scientific method, as well as anticipating later accounts of scientific explanation.[33]

Logical positivism

Instrumentalism became popular among physicists around the turn of the 20th century, after which logical positivism defined the field for several decades. Logical positivism accepts only testable statements as meaningful, rejects metaphysical interpretations, and embraces verificationism (a set of theories of knowledge that combines logicism, empiricism, and linguistics to ground philosophy on a basis consistent with examples from the empirical sciences). Seeking to overhaul all of philosophy and convert it to a new scientific philosophy,[34] the Berlin Circle and the Vienna Circle propounded logical positivism in the late 1920s.
Interpreting Ludwig Wittgenstein's early philosophy of language, logical positivists identified a verifiability principle or criterion of cognitive meaningfulness. From Bertrand Russell's logicism they sought reduction of mathematics to logic. They also embraced Russell's logical atomism, Ernst Mach's phenomenalism—whereby the mind knows only actual or potential sensory experience, which is the content of all sciences, whether physics or psychology—and Percy Bridgman's operationalism. Thereby, only the verifiable was scientific and cognitively meaningful, whereas the unverifiable was unscientific, cognitively meaningless "pseudostatements"—metaphysical, emotive, or such—not worthy of further review by philosophers, who were newly tasked to organize knowledge rather than develop new knowledge.

Logical positivism is commonly portrayed as taking the extreme position that scientific language should never refer to anything unobservable—even the seemingly core notions of causality, mechanism, and principles—but that is an exaggeration. Talk of such unobservables could be allowed as metaphorical—direct observations viewed in the abstract—or at worst metaphysical or emotional. Theoretical laws would be reduced to empirical laws, while theoretical terms would garner meaning from observational terms via correspondence rules. Mathematics in physics would reduce to symbolic logic via logicism, while rational reconstruction would convert ordinary language into standardized equivalents, all networked and united by a logical syntax. A scientific theory would be stated with its method of verification, whereby a logical calculus or empirical operation could verify its falsity or truth.

In the late 1930s, logical positivists fled Germany and Austria for Britain and America. By then, many had replaced Mach's phenomenalism with Otto Neurath's physicalism, and Rudolf Carnap had sought to replace verification with simply confirmation. With World War II's close in 1945, logical positivism became milder, logical empiricism, led largely by Carl Hempel, in America, who expounded the covering law model of scientific explanation as a way of identifying the logical form of explanations without any reference to the suspect notion of "causation". The logical positivist movement became a major underpinning of analytic philosophy,[35] and dominated Anglosphere philosophy, including philosophy of science, while influencing sciences, into the 1960s. Yet the movement failed to resolve its central problems,[36][37][38] and its doctrines were increasingly assaulted. Nevertheless, it brought about the establishment of philosophy of science as a distinct subdiscipline of philosophy, with Carl Hempel playing a key role.[39]

For Kuhn, the addition of epicycles in Ptolemaic astronomy was "normal science" within a paradigm, whereas the Copernican revolution was a paradigm shift.

Thomas Kuhn

In the 1962 book The Structure of Scientific Revolutions, Thomas Kuhn argued that the process of observation and evaluation takes place within a paradigm, a logically consistent "portrait" of the world that is consistent with observations made from its framing. A paradigm also encompasses the set of questions and practices that define a scientific discipline. He characterized normal science as the process of observation and "puzzle solving" which takes place within a paradigm, whereas revolutionary science occurs when one paradigm overtakes another in a paradigm shift.[40]
Kuhn denied that it is ever possible to isolate the hypothesis being tested from the influence of the theory in which the observations are grounded, and he argued that it is not possible to evaluate competing paradigms independently. More than one logically consistent construct can paint a usable likeness of the world, but there is no common ground from which to pit two against each other, theory against theory. Each paradigm has its own distinct questions, aims, and interpretations. Neither provides a standard by which the other can be judged, so there is no clear way to measure scientific progress across paradigms.

For Kuhn, the choice of paradigm was sustained by rational processes, but not ultimately determined by them. The choice between paradigms involves setting two or more "portraits" against the world and deciding which likeness is most promising. For Kuhn, acceptance or rejection of a paradigm is a social process as much as a logical process. Kuhn's position, however, is not one of relativism.[41] According to Kuhn, a paradigm shift occurs when a significant number of observational anomalies arise in the old paradigm and a new paradigm makes sense of them. That is, the choice of a new paradigm is based on observations, even though those observations are made against the background of the old paradigm.

