Search This Blog

Wednesday, August 6, 2014

String theory

String theory

For a generally accessible and less technical introduction to the topic, see Introduction to M-theory.
In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings.[1]

String theory aims to explain all types of observed elementary particles using quantum states of these strings. In addition to the particles postulated by the standard model of particle physics, string theory naturally incorporates gravity, and so is a candidate for a theory of everything, a self-contained mathematical model that describes all fundamental forces and forms of matter. Besides this hypothesized role in particle physics, string theory is now widely used as a theoretical tool in physics, and has shed light on many aspects of quantum field theory and quantum gravity.[2]

The earliest version of string theory, called bosonic string theory, incorporated only the class of particles known as bosons, although this theory developed into superstring theory, which posits that a connection (a "supersymmetry") exists between bosons and the class of particles called fermions. String theory requires the existence of extra spatial dimensions for its mathematical consistency. In realistic physical models constructed from string theory, these extra dimensions are typically compactified to extremely small scales.

String theory was first studied in the late 1960s[3] as a theory of the strong nuclear force before being abandoned in favor of the theory of quantum chromodynamics. Subsequently, it was realized that the very properties that made string theory unsuitable as a theory of nuclear physics made it an outstanding candidate for a quantum theory of gravity. After five consistent versions of string theory were developed, it was realized in the mid-1990s that these theories could be obtained as different limits of a conjectured 11-dimensional theory called M-theory.[4]

Many theoretical physicists (including Stephen Hawking, Edward Witten, and Juan Maldacena) believe that string theory is a step towards the correct fundamental description of nature. This is because string theory allows for the consistent combination of quantum field theory and general relativity, agrees with general insights in quantum gravity such as the holographic principle and black hole thermodynamics, and has passed many non-trivial checks of its internal consistency. According to Hawking, "M-theory is the only candidate for a complete theory of the universe."[5] Other physicists, such as Richard Feynman,[6][7] Roger Penrose,[8] and Sheldon Lee Glashow,[9] have criticized string theory for not providing novel experimental predictions at accessible energy scales and say that it is a failure as a theory of everything.

Overview

Levels of magnification:
1. Macroscopic level: Matter
2. Molecular level
3. Atomic level: Protons, neutrons, and electrons
4. Subatomic level: Electron
5. Subatomic level: Quarks
6. String level

The starting point for string theory is the idea that the point-like particles of elementary particle physics can also be modeled as one-dimensional objects called strings. According to string theory, strings can oscillate in many ways. On distance scales larger than the string radius, each oscillation mode gives rise to a different species of particle, with its mass, charge, and other properties determined by the string's dynamics. Splitting and recombination of strings correspond to particle emission and absorption, giving rise to the interactions between particles. An analogy for strings' modes of vibration is a guitar string's production of multiple distinct musical notes. In this analogy, different notes correspond to different particles.

In string theory, one of the modes of oscillation of the string corresponds to a massless, spin-2 particle. Such a particle is called a graviton since it mediates a force which has the properties of gravity. Since string theory is believed to be a mathematically consistent quantum mechanical theory, the existence of this graviton state implies that string theory is a theory of quantum gravity.

String theory includes both open strings, which have two distinct endpoints, and closed strings, which form a complete loop. The two types of string behave in slightly different ways, yielding different particle types. For example, all string theories have closed string graviton modes, but only open strings can correspond to the particles known as photons. Because the two ends of an open string can always meet and connect, forming a closed string, all string theories contain closed strings.

The earliest string model, the bosonic string, incorporated only the class of particles known as bosons. This model describes, at low enough energies, a quantum gravity theory, which also includes (if open strings are incorporated as well) gauge bosons such as the photon. However, this model has problems. What is most significant is that the theory has a fundamental instability, believed to result in the decay (at least partially) of spacetime itself. In addition, as the name implies, the spectrum of particles contains only bosons, particles which, like the photon, obey particular rules of behavior. Roughly speaking, bosons are the constituents of radiation, but not of matter, which is made of fermions. Investigating how a string theory may include fermions led to the invention of supersymmetry, a mathematical relation between bosons and fermions. String theories that include fermionic vibrations are now known as superstring theories; several kinds have been described, but all are now thought to be different limits of a theory called M-theory.

Since string theory incorporates all of the fundamental interactions, including gravity, many physicists hope that it fully describes our universe, making it a theory of everything. One of the goals of current research in string theory is to find a solution of the theory that is quantitatively identical with the standard model, with a small cosmological constant, containing dark matter and a plausible mechanism for cosmic inflation. It is not yet known whether string theory has such a solution, nor is it known how much freedom the theory allows to choose the details.

