Volume is the quantity of three-dimensional space enclosed by a closed surface, for example, the space that a substance (solid, liquid, gas, or plasma) or shape occupies or contains. Volume is often quantified numerically using the SI derived unit, the cubic metre. The volume of a container is generally understood to be the capacity of the container; i. e., the amount of fluid (gas or liquid) that the container could hold, rather than the amount of space the container itself displaces.
Three dimensional
mathematical shapes are also assigned volumes. Volumes of some simple
shapes, such as regular, straight-edged, and circular shapes can be
easily calculated using arithmeticformulas. Volumes of complicated shapes can be calculated with integral calculus if a formula exists for the shape's boundary. One-dimensional figures (such as lines) and two-dimensional shapes (such as squares) are assigned zero volume in the three-dimensional space.
The volume of a solid (whether regularly or irregularly shaped) can be determined by fluid displacement.
Displacement of liquid can also be used to determine the volume of a
gas. The combined volume of two substances is usually greater than the
volume of just one of the substances. However, sometimes one substance
dissolves in the other and in such cases the combined volume is not additive.
Any unit of length gives a corresponding unit of volume: the volume of a cube whose sides have the given length. For example, a cubic centimetre (cm3) is the volume of a cube whose sides are one centimetre (1 cm) in length.
In the International System of Units (SI), the standard unit of volume is the cubic metre (m3). The metric system also includes the litre (L) as a unit of volume, where one litre is the volume of a 10-centimetre cube. Thus
Capacity is defined by the Oxford English Dictionary
as "the measure applied to the content of a vessel, and to liquids,
grain, or the like, which take the shape of that which holds them". (The word capacity has other unrelated meanings, as in e.g. capacity management.)
Capacity is not identical in meaning to volume, though closely related;
the capacity of a container is always the volume in its interior. Units
of capacity are the SI litre and its derived units, and Imperial units such as gill, pint, gallon, and others. Units of volume are the cubes of units of length.
In SI the units of volume and capacity are closely related: one litre
is exactly 1 cubic decimetre, the capacity of a cube with a 10 cm side.
In other systems the conversion is not trivial; the capacity of a
vehicle's fuel tank is rarely stated in cubic feet, for example, but in
gallons (an imperial gallon fills a volume of 0.1605 cu ft).
The density of an object is defined as the ratio of the mass to the volume. The inverse of density is specific volume which is defined as volume divided by mass. Specific volume is a concept important in thermodynamics where the volume of a working fluid is often an important parameter of a system being studied.
The volumetric flow rate in fluid dynamics is the volume of fluid which passes through a given surface per unit time (for example cubic meters per second [m3 s−1]).
and the volume integral in spherical coordinates (using the convention for angles with as the azimuth and measured from the polar axis; see more on conventions) has the form
h = any dimension of the figure, A(h) = area of the cross-sections perpendicular to h described as a function of the position along h. a and b are the limits of integration for the volumetric sweep. (This will work for any figure if its cross-sectional area can be determined from h).
Any rotated figure (washer method; calculus required)
and are functions expressing the outer and inner radii of the function, respectively.
Volume ratios for a cone, sphere and cylinder of the same radius and height
A cone, sphere and cylinder of radius r and height h
The above formulas can be used to show that the volumes of a cone, sphere and cylinder of the same radius and height are in the ratio 1 : 2 : 3, as follows.
Let the radius be r and the height be h (which is 2r for the sphere), then the volume of cone is
the volume of the sphere is
while the volume of the cylinder is
The discovery of the 2 : 3 ratio of the volumes of the sphere and cylinder is credited to Archimedes.
Volume formula derivations
Sphere
The volume of a sphere is the integral of an infinite number of infinitesimally small circular disks of thickness dx. The calculation for the volume of a sphere with center 0 and radius r is as follows.
The surface area of the circular disk is .
The radius of the circular disks, defined such that the x-axis cuts perpendicularly through them, is
or
where y or z can be taken to represent the radius of a disk at a particular x value.