Current approaches

Naturalism's Axiomatic assumptions

All scientific study inescapably builds on at least some essential assumptions that are untested by scientific processes.[42][43] Kuhn concurs that all science is based on an approved agenda of unprovable assumptions about the character of the universe, rather than merely on empirical facts. These assumptions—a paradigm—comprise a collection of beliefs, values and techniques that are held by a given scientific community, which legitimize their systems and set the limitations to their investigation.[44] For naturalists, nature is the only reality, the only paradigm. There is no such thing as 'supernatural'. The scientific method is to be used to investigate all reality.[45]

Naturalism is the implicit philosophy of working scientists.[46] The following basic assumptions are needed to justify the scientific method.[47]
  1. that there is an objective reality shared by all rational observers.[47][48] "The basis for rationality is acceptance of an external objective reality."[49] "Objective reality is clearly an essential thing if we are to develop a meaningful perspective of the world. Nevertheless its very existence is assumed." "Our belief that objective reality exist is an assumption that it arises from a real world outside of ourselves. As infants we made this assumption unconsciously. People are happy to make this assumption that adds meaning to our sensations and feelings, than live with solipsism."[50] Without this assumption, there would be only the thoughts and images in our own mind (which would be the only existing mind) and there would be no need of science, or anything else."[51]
  2. that this objective reality is governed by natural laws;[47][48] "Science, at least today, assumes that the universe obeys to knoweable principles that don't depend on time or place, nor on subjective parameters such as what we think, know or how we behave."[49] Hugh Gauch argues that science presupposes that "the physical world is orderly and comprehensible."[52]
  3. that reality can be discovered by means of systematic observation and experimentation.[47][48] Stanley Sobottka said, "The assumption of external reality is necessary for science to function and to flourish. For the most part, science is the discovering and explaining of the external world."[51] "Science attempts to produce knowledge that is as universal and objective as possible within the realm of human understanding."[49]
  4. that Nature has uniformity of laws and most if not all things in nature must have at least a natural cause.[48] Biologist Stephen Jay Gould referred to these two closely related propositions as the constancy of nature's laws and the operation of known processes.[53] Simpson agrees that the axiom of uniformity of law, an unprovable postulate, is necessary in order for scientists to extrapolate inductive inference into the unobservable past in order to meaningfully study it.[54]
  5. that experimental procedures will be done satisfactorily without any deliberate or unintentional mistakes that will influence the results.[48]
  6. that experimenters won't be significantly biased by their presumptions.[48]
  7. that random sampling is representative of the entire population.[48] A simple random sample (SRS) is the most basic probabilistic option used for creating a sample from a population. The benefit of SRS is that the investigator is guaranteed to choose a sample that represents the population that ensures statistically valid conclusions.[55]

Coherentism

Jeremiah Horrocks makes the first observation of the transit of Venus in 1639, as imagined by the artist W. R. Lavender in 1903

In contrast to the view that science rests on foundational assumptions, coherentism asserts that statements are justified by being a part of a coherent system. Or, rather, individual statements cannot be validated on their own: only coherent systems can be justified.[56] A prediction of a transit of Venus is justified by its being coherent with broader beliefs about celestial mechanics and earlier observations. As explained above, observation is a cognitive act. That is, it relies on a pre-existing understanding, a systematic set of beliefs. An observation of a transit of Venus requires a huge range of auxiliary beliefs, such as those that describe the optics of telescopes, the mechanics of the telescope mount, and an understanding of celestial mechanics. If the prediction fails and a transit is not observed, that is likely to occasion an adjustment in the system, a change in some auxiliary assumption, rather than a rejection of the theoretical system.[citation needed]

In fact, according to the Duhem–Quine thesis, after Pierre Duhem and W. V. Quine, it is impossible to test a theory in isolation.[57] One must always add auxiliary hypotheses in order to make testable predictions. For example, to test Newton's Law of Gravitation in the solar system, one needs information about the masses and positions of the Sun and all the planets. Famously, the failure to predict the orbit of Uranus in the 19th century led not to the rejection of Newton's Law but rather to the rejection of the hypothesis that the solar system comprises only seven planets. The investigations that followed led to the discovery of an eighth planet, Neptune. If a test fails, something is wrong. But there is a problem in figuring out what that something is: a missing planet, badly calibrated test equipment, an unsuspected curvature of space, or something else.[citation needed]