One of the challenges of string theory is that the full theory does not yet have a satisfactory definition in all circumstances. The scattering of strings is most straightforwardly defined using the techniques of perturbation theory, but it is not known in general how to define string theory nonperturbatively. It is also not clear as to whether there is any principle by which string theory selects its vacuum state, the spacetime configuration that determines the properties of our universe (see string theory landscape).

Strings

The motion of a point-like particle can be described by drawing a graph of its position with respect to time. The resulting picture depicts the worldline of the particle in spacetime. In an analogous way, one can draw a graph depicting the progress of a string as time passes. The string, which looks like a small line by itself, will sweep out a two-dimensional surface known as the worldsheet. The different string modes (giving rise to different particles, such as the photon or graviton) appear as waves on this surface.

A closed string looks like a small loop, so its worldsheet will look like a pipe. An open string looks like a segment with two endpoints, so its worldsheet will look like a strip. In a more mathematical language, these are both Riemann surfaces, the strip having a boundary and the pipe none.
Interaction in the subatomic world: world lines of point-like particles in the Standard Model or a world sheet swept up by closed strings in string theory

Strings can join and split. This is reflected by the form of their worldsheet, or more precisely, by its topology. For example, if a closed string splits, its worldsheet will look like a single pipe splitting into two pipes. This topology is often referred to as a pair of pants (see drawing at right). If a closed string splits and its two parts later reconnect, its worldsheet will look like a single pipe splitting to two and then reconnecting, which also looks like a torus connected to two pipes (one representing the incoming string, and the other representing the outgoing one). An open string doing the same thing will have a worldsheet that looks like an annulus connected to two strips.

In quantum mechanics, one computes the probability for a point particle to propagate from one point to another by summing certain quantities called probability amplitudes. Each amplitude is associated with a different worldline of the particle. This process of summing amplitudes over all possible worldlines is called path integration. In string theory, one computes probabilities in a similar way, by summing quantities associated with the worldsheets joining an initial string configuration to a final configuration. It is in this sense that string theory extends quantum field theory, replacing point particles by strings. As in quantum field theory, the classical behavior of fields is determined by an action functional, which in string theory can be either the Nambu–Goto action or the Polyakov action.

Branes

In string theory and related theories such as supergravity theories, a brane is a physical object that generalizes the notion of a point particle to higher dimensions.[10] For example, a point particle can be viewed as a brane of dimension zero, while a string can be viewed as a brane of dimension one. It is also possible to consider higher-dimensional branes. In dimension p, these are called p-branes. The word brane comes from the word "membrane" which refers to a two-dimensional brane.

Branes are dynamical objects which can propagate through spacetime according to the rules of quantum mechanics. They have mass and can have other attributes such as charge. A p-brane sweeps out a (p+1)-dimensional volume in spacetime called its worldvolume. Physicists often study fields analogous to the electromagnetic field which live on the worldvolume of a brane.

In string theory, D-branes are an important class of branes that arise when one considers open strings. As an open string propagates through spacetime, its endpoints are required to lie on a D-brane. The letter "D" in D-brane refers to the fact that we impose a certain mathematical condition on the system known as the Dirichlet boundary condition. The study of D-branes in string theory has led to important results such as the AdS/CFT correspondence, which has shed light on many problems in quantum field theory.

Branes are also frequently studied from a purely mathematical point of view[11] since they are related to subjects such as homological mirror symmetry and noncommutative geometry. Mathematically, branes may be represented as objects of certain categories, such as the derived category of coherent sheaves on a Calabi–Yau manifold, or the Fukaya category.

Dualities

In physics, the term duality refers to a situation where two seemingly different physical systems turn out to be equivalent in a nontrivial way. If two theories are related by a duality, it means that one theory can be transformed in some way so that it ends up looking just like the other theory. The two theories are then said to be dual to one another under the transformation. Put differently, the two theories are mathematically different descriptions of the same phenomena.

In addition to providing a candidate for a theory of everything, string theory provides many examples of dualities between different physical theories and can therefore be used as a tool for understanding the relationships between these theories.[12]

S-, T-, and U-duality

These are dualities between string theories which relate seemingly different quantities. Large and small distance scales, as well as strong and weak coupling strengths, are quantities that have always marked very distinct limits of behavior of a physical system in both classical and quantum physics.
But strings can obscure the difference between large and small, strong and weak, and this is how these five very different theories end up being related. T-duality relates the large and small distance scales between string theories, whereas S-duality relates strong and weak coupling strengths between string theories. U-duality links T-duality and S-duality.