Using y as the disk radius, the volume of the sphere can be calculated as
Now
Combining yields
This formula can be derived more quickly using the formula for the sphere's surface area, which is . The volume of the sphere consists of layers of infinitesimally thin spherical shells, and the sphere volume is equal to
Cone
The cone is a
type of pyramidal shape. The fundamental equation for pyramids,
one-third times base times altitude, applies to cones as well.
However, using calculus, the volume of a cone is the integral of an infinite number of infinitesimally thin circular disks of thickness dx. The calculation for the volume of a cone of height h, whose base is centered at (0, 0, 0) with radius r, is as follows.
The radius of each circular disk is r if x = 0 and 0 if x = h, and varying linearly in between—that is,
The surface area of the circular disk is then
The volume of the cone can then be calculated as
and after extraction of the constants
Integrating gives us
Polyhedron
Volume in differential geometry
In differential geometry, a branch of mathematics, a volume form on a differentiable manifold is a differential form
of top degree (i.e., whose degree is equal to the dimension of the
manifold) that is nowhere equal to zero. A manifold has a volume form
if and only if it is orientable. An orientable manifold has infinitely
many volume forms, since multiplying a volume form by a non-vanishing
function yields another volume form. On non-orientable manifolds, one
may instead define the weaker notion of a density. Integrating the volume form gives the volume of the manifold according to that form.
where the are 1-forms that form a positively oriented basis for the cotangent bundle of the manifold, and is the determinant of the matrix representation of the metric tensor on the manifold in terms of the same basis.
Area is the quantity that expresses the extent of a two-dimensional figure or shape, or planar lamina, in the plane. Surface area is its analog on the two-dimensional surface of a three-dimensional object.
Area can be understood as the amount of material with a given thickness
that would be necessary to fashion a model of the shape, or the amount
of paint necessary to cover the surface with a single coat. It is the two-dimensional analog of the length of a curve (a one-dimensional concept) or the volume of a solid (a three-dimensional concept).
The area of a shape can be measured by comparing the shape to squares of a fixed size. In the International System of Units (SI), the standard unit of area is the square metre (written as m2), which is the area of a square whose sides are one metre long. A shape with an area of three square metres would have the same area as three such squares. In mathematics, the unit square is defined to have area one, and the area of any other shape or surface is a dimensionlessreal number.
For a solid shape such as a sphere, cone, or cylinder, the area of its boundary surface is called the surface area. Formulas for the surface areas of simple shapes were computed by the ancient Greeks, but computing the surface area of a more complicated shape usually requires multivariable calculus.
Area plays an important role in modern mathematics. In addition to its obvious importance in geometry and calculus, area is related to the definition of determinants in linear algebra, and is a basic property of surfaces in differential geometry. In analysis, the area of a subset of the plane is defined using Lebesgue measure, though not every subset is measurable. In general, area in higher mathematics is seen as a special case of volume for two-dimensional regions.
Area can be defined through the use of axioms, defining it as a
function of a collection of certain plane figures to the set of real
numbers. It can be proved that such a function exists.
Formal definition
An approach to defining what is meant by "area" is through axioms.
"Area" can be defined as a function from a collection M of special kind
of plane figures (termed measurable sets) to the set of real numbers
which satisfies the following properties:
For all S in M, a(S) ≥ 0.
If S and T are in M then so are S ∪ T and S ∩ T, and also a(S∪T) = a(S) + a(T) − a(S∩T).
If S and T are in M with S ⊆ T then T − S is in M and a(T−S) = a(T) − a(S).
If a set S is in M and S is congruent to T then T is also in M and a(S) = a(T).
Every rectangle R is in M. If the rectangle has length h and breadth k then a(R) = hk.
Let Q be a set enclosed between two step regions S and T. A step region is formed from a finite union of adjacent rectangles resting on a common base, i.e. S ⊆ Q ⊆ T. If there is a unique number c such that a(S) ≤ c ≤ a(T) for all such step regions S and T, then a(Q) = c.
It can be proved that such an area function actually exists.
Every unit of length has a corresponding unit of area, namely the area of a square with the given side length. Thus areas can be measured in square metres (m2), square centimetres (cm2), square millimetres (mm2), square kilometres (km2), square feet (ft2), square yards (yd2), square miles (mi2), and so forth. Algebraically, these units can be thought of as the squares of the corresponding length units.