One consequence of the Duhem–Quine thesis is that one can make any theory compatible with any empirical observation by the addition of a sufficient number of suitable ad hoc hypotheses. Karl Popper accepted this thesis, leading him to reject naïve falsification. Instead, he favored a "survival of the fittest" view in which the most falsifiable scientific theories are to be preferred.[58]

Anything goes methodology


Paul Feyerabend (1924–1994) argued that no description of scientific method could possibly be broad enough to include all the approaches and methods used by scientists, and that there are no useful and exception-free methodological rules governing the progress of science. He argued that "the only principle that does not inhibit progress is: anything goes".[59]

Feyerabend said that science started as a liberating movement, but that over time it had become increasingly dogmatic and rigid and had some oppressive features. and thus had become increasingly an ideology. Because of this, he said it was impossible to come up with an unambiguous way to distinguish science from religion, magic, or mythology. He saw the exclusive dominance of science as a means of directing society as authoritarian and ungrounded.[59] Promulgation of this epistemological anarchism earned Feyerabend the title of "the worst enemy of science" from his detractors.[60]

Sociology of scientific knowledge methodology

According to Kuhn, science is an inherently communal activity which can only be done as part of a community.[61] For him, the fundamental difference between science and other disciplines is the way in which the communities function. Others, especially Feyerabend and some post-modernist thinkers, have argued that there is insufficient difference between social practices in science and other disciplines to maintain this distinction. For them, social factors play an important and direct role in scientific method, but they do not serve to differentiate science from other disciplines. On this account, science is socially constructed, though this does not necessarily imply the more radical notion that reality itself is a social construct.
However, some (such as Quine) do maintain that scientific reality is a social construct:
Physical objects are conceptually imported into the situation as convenient intermediaries not by definition in terms of experience, but simply as irreducible posits comparable, epistemologically, to the gods of Homer ... For my part I do, qua lay physicist, believe in physical objects and not in Homer's gods; and I consider it a scientific error to believe otherwise. But in point of epistemological footing, the physical objects and the gods differ only in degree and not in kind. Both sorts of entities enter our conceptions only as cultural posits.[62]
The public backlash of scientists against such views, particularly in the 1990s, became known as the science wars.[63]

A major development in recent decades has been the study of the formation, structure, and evolution of scientific communities by sociologists and anthropologists - including David Bloor, Harry Collins, Bruno Latour, and Anselm Strauss. Concepts and methods (such as rational choice, social choice or game theory) from economics have also been applied[by whom?] for understanding the efficiency of scientific communities in the production of knowledge. This interdisciplinary field has come to be known as science and technology studies.[64] Here the approach to the philosophy of science is to study how scientific communities actually operate.

Continental philosophy

Philosophers in the continental philosophical tradition are not traditionally categorized as philosophers of science. However, they have much to say about science, some of which has anticipated themes in the analytical tradition. For example, Friedrich Nietzsche advanced the thesis in his "The Genealogy of Morals" that the motive for search of truth in sciences is a kind of ascetic ideal.[65]

Hegel with his Berlin students
Sketch by Franz Kugler

In general, science in continental philosophy is viewed from a world-historical perspective. One of the first philosophers who supported this view was Georg Wilhelm Friedrich Hegel. Philosophers such as Pierre Duhem and Gaston Bachelard also wrote their works with this world-historical approach to science, predating Kuhn by a generation or more. All of these approaches involve a historical and sociological turn to science, with a priority on lived experience (a kind of Husserlian "life-world"), rather than a progress-based or anti-historical approach as done in the analytic tradition. This emphasis can be traced through Edmund Husserl's phenomenology, the late works of Merleau-Ponty (Nature: Course Notes from the Collège de France, 1956–1960), and Martin Heidegger's hermeneutics.[66]

The largest effect on the continental tradition with respect to science was Martin Heidegger's critique of the theoretical attitude in general which of course includes the scientific attitude.[67] For this reason the continental tradition has remained much more skeptical of the importance of science in human life and philosophical inquiry. Nonetheless, there have been a number of important works: especially a Kuhnian precursor, Alexandre Koyré. Another important development was that of Michel Foucault's analysis of the historical and scientific thought in The Order of Things and his study of power and corruption within the "science" of madness. Post-Heideggerian authors contributing to the continental philosophy of science in the second half of the 20th century include Jürgen Habermas (e.g., "Truth and Justification", 1998), Carl Friedrich von Weizsäcker ("The Unity of Nature", 1980), and Wolfgang Stegmüller ("Probleme und Resultate der Wissenschafttheorie und Analytischen Philosophie", 1973–1986).