M-theory

Before the 1990s, string theorists believed there were five distinct superstring theories: type I, type IIA, type IIB, and the two flavors of heterotic string theory (SO(32) and E8×E8). The thinking was that out of these five candidate theories, only one was the actual correct theory of everything, and that theory was the one whose low energy limit, with ten spacetime dimensions compactified down to four, matched the physics observed in our world today. It is now believed that this picture was incorrect and that the five superstring theories are related to one another by the dualities described above. The existence of these dualities suggests that the five string theories are in fact special cases of a more fundamental theory called M-theory.[13]

String theory details by type and number of spacetime dimensions
TypeSpacetime dimensionsDetails
Bosonic26Only bosons, no fermions, meaning only forces, no matter, with both open and closed strings; major flaw: a particle with imaginary mass, called the tachyon, representing an instability in the theory.
I10Supersymmetry between forces and matter, with both open and closed strings; no tachyon; gauge group is SO(32)
IIA10Supersymmetry between forces and matter, with only closed strings; no tachyon; massless fermions are non-chiral
IIB10Supersymmetry between forces and matter, with only closed strings; no tachyon; massless fermions are chiral
HO10Supersymmetry between forces and matter, with closed strings only; no tachyon; heterotic, meaning right moving and left moving strings differ; gauge group is SO(32)
HE10Supersymmetry between forces and matter, with closed strings only; no tachyon; heterotic; gauge group is E8×E8

Extra dimensions

Number of dimensions

An intriguing feature of string theory is that it predicts extra dimensions. In classical string theory the number of dimensions is not fixed by any consistency criterion. However, to make a consistent quantum theory, string theory is required to live in a spacetime of the so-called "critical dimension": we must have 26 spacetime dimensions for the bosonic string and 10 for the superstring. This is necessary to ensure the vanishing of the conformal anomaly of the worldsheet conformal field theory.
Modern understanding indicates that there exist less trivial ways of satisfying this criterion.
Cosmological solutions exist in a wider variety of dimensionalities, and these different dimensions are related by dynamical transitions. The dimensions are more precisely different values of the "effective central charge", a count of degrees of freedom that reduces to dimensionality in weakly curved regimes.[14][15]

One such theory is the 11-dimensional M-theory, which requires spacetime to have eleven dimensions,[16] as opposed to the usual three spatial dimensions and the fourth dimension of time. The original string theories from the 1980s describe special cases of M-theory where the eleventh dimension is a very small circle or a line, and if these formulations are considered as fundamental, then string theory requires ten dimensions. But the theory also describes universes like ours, with four observable spacetime dimensions, as well as universes with up to 10 flat space dimensions, and also cases where the position in some of the dimensions is described by a complex number rather than a real number. The notion of spacetime dimension is not fixed in string theory: it is best thought of as different in different circumstances.[17]

Nothing in Maxwell's theory of electromagnetism or Einstein's theory of relativity makes this kind of prediction; these theories require physicists to insert the number of dimensions manually and arbitrarily, and this number is fixed and independent of potential energy. String theory allows one to relate the number of dimensions to scalar potential energy. In technical terms, this happens because a gauge anomaly exists for every separate number of predicted dimensions, and the gauge anomaly can be counteracted by including nontrivial potential energy into equations to solve motion. Furthermore, the absence of potential energy in the "critical dimension" explains why flat spacetime solutions are possible.

This can be better understood by noting that a photon included in a consistent theory (technically, a particle carrying a force related to an unbroken gauge symmetry) must be massless. The mass of the photon that is predicted by string theory depends on the energy of the string mode that represents the photon. This energy includes a contribution from the Casimir effect, namely from quantum fluctuations in the string. The size of this contribution depends on the number of dimensions, since for a larger number of dimensions there are more possible fluctuations in the string position. Therefore, the photon in flat spacetime will be massless—and the theory consistent—only for a particular number of dimensions.[18] When the calculation is done, the critical dimensionality is not four as one may expect (three axes of space and one of time). The subset of X is equal to the relation of photon fluctuations in a linear dimension. Flat space string theories are 26-dimensional in the bosonic case, while superstring and M-theories turn out to involve 10 or 11 dimensions for flat solutions. In bosonic string theories, the 26 dimensions come from the Polyakov equation.[19] Starting from any dimension greater than four, it is necessary to consider how these are reduced to four-dimensional spacetime.