The SI unit of area is the square metre, which is considered an SI derived unit.
Conversions
Although there are 10 mm in 1 cm, there are 100 mm2 in 1 cm2.
Calculation of the area of a square whose length and width are 1 metre would be:
1 metre x 1 metre = 1 m2
and so, a rectangle with different sides (say length of 3 metres
and width of 2 metres) would have an area in square units that can be
calculated as:
3 metres x 2 metres = 6 m2. This is equivalent to 6 million square millimetres. Other useful conversions are:
Other uncommon metric units of area include the tetrad, the hectad, and the myriad.
The acre is also commonly used to measure land areas, where
1 acre = 4,840 square yards = 43,560 square feet.
An acre is approximately 40% of a hectare.
On the atomic scale, area is measured in units of barns, such that:
1 barn = 10−28 square meters.
The barn is commonly used in describing the cross-sectional area of interaction in nuclear physics.
In India,
20 dhurki = 1 dhur
20 dhur = 1 khatha
20 khata = 1 bigha
32 khata = 1 acre
History
Circle area
In the 5th century BCE, Hippocrates of Chios
was the first to show that the area of a disk (the region enclosed by a
circle) is proportional to the square of its diameter, as part of his quadrature of the lune of Hippocrates, but did not identify the constant of proportionality. Eudoxus of Cnidus, also in the 5th century BCE, also found that the area of a disk is proportional to its radius squared.
Subsequently, Book I of Euclid's Elements dealt with equality of areas between two-dimensional figures. The mathematician Archimedes used the tools of Euclidean geometry to show that the area inside a circle is equal to that of a right triangle whose base has the length of the circle's circumference and whose height equals the circle's radius, in his book Measurement of a Circle. (The circumference is 2πr, and the area of a triangle is half the base times the height, yielding the area πr2 for the disk.) Archimedes approximated the value of π (and hence the area of a unit-radius circle) with his doubling method, in which he inscribed a regular triangle in a circle and noted its area, then doubled the number of sides to give a regular hexagon,
then repeatedly doubled the number of sides as the polygon's area got
closer and closer to that of the circle (and did the same with circumscribed polygons).
Swiss scientist Johann Heinrich Lambert in 1761 proved that π, the ratio of a circle's area to its squared radius, is irrational, meaning it is not equal to the quotient of any two whole numbers. In 1794 French mathematician Adrien-Marie Legendre proved that π2 is irrational; this also proves that π is irrational. In 1882, German mathematician Ferdinand von Lindemann proved that π is transcendental (not the solution of any polynomial equation with rational coefficients), confirming a conjecture made by both Legendre and Euler.
Triangle area
Heron (or Hero) of Alexandria found what is known as Heron's formula for the area of a triangle in terms of its sides, and a proof can be found in his book, Metrica, written around 60 CE. It has been suggested that Archimedes knew the formula over two centuries earlier, and since Metrica
is a collection of the mathematical knowledge available in the ancient
world, it is possible that the formula predates the reference given in
that work.
A formula equivalent to Heron's was discovered by the Chinese independently of the Greeks. It was published in 1247 in Shushu Jiuzhang ("Mathematical Treatise in Nine Sections"), written by Qin Jiushao.
The development of integral calculus
in the late 17th century provided tools that could subsequently be used
for computing more complicated areas, such as the area of an ellipse and the surface areas of various curved three-dimensional objects.
where when i=n-1, then i+1 is expressed as modulusn and so refers to 0.
Rectangles
The area of this rectangle is lw.
The most basic area formula is the formula for the area of a rectangle. Given a rectangle with length l and width w, the formula for the area is:
A = lw (rectangle).
That is, the area of the rectangle is the length multiplied by the width. As a special case, as l = w in the case of a square, the area of a square with side length s is given by the formula:
A = s2 (square).
The formula for the area of a rectangle follows directly from the basic properties of area, and is sometimes taken as a definition or axiom. On the other hand, if geometry is developed before arithmetic, this formula can be used to define multiplication of real numbers.