Other topics

Reductionism

Analysis is the activity of breaking an observation or theory down into simpler concepts in order to understand it. Reductionism can refer to one of several philosophical positions related to this approach. One type of reductionism is the belief that all fields of study are ultimately amenable to scientific explanation. Perhaps a historical event might be explained in sociological and psychological terms, which in turn might be described in terms of human physiology, which in turn might be described in terms of chemistry and physics.[68] Daniel Dennett distinguishes legitimate reductionism from what he calls greedy reductionism, which denies real complexities and leaps too quickly to sweeping generalizations.[69]

Social accountability

A broad issue affecting the neutrality of science concerns the areas which science chooses to explore, that is, what part of the world and man is studied by science. Philip Kitcher in his "Science, Truth, and Democracy"[70] argues that scientific studies that attempt to show one segment of the population as being less intelligent, successful or emotionally backward compared to others have a political feedback effect which further excludes such groups from access to science. Thus such studies undermine the broad consensus required for good science by excluding certain people, and so proving themselves in the end to be unscientific.

Philosophy of particular sciences

There is no such thing as philosophy-free science; there is only science whose philosophical baggage is taken on board without examination.[71]
— Daniel Dennett, Darwin's Dangerous Idea, 1995
In addition to addressing the general questions regarding science and induction, many philosophers of science are occupied by investigating foundational problems in particular sciences. They also examine the implications of particular sciences for broader philosophical questions. The late 20th and early 21st century has seen a rise in the number of practitioners of philosophy of a particular science.[72]

Philosophy of statistics

The problem of induction discussed above is seen in another form in debates over the foundations of statistics.[73] The standard approach to statistical hypothesis testing avoids claims about whether evidence supports a hypothesis or makes it more probable. Instead, the typical test yields a p-value, which is the probability of the evidence being such as it is, under the assumption that the hypothesis being tested is true. If the p-value is too low, the hypothesis is rejected, in a way analogous to falsification. In contrast, Bayesian inference seeks to assign probabilities to hypotheses. Related topics in philosophy of statistics include probability interpretations, overfitting, and the difference between correlation and causation.

A triangle.

Philosophy of mathematics

Philosophy of mathematics is concerned with the philosophical foundations and implications of mathematics.[74] The central questions are whether numbers, triangles, and other mathematical entities exist independently of the human mind and what is the nature of mathematical propositions. Is asking whether "1+1=2" is true fundamentally different from asking whether a ball is red? Was calculus invented or discovered? A related question is whether learning mathematics requires experience or reason alone. What does it mean to prove a mathematical theorem and how does one know whether a mathematical proof is correct? Philosophers of mathematics also aim to clarify the relationships between mathematics and logic, human capabilities such as intuition, and the material universe.

Philosophy of physics

Philosophy of physics is the study of the fundamental, philosophical questions underlying modern physics, the study of matter and energy and how they interact. The main questions concern the nature of space and time, atoms and atomism. Also included are the predictions of cosmology, the interpretation of quantum mechanics, the foundations of statistical mechanics, causality, determinism, and the nature of physical laws.[75] Classically, several of these questions were studied as part of metaphysics (for example, those about causality, determinism, and space and time).

Philosophy of chemistry

Philosophy of chemistry is the philosophical study of the methodology and content of the science of chemistry. It is explored by philosophers, chemists, and philosopher-chemist teams. It includes research on general philosophy of science issues as applied to chemistry. For example, can all chemical phenomena be explained by quantum mechanics or is it not possible to reduce chemistry to physics? For another example, chemists have discussed the philosophy of how theories are confirmed in the context of confirming reaction mechanisms. Determining reaction mechanisms is difficult because they cannot be observed directly. Chemists can use a number of indirect measures as evidence to rule out certain mechanisms, but they are often unsure if the remaining mechanism is correct because there are many other possible mechanisms that they have not tested or even thought of.[76] Philosophers have also sought to clarify the meaning of chemical concepts which do not refer to specific physical entities, such as chemical bonds.