Compact dimensions


Two ways have been proposed to resolve this apparent contradiction. The first is to compactify the extra dimensions; i.e., the 6 or 7 extra dimensions are so small as to be undetectable by present-day experiments.

To retain a high degree of supersymmetry, these compactification spaces must be very special, as reflected in their holonomy. A 6-dimensional manifold must have SU(3) structure, a particular case (torsionless) of this being SU(3) holonomy, making it a Calabi–Yau space, and a 7-dimensional manifold must have G2 structure, with G2 holonomy again being a specific, simple, case. Such spaces have been studied in attempts to relate string theory to the 4-dimensional Standard Model, in part due to the computational simplicity afforded by the assumption of supersymmetry. More recently, progress has been made constructing more realistic compactifications without the degree of symmetry of Calabi–Yau or G2 manifolds.[citation needed]

A standard analogy for this is to consider multidimensional space as a garden hose. If the hose is viewed from sufficient distance, it appears to have only one dimension, its length. Indeed, think of a ball just small enough to enter the hose. Throwing such a ball inside the hose, the ball would move more or less in one dimension; in any experiment we make by throwing such balls in the hose, the only important movement will be one-dimensional, that is, along the hose. However, as one approaches the hose, one discovers that it contains a second dimension, its circumference. Thus, an ant crawling inside it would move in two dimensions (and a fly flying in it would move in three dimensions). This "extra dimension" is only visible within a relatively close range to the hose, or if one "throws in" small enough objects. Similarly, the extra compact dimensions are only "visible" at extremely small distances, or by experimenting with particles with extremely small wavelengths (of the order of the compact dimension's radius), which in quantum mechanics means very high energies (see wave–particle duality).

Brane-world scenario

Another possibility is that we are "stuck" in a 3+1 dimensional (three spatial dimensions plus one time dimension) subspace of the full universe. Properly localized matter and Yang–Mills gauge fields will typically exist if the sub-spacetime is an exceptional set of the larger universe.[20] These "exceptional sets" are ubiquitous in Calabi–Yau n-folds and may be described as subspaces without local deformations, akin to a crease in a sheet of paper or a crack in a crystal, the neighborhood of which is markedly different from the exceptional subspace itself. However, until the work of Randall and Sundrum,[21] it was not known that gravity can be properly localized to a sub-spacetime. In addition, spacetime may be stratified, containing strata of various dimensions, allowing us to inhabit the 3+1-dimensional stratum—such geometries occur naturally in Calabi–Yau compactifications.[22] Such sub-spacetimes are D-branes, hence such models are known as brane-world scenarios.

Effect of the hidden dimensions

In either case, gravity acting in the hidden dimensions affects other non-gravitational forces such as electromagnetism. In fact, Kaluza's early work demonstrated that general relativity in five dimensions actually predicts the existence of electromagnetism. However, because of the nature of Calabi–Yau manifolds, no new forces appear from the small dimensions, but their shape has a profound effect on how the forces between the strings appear in our four-dimensional universe. In principle, therefore, it is possible to deduce the nature of those extra dimensions by requiring consistency with the standard model, but this is not yet a practical possibility. It is also possible to extract information regarding the hidden dimensions by precision tests of gravity, but so far these have only put upper limitations on the size of such hidden dimensions.

Testability and experimental predictions

Although a great deal of recent work has focused on using string theory to construct realistic models of particle physics, several major difficulties complicate efforts to test models based on string theory.
The most significant is the extremely small size of the Planck length, which is expected to be close to the string length (the characteristic size of a string, where strings become easily distinguishable from particles). Another issue is the huge number of metastable vacua of string theory, which might be sufficiently diverse to accommodate almost any phenomena we might observe at lower energies.

String harmonics

One unique prediction of string theory is the existence of string harmonics. At sufficiently high energies, the string-like nature of particles would become obvious. There should be heavier copies of all particles, corresponding to higher vibrational harmonics of the string. It is not clear how high these energies are. In most conventional string models, they would be close to the Planck energy, which is 1014 times higher than the energies accessible in the newest particle accelerator, the LHC, making this prediction impossible to test with any particle accelerator in the near future. However, in models with large extra dimensions they could potentially be produced at the LHC, or at energies not far above its reach.