Most other simple formulas for area follow from the method of dissection.
This involves cutting a shape into pieces, whose areas must sum to the area of the original shape.
For an example, any parallelogram can be subdivided into a trapezoid and a right triangle,
as shown in figure to the left. If the triangle is moved to the other
side of the trapezoid, then the resulting figure is a rectangle. It
follows that the area of the parallelogram is the same as the area of
the rectangle:
A = bh (parallelogram).
Two equal triangles.
However, the same parallelogram can also be cut along a diagonal into two congruent triangles, as shown in the figure to the right. It follows that the area of each triangle is half the area of the parallelogram:
(triangle).
Similar arguments can be used to find area formulas for the trapezoid as well as more complicated polygons.
Area of curved shapes
Circles
A circle can be divided into sectors which rearrange to form an approximate parallelogram.
The formula for the area of a circle (more properly called the area enclosed by a circle or the area of a disk) is based on a similar method. Given a circle of radius r, it is possible to partition the circle into sectors,
as shown in the figure to the right. Each sector is approximately
triangular in shape, and the sectors can be rearranged to form an
approximate parallelogram. The height of this parallelogram is r, and the width is half the circumference of the circle, or πr. Thus, the total area of the circle is πr2:
A = πr2 (circle).
Though the dissection used in this formula is only approximate, the
error becomes smaller and smaller as the circle is partitioned into more
and more sectors. The limit of the areas of the approximate parallelograms is exactly πr2, which is the area of the circle.
This argument is actually a simple application of the ideas of calculus. In ancient times, the method of exhaustion was used in a similar way to find the area of the circle, and this method is now recognized as a precursor to integral calculus. Using modern methods, the area of a circle can be computed using a definite integral:
Ellipses
The formula for the area enclosed by an ellipse is related to the formula of a circle; for an ellipse with semi-major and semi-minor axes x and y the formula is:
Surface area
Archimedes showed that the surface area of a sphere is exactly four times the area of a flat disk of the same radius, and the volume enclosed by the sphere is exactly 2/3 of the volume of a cylinder of the same height and radius.
Most basic formulas for surface area can be obtained by cutting surfaces and flattening them out. For example, if the side surface of a cylinder (or any prism) is cut lengthwise, the surface can be flattened out into a rectangle. Similarly, if a cut is made along the side of a cone, the side surface can be flattened out into a sector of a circle, and the resulting area computed.
The formula for the surface area of a sphere is more difficult to derive: because a sphere has nonzero Gaussian curvature, it cannot be flattened out. The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is:
A = 4πr2 (surface area of sphere),
where r is the radius of the
sphere. As with the formula for the area of a circle, any derivation of
this formula inherently uses methods similar to calculus.
General formulas
Areas of 2-dimensional figures
A triangle: (where B is any side, and h is the distance from the line on which B lies to the other vertex of the triangle). This formula can be used if the height h is known. If the lengths of the three sides are known then Heron's formula can be used: where a, b, c are the sides of the triangle, and is half of its perimeter. If an angle and its two included sides are given, the area is where C is the given angle and a and b are its included sides. If the triangle is graphed on a coordinate plane, a matrix can be used and is simplified to the absolute value of . This formula is also known as the shoelace formula and is an easy way to solve for the area of a coordinate triangle by substituting the 3 points (x1,y1), (x2,y2), and (x3,y3).
The shoelace formula can also be used to find the areas of other
polygons when their vertices are known. Another approach for a
coordinate triangle is to use calculus to find the area.
A simple polygon constructed on a grid of equal-distanced points (i.e., points with integer coordinates) such that all the polygon's vertices are grid points: , where i is the number of grid points inside the polygon and b is the number of boundary points. This result is known as Pick's theorem.
Area in calculus
Integration can be thought of as measuring the area under a curve, defined by f(x), between two points (here a and b).
The area between two graphs can be evaluated by calculating the difference between the integrals of the two functions
The area between a positive-valued curve and the horizontal axis, measured between two values a and b (b is defined as the larger of the two values) on the horizontal axis, is given by the integral from a to b of the function that represents the curve:
The area between the graphs of two functions is equal to the integral of one function, f(x), minus the integral of the other function, g(x):
where is the curve with the greater y-value.