Philosophy of Earth sciences

The philosophy of Earth science is concerned with how humans obtain and verify knowledge of the workings of the Earth system, including the atmosphere, hydrosphere, and geosphere (solid earth). Earth scientists’ ways of knowing and habits of mind share important commonalities with other sciences but also have distinctive attributes that emerge from the complex, heterogeneous, unique, long-lived, and non-manipulatable nature of the Earth system.

Peter Godfrey-Smith was awarded the Lakatos Award[77] for his 2009 book, Darwinian Populations and Natural Selection which discusses the philosophical foundations of the theory of evolution.[78][79]

Philosophy of biology

Philosophy of biology deals with epistemological, metaphysical, and ethical issues in the biological and biomedical sciences. Although philosophers of science and philosophers generally have long been interested in biology (e.g., Aristotle, Descartes, Leibniz and even Kant), philosophy of biology only emerged as an independent field of philosophy in the 1960s and 1970s.[80] Philosophers of science began to pay increasing attention to developments in biology, from the rise of the modern synthesis in the 1930s and 1940s to the discovery of the structure of deoxyribonucleic acid (DNA) in 1953 to more recent advances in genetic engineering. Other key ideas such as the reduction of all life processes to biochemical reactions as well as the incorporation of psychology into a broader neuroscience are also addressed. Research in current philosophy of biology includes investigation of the foundations of evolutionary theory (such as Peter Godfrey-Smith's work),[81] and the role of viruses as persistent symbionts in host genomes. As a consequence the evolution of genetic content order is seen as the result of competent genome editors in contrast to former narratives in which error replication events (mutations) dominated.[82]

A fragment of the Hippocratic Oath from the third century.

Philosophy of medicine

Beyond medical ethics and bioethics, the philosophy of medicine is a branch of philosophy that includes the epistemology and ontology/metaphysics of medicine. Within the epistemology of medicine, evidence-based medicine (EBM) (or evidence-based practice (EBP)) has attracted attention, most notably the roles of randomisation,[83][84][85] blinding and placebo controls. Related to these areas of investigation, ontologies of specific interest to the philosophy of medicine include Cartesian dualism, the monogenetic conception of disease[86] and the conceptualization of 'placebos' and 'placebo effects'.[87][88][89][90] There is also a growing interest in the metaphysics of medicine,[91] particularly the idea of causation. Philosophers of medicine might not only be interested in how medical knowledge is generated, but also in the nature of such phenomena. Causation is of interest because the purpose of much medical research is to establish causal relationships, e.g. what causes disease, or what causes people to get better.[92]

Philosophy of psychology

Wilhelm Wundt (seated) with colleagues in his psychological laboratory, the first of its kind.

Philosophy of psychology refers to issues at the theoretical foundations of modern psychology. Some of these issues are epistemological concerns about the methodology of psychological investigation. For example, is the best method for studying psychology to focus only on the response of behavior to external stimuli or should psychologists focus on mental perception and thought processes?[93] If the latter, an important question is how the internal experiences of others can be measured. Self-reports of feelings and beliefs may not be reliable because, even in cases in which there is no apparent incentive for subjects to intentionally deceive in their answers, self-deception or selective memory may affect their responses. Then even in the case of accurate self-reports, how can responses be compared across individuals? Even if two individuals respond with the same answer on a Likert scale, they may be experiencing very different things.

Other issues in philosophy of psychology are philosophical questions about the nature of mind, brain, and cognition, and are perhaps more commonly thought of as part of cognitive science, or philosophy of mind. For example, are humans rational creatures?[93] Is there any sense in which they have free will, and how does that relate to the experience of making choices? Philosophy of psychology also closely monitors contemporary work conducted in cognitive neuroscience, evolutionary psychology, and artificial intelligence, questioning what they can and cannot explain in psychology.

Philosophy of psychology is a relatively young field, because psychology only became a discipline of its own in the late 1800s. In particular, neurophilosophy has just recently become its own field with the works of Paul Churchland and Patricia Churchland.[72] Philosophy of mind, by contrast, has been a well-established discipline since before psychology was a field of study at all. It is concerned with questions about the very nature of mind, the qualities of experience, and particular issues like the debate between dualism and monism. Another related field is philosophy of language.