Cosmology

String theory as currently understood makes a series of predictions for the structure of the universe at the largest scales. Many phases in string theory have very large, positive vacuum energy.[23] Regions of the universe that are in such a phase will inflate exponentially rapidly in a process known as eternal inflation. As such, the theory predicts that most of the universe is very rapidly expanding. However, these expanding phases are not stable, and can decay via the nucleation of bubbles of lower vacuum energy. Since our local region of the universe is not very rapidly expanding, string theory predicts we are inside such a bubble. The spatial curvature of the "universe" inside the bubbles that form by this process is negative, a testable prediction.[24] Moreover, other bubbles will eventually form in the parent vacuum outside the bubble and collide with it. These collisions lead to potentially observable imprints on cosmology.[25] However, it is possible that neither of these will be observed if the spatial curvature is too small and the collisions are too rare.

Under certain circumstances, fundamental strings produced at or near the end of inflation can be "stretched" to astronomical proportions. These cosmic strings could be observed in various ways, for instance by their gravitational lensing effects. However, certain field theories also predict cosmic strings arising from topological defects in the field configuration.[26]

Supersymmetry

If confirmed experimentally, supersymmetry could also be considered circumstantial evidence, because all consistent string theories are supersymmetric. However, the absence of supersymmetric particles at energies accessible to the LHC would not necessarily disprove string theory, since the energy scale at which supersymmetry is broken could be well above the accelerator's range.

AdS/CFT correspondence

The anti-de Sitter/conformal field theory (AdS/CFT) correspondence is a relationship which says that string theory is in certain cases equivalent to a quantum field theory. More precisely, one considers string or M-theory on an anti-de Sitter background. This means that the geometry of spacetime is obtained by perturbing a certain solution of Einstein's equation in the vacuum. In this setting, it is possible to define a notion of "boundary" of spacetime. The AdS/CFT correspondence states that this boundary can be regarded as the "spacetime" for a quantum field theory, and this field theory is equivalent to the bulk gravitational theory in the sense that there is a "dictionary" for translating calculations in one theory into calculations in the other.

Examples of the correspondence

The most famous example of the AdS/CFT correspondence states that Type IIB string theory on the product AdS5 × S5 is equivalent to N = 4 super Yang–Mills theory on the four-dimensional conformal boundary.[27][28][29][30] Another realization of the correspondence states that M-theory on AdS4 × S7 is equivalent to the ABJM superconformal field theory in three dimensions.[31] Yet another realization states that M-theory on AdS7 × S4is equivalent to the so-called (2,0)-theory in six dimensions.[32]

Applications to quantum chromodynamics

Since it relates string theory to ordinary quantum field theory, the AdS/CFT correspondence can be used as a theoretical tool for doing calculations in quantum field theory. For example, the correspondence has been used to study the quark–gluon plasma, an exotic state of matter produced in particle accelerators.

The physics of the quark–gluon plasma is governed by quantum chromodynamics, the fundamental theory of the strong nuclear force, but this theory is mathematically intractable in problems involving the quark–gluon plasma. In order to understand certain properties of the quark–gluon plasma, theorists have therefore made use of the AdS/CFT correspondence. One version of this correspondence relates string theory to a certain supersymmetric gauge theory called N = 4 super Yang–Mills theory. The latter theory provides a good approximation to quantum chromodynamics. One can thus translate problems involving the quark–gluon plasma into problems in string theory which are more tractable. Using these methods, theorists have computed the shear viscosity of the quark–gluon plasma.[33] In 2008, these predictions were confirmed at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory.[34]

Applications to condensed matter physics

In addition, string theory methods have been applied to problems in condensed matter physics. Certain condensed matter systems are difficult to understand using the usual methods of quantum field theory, and the AdS/CFT correspondence may allow physicists to better understand these systems by describing them in the language of string theory. Some success has been achieved in using string theory methods to describe the transition of a superfluid to an insulator.[35][36]

Connections to mathematics

In addition to influencing research in theoretical physics, string theory has stimulated a number of major developments in pure mathematics. Like many developing ideas in theoretical physics, string theory does not at present have a mathematically rigorous formulation in which all of its concepts can be defined precisely. As a result, physicists who study string theory are often guided by physical intuition to conjecture relationships between the seemingly different mathematical structures that are used to formalize different parts of the theory. These conjectures are later proved by mathematicians, and in this way, string theory has served as a source of new ideas in pure mathematics.[37]