An area bounded by a function r = r(θ) expressed in polar coordinates is:
To find the bounded area between two quadratic functions, we subtract one from the other to write the difference as
where f(x) is the quadratic upper bound and g(x) is the quadratic lower bound. Define the discriminant of f(x)-g(x) as
By simplifying the integral formula between the graphs of two functions (as given in the section above) and using Vieta's formula, we can obtain
The above remains valid if one of the bounding functions is linear instead of quadratic.
Surface area of 3-dimensional figures
Cone: , where r is the radius of the circular base, and h is the height. That can also be rewritten as or where r is the radius and l is the slant height of the cone. is the base area while is the lateral surface area of the cone.
cylinder: , where r is the radius of a base and h is the height. The 2r can also be rewritten as d, where d is the diameter.
prism: 2B + Ph, where B is the area of a base, P is the perimeter of a base, and h is the height of the prism.
pyramid: , where B is the area of the base, P is the perimeter of the base, and L is the length of the slant.
rectangular prism: , where is the length, w is the width, and h is the height.
General formula for surface area
The general formula for the surface area of the graph of a continuously differentiable function where and is a region in the xy-plane with the smooth boundary:
An even more general formula for the area of the graph of a parametric surface in the vector form where is a continuously differentiable vector function of is:
The above calculations show how to find the areas of many common shapes.
The areas of irregular polygons can be calculated using the "Surveyor's formula".
Relation of area to perimeter
The isoperimetric inequality states that, for a closed curve of length L (so the region it encloses has perimeterL) and for area A of the region that it encloses,
and equality holds if and only if the curve is a circle. Thus a circle has the largest area of any closed figure with a given perimeter.
At the other extreme, a figure with given perimeter L could have an arbitrarily small area, as illustrated by a rhombus that is "tipped over" arbitrarily far so that two of its angles are arbitrarily close to 0° and the other two are arbitrarily close to 180°.
For a circle, the ratio of the area to the circumference (the term for the perimeter of a circle) equals half the radiusr. This can be seen from the area formula πr2 and the circumference formula 2πr.
The area of a regular polygon is half its perimeter times the apothem (where the apothem is the distance from the center to the nearest point on any side).
Fractals
Doubling
the edge lengths of a polygon multiplies its area by four, which is two
(the ratio of the new to the old side length) raised to the power of
two (the dimension of the space the polygon resides in). But if the
one-dimensional lengths of a fractal
drawn in two dimensions are all doubled, the spatial content of the
fractal scales by a power of two that is not necessarily an integer.
This power is called the fractal dimension of the fractal.
Area bisectors
There are an infinitude of lines that bisect the area of a triangle. Three of them are the medians of the triangle (which connect the sides' midpoints with the opposite vertices), and these are concurrent at the triangle's centroid;
indeed, they are the only area bisectors that go through the centroid.
Any line through a triangle that splits both the triangle's area and its
perimeter in half goes through the triangle's incenter (the center of
its incircle). There are either one, two, or three of these for any given triangle.
Any line through the midpoint of a parallelogram bisects the area.
All area bisectors of a circle or other ellipse go through the center, and any chords through the center bisect the area. In the case of a circle they are the diameters of the circle.
Optimization
Given a wire contour, the surface of least area spanning ("filling") it is a minimal surface. Familiar examples include soap bubbles.
The circle has the largest area of any two-dimensional object having the same perimeter.
A cyclic polygon (one inscribed in a circle) has the largest area of any polygon with a given number of sides of the same lengths.
A version of the isoperimetric inequality for triangles states that the triangle of greatest area among all those with a given perimeter is equilateral.
The triangle of largest area of all those inscribed in a given
circle is equilateral; and the triangle of smallest area of all those
circumscribed around a given circle is equilateral.
The ratio of the area of the incircle to the area of an equilateral triangle, , is larger than that of any non-equilateral triangle.
The ratio of the area to the square of the perimeter of an equilateral triangle, is larger than that for any other triangle.