A notable recent development in Philosophy of Psychology is Functional Contextualism or Contextual Behavioural Science (CBS). Functional Contextualism is a modern philosophy of science rooted in philosophical pragmatism and contextualism. It is most actively developed in behavioral science in general, the field of behavior analysis, and contextual behavioral science in particular (see the entry for the Association for Contextual Behavioral Science). Functional contextualism serves as the basis of a theory of language known as relational frame theory[1] and its most prominent application, acceptance and commitment therapy (ACT).[2] It is an extension and contextualistic interpretation of B.F. Skinner's radical behaviorism first delineated by Steven C. Hayes which emphasizes the importance of predicting and influencing psychological events (including thoughts, feelings, and behaviors) with precision, scope, and depth, by focusing on manipulable variables in their context.

Philosophy of psychiatry

Philosophy of psychiatry explores philosophical questions relating to psychiatry and mental illness. The philosopher of science and medicine Dominic Murphy identifies three areas of exploration in the philosophy of psychiatry. The first concerns the examination of psychiatry as a science, using the tools of the philosophy of science more broadly. The second entails the examination of the concepts employed in discussion of mental illness, including the experience of mental illness, and the normative questions it raises. The third area concerns the links and discontinuities between the philosophy of mind and psychopathology.[94]

Amartya Sen was awarded the Nobel Prize in Economics for "combining tools from economics and philosophy."[95]

Philosophy of economics

Philosophy of economics is the branch of philosophy which studies philosophical issues relating to economics. It can also be defined as the branch of economics which studies its own foundations and morality. It can be categorized into three central topics.[96] The first concerns the definition and scope of economics and by what methods it should be studied and whether these methods rise to the level of epistemic reliability associated with the other special sciences. For example, is it possible to research economics in such a way that it is value-free, establishing facts that are independent of the normative views of the researcher? The second topic is the meaning and implications of rationality. For example, can buying lottery tickets (increasing the riskiness of your income) at the same time as buying insurance (decreasing the riskiness of your income) be rational? The third topic is the normative evaluation of economic policies and outcomes. What criteria should be used to determine whether a given public policy is beneficial for society?

Philosophy of social science

The philosophy of social science is the study of the logic and method of the social sciences, such as sociology, anthropology, and political science.[97] Philosophers of social science are concerned with the differences and similarities between the social and the natural sciences, causal relationships between social phenomena, the possible existence of social laws, and the ontological significance of structure and agency.
The French philosopher, Auguste Comte (1798–1857), established the epistemological perspective of positivism in The Course in Positivist Philosophy, a series of texts published between 1830 and 1842. The first three volumes of the Course dealt chiefly with the physical sciences already in existence (mathematics, astronomy, physics, chemistry, biology), whereas the latter two emphasised the inevitable coming of social science: "sociologie".[98] For Comte, the physical sciences had necessarily to arrive first, before humanity could adequately channel its efforts into the most challenging and complex "Queen science" of human society itself. Comte offers an evolutionary system proposing that society undergoes three phases in its quest for the truth according to a general 'law of three stages'. These are (1) the theological, (2) the metaphysical, and (3) the positive.[99]

Comte's positivism established the initial philosophical foundations for formal sociology and social research. Durkheim, Marx, and Weber are more typically cited as the fathers of contemporary social science. In psychology, a positivistic approach has historically been favoured in behaviourism. Positivism has also been espoused by 'technocrats' who believe in the inevitability of social progress through science and technology.[100]

The positivist perspective has been associated with 'scientism'; the view that the methods of the natural sciences may be applied to all areas of investigation, be it philosophical, social scientific, or otherwise. Among most social scientists and historians, orthodox positivism has long since lost popular support. Today, practitioners of both social and physical sciences instead take into account the distorting effect of observer bias and structural limitations. This scepticism has been facilitated by a general weakening of deductivist accounts of science by philosophers such as Thomas Kuhn, and new philosophical movements such as critical realism and neopragmatism. The philosopher-sociologist Jürgen Habermas has critiqued pure instrumental rationality as meaning that scientific-thinking becomes something akin to ideology itself.

The Unreasonable Effectiveness of Mathematics in the Natural Sciences

From Wikipedia, the free encyclopedia
"The Unreasonable Effectiveness of Mathematics in the Natural Sciences" is the title of an article published in 1960 by the physicist Eugene Wigner. In the paper, Wigner observed that the mathematical structure of a physical theory often points the way to further advances in that theory and even to empirical predictions.