Mirror symmetry

One of the ways in which string theory influenced mathematics was through the discovery of mirror symmetry. In string theory, the shape of the unobserved spatial dimensions is typically encoded in mathematical objects called Calabi–Yau manifolds. These are of interest in pure mathematics, and they can be used to construct realistic models of physics from string theory. In the late 1980s, it was noticed that given such a physical model, it is not possible to uniquely reconstruct a corresponding Calabi–Yau manifold. Instead, one finds that there are two Calabi–Yau manifolds that give rise to the same physics. These manifolds are said to be "mirror" to one another. The existence of this mirror symmetry relationship between different Calabi–Yau manifolds has significant mathematical consequences as it allows mathematicians to solve many problems in enumerative algebraic geometry. Today mathematicians are still working to develop a mathematical understanding of mirror symmetry based on physicists' intuition.[38]

Vertex operator algebras

In addition to mirror symmetry, applications of string theory to pure mathematics include results in the theory of vertex operator algebras. For example, ideas from string theory were used by Richard Borcherds in 1992 to prove the monstrous moonshine conjecture relating the monster group (a construction arising in group theory, a branch of algebra) and modular functions (a class of functions which are important in number theory).[39]

Criticisms

Some critics of string theory say that it is a failure as a theory of everything.[42][43][44][45][46][47] Notable critics include Peter Woit, Lee Smolin, Philip Warren Anderson,[48] Sheldon Glashow,[49] Lawrence Krauss,[50] Carlo Rovelli[51] and Bert Schroer.[52] Some common criticisms include:
  1. Very high energies needed to test quantum gravity.
  2. Lack of uniqueness of predictions due to the large number of solutions.
  3. Lack of background independence.

High energies

It is widely believed that any theory of quantum gravity would require extremely high energies to probe directly, higher by orders of magnitude than those that current experiments such as the Large Hadron Collider[53] can attain. This is because strings themselves are expected to be only slightly larger than the Planck length, which is twenty orders of magnitude smaller than the radius of a proton, and high energies are required to probe small length scales. Generally speaking, quantum gravity is difficult to test because gravity is much weaker than the other forces, and because quantum effects are controlled by Planck's constant h, a very small quantity. As a result, the effects of quantum gravity are extremely weak.

Number of solutions

String theory as it is currently understood has a huge number of solutions, called string vacua,[23] and these vacua might be sufficiently diverse to accommodate almost any phenomena we might observe at lower energies.

The vacuum structure of the theory, called the string theory landscape (or the anthropic portion of string theory vacua), is not well understood. String theory contains an infinite number of distinct meta-stable vacua, and perhaps 10520 of these or more correspond to a universe roughly similar to ours—with four dimensions, a high planck scale, gauge groups, and chiral fermions. Each of these corresponds to a different possible universe, with a different collection of particles and forces.[23]
What principle, if any, can be used to select among these vacua is an open issue. While there are no continuous parameters in the theory, there is a very large set of possible universes, which may be radically different from each other. It is also suggested that the landscape is surrounded by an even more vast swampland of consistent-looking semiclassical effective field theories, which are actually inconsistent.[54]

Some physicists believe this is a good thing, because it may allow a natural anthropic explanation of the observed values of physical constants, in particular the small value of the cosmological constant.[55][56] The argument is that most universes contain values for physical constants that do not lead to habitable universes (at least for humans), and so we happen to live in the "friendliest" universe. This principle is already employed to explain the existence of life on earth as the result of a life-friendly orbit around the medium-sized sun among an infinite number of possible orbits (as well as a relatively stable location in the galaxy).

Background independence[edit]

A separate and older criticism of string theory is that it is background-dependent—string theory describes perturbative expansions about fixed spacetime backgrounds which means that mathematical calculations in the theory rely on preselecting a background as a starting point. This is because, like many quantum field theories, much of string theory is still only formulated perturbatively, as a divergent series of approximations.[citation needed]

Although the theory, defined as a perturbative expansion on a fixed background, is not background independent, it has some features that suggest non-perturbative approaches would be background-independent—topology change is an established process in string theory, and the exchange of gravitons is equivalent to a change in the background. Since there are dynamic corrections to the background spacetime in the perturbative theory, one would expect spacetime to be dynamic in the nonperturbative theory as well since they would have to predict the same spacetime.[citation needed]
This criticism has been addressed to some extent by the AdS/CFT duality, which is believed to provide a full, non-perturbative definition of string theory in spacetimes with anti-de Sitter space asymptotics. Nevertheless, a non-perturbative definition of the theory in arbitrary spacetime backgrounds is still lacking. Some hope that M-theory, or a non-perturbative treatment of string theory (such as "background independent open string field theory") will have a background-independent formulation.[citation needed] 

Earthquake prediction

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Earthquake_prediction Earthquake prediction...