The miracle of mathematics in the natural sciences

Wigner begins his paper with the belief, common among those familiar with mathematics, that mathematical concepts have applicability far beyond the context in which they were originally developed. Based on his experience, he says "it is important to point out that the mathematical formulation of the physicist's often crude experience leads in an uncanny number of cases to an amazingly accurate description of a large class of phenomena". He then invokes the fundamental law of gravitation as an example. Originally used to model freely falling bodies on the surface of the earth, this law was extended on the basis of what Wigner terms "very scanty observations" to describe the motion of the planets, where it "has proved accurate beyond all reasonable expectations".

Another oft-cited example is Maxwell's equations, derived to model the elementary electrical and magnetic phenomena known as of the mid 19th century. These equations also describe radio waves, discovered by David Edward Hughes in 1879, around the time of James Clerk Maxwell's death. Wigner sums up his argument by saying that "the enormous usefulness of mathematics in the natural sciences is something bordering on the mysterious and that there is no rational explanation for it". He concludes his paper with the same question with which he began:
The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve. We should be grateful for it and hope that it will remain valid in future research and that it will extend, for better or for worse, to our pleasure, even though perhaps also to our bafflement, to wide branches of learning.

The deep connection between science and mathematics

Wigner's work provided a fresh insight into both physics and the philosophy of mathematics, and has been fairly often cited in the academic literature on the philosophy of physics and of mathematics. Wigner speculated on the relationship between the philosophy of science and the foundations of mathematics as follows:
It is difficult to avoid the impression that a miracle confronts us here, quite comparable in its striking nature to the miracle that the human mind can string a thousand arguments together without getting itself into contradictions, or to the two miracles of laws of nature and of the human mind's capacity to divine them.
Later, Hilary Putnam (1975) explained these "two miracles" as being necessary consequences of a realist (but not Platonist) view of the philosophy of mathematics.[2] However, in a passage discussing cognitive bias Wigner cautiously labeled as "not reliable", he went further:
The writer is convinced that it is useful, in epistemological discussions, to abandon the idealization that the level of human intelligence has a singular position on an absolute scale. In some cases it may even be useful to consider the attainment which is possible at the level of the intelligence of some other species.
Whether humans checking the results of humans can be considered an objective basis for observation of the known (to humans) universe is an interesting question, one followed up in both cosmology and the philosophy of mathematics.

Wigner also laid out the challenge of a cognitive approach to integrating the sciences:
A much more difficult and confusing situation would arise if we could, some day, establish a theory of the phenomena of consciousness, or of biology, which would be as coherent and convincing as our present theories of the inanimate world.
He further proposed that arguments could be found that might
put a heavy strain on our faith in our theories and on our belief in the reality of the concepts which we form. It would give us a deep sense of frustration in our search for what I called 'the ultimate truth'. The reason that such a situation is conceivable is that, fundamentally, we do not know why our theories work so well. Hence, their accuracy may not prove their truth and consistency. Indeed, it is this writer's belief that something rather akin to the situation which was described above exists if the present laws of heredity and of physics are confronted.
Peter Woit, a theoretical physicist, believes that this conflict exists in string theory, where very abstract models may be impossible to test in any foreseeable experiment. If this is the case, the "string" must be thought of either as real but untestable, or simply as an illusion or artifact of either mathematics or cognition.[3]

Responses to Wigner's original paper

Wigner's original paper has provoked and inspired many responses across a wide range of disciplines. These include Richard Hamming[4] in computer science, Arthur Lesk in molecular biology,[5] Peter Norvig in data mining,[6] Max Tegmark in physics,[7] Ivor Grattan-Guinness in mathematics[8] and Vela Velupillai in economics.[9]

Richard Hamming

Richard Hamming, an applied mathematician and a founder of computer science, reflected on and extended Wigner's Unreasonable Effectiveness in 1980, mulling over four "partial explanations" for it.[4] Hamming concluded that the four explanations he gave were unsatisfactory. They were:

1. Humans see what they look for. The belief that science is experimentally grounded is only partially true. Rather, our intellectual apparatus is such that much of what we see comes from the glasses we put on. Eddington went so far as to claim that a sufficiently wise mind could deduce all of physics, illustrating his point with the following joke: "Some men went fishing in the sea with a net, and upon examining what they caught they concluded that there was a minimum size to the fish in the sea."

Hamming gives four examples of nontrivial physical phenomena he believes arose from the mathematical tools employed and not from the intrinsic properties of physical reality.
  • Hamming proposes that Galileo discovered the law of falling bodies not by experimenting, but by simple, though careful, thinking. Hamming imagines Galileo as having engaged in the following thought experiment (the experiment, which Hamming calls "scholastic reasoning", is described in Galileo's book On Motion.[10]):
Suppose that a falling body broke into two pieces. Of course the two pieces would immediately slow down to their appropriate speeds. But suppose further that one piece happened to touch the other one. Would they now be one piece and both speed up? Suppose I tie the two pieces together. How tightly must I do it to make them one piece? A light string? A rope? Glue? When are two pieces one?
There is simply no way a falling body can "answer" such hypothetical "questions." Hence Galileo would have concluded that "falling bodies need not know anything if they all fall with the same velocity, unless interfered with by another force." After coming up with this argument, Hamming found a related discussion in Pólya (1963: 83-85).[11] Hamming's account does not reveal an awareness of the 20th century scholarly debate over just what Galileo did.[clarification needed]
2. Humans create and select the mathematics that fit a situation. The mathematics at hand does not always work. For example, when mere scalars proved awkward for understanding forces, first vectors, then tensors, were invented.

3. Mathematics addresses only a part of human experience. Much of human experience does not fall under science or mathematics but under the philosophy of value, including ethics, aesthetics, and political philosophy. To assert that the world can be explained via mathematics amounts to an act of faith.

4. Evolution has primed humans to think mathematically. The earliest lifeforms must have contained the seeds of the human ability to create and follow long chains of close reasoning.

Max Tegmark

A different response, advocated by physicist Max Tegmark, is that physics is so successfully described by mathematics because the physical world is completely mathematical, isomorphic to a mathematical structure, and that we are simply uncovering this bit by bit.[7][13] The same interpretation had been advanced some years previously by Peter Atkins.[14] In this interpretation, the various approximations that constitute our current physics theories are successful because simple mathematical structures can provide good approximations of certain aspects of more complex mathematical structures. In other words, our successful theories are not mathematics approximating physics, but mathematics approximating mathematics.

Ivor Grattan-Guinness

Ivor Grattan-Guinness finds the effectiveness in question eminently reasonable and explicable in terms of concepts such as analogy, generalisation and metaphor.[8]

Related quotations

[W]ir auch, gleich als ob es ein glücklicher unsre Absicht begünstigender Zufall wäre, erfreuet (eigentlich eines Bedürfnisses entledigt) werden, wenn wir eine solche systematische Einheit unter bloß empirischen Gesetzen antreffen. [We rejoice (actually we are relieved of a need) when, just as if it were a lucky chance favoring our aim, we do find such systematic unity among merely empirical laws.].
The most incomprehensible thing about the universe is that it is comprehensible.
— Albert Einstein[16]
How can it be that mathematics, being after all a product of human thought which is independent of experience, is so admirably appropriate to the objects of reality? [...] In my opinion the answer to this question is, briefly, this: As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality.
— Albert Einstein[17]
Physics is mathematical not because we know so much about the physical world, but because we know so little; it is only its mathematical properties that we can discover.
There is only one thing which is more unreasonable than the unreasonable effectiveness of mathematics in physics, and this is the unreasonable ineffectiveness of mathematics in biology.
Sciences reach a point where they become mathematized..the central issues in the field become sufficiently understood that they can be thought about mathematically..[by the early 1990s] biology was no longer the science of things that smelled funny in refrigerators (my view from undergraduate days in the 1960s)..The field was undergoing a revolution and was rapidly acquiring the depth and power previously associated exclusively with the physical sciences. Biology was now the study of information stored in DNA — strings of four letters: A, T, G, and C..and the transformations that information undergoes in the cell. There was mathematics here!
— Leonard Adleman, a theoretical computer scientist who pioneered the field of DNA computing [20][21]
We should stop acting as if our goal is to author extremely elegant theories, and instead embrace complexity and make use of the best ally we have: the unreasonable effectiveness of data.

Lie point symmetry

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Lie_point_symmetry     ...