From Wikipedia, the free encyclopedia

  1. Two immiscible liquids, not yet emulsified
  2. An emulsion of Phase II dispersed in Phase I
  3. The unstable emulsion progressively separates
  4. The surfactant (outline around particles) positions itself on the interfaces between Phase II and Phase I, stabilizing the emulsion
An emulsion is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable). Emulsions are part of a more general class of two-phase systems of matter called colloids. Although the terms colloid and emulsion are sometimes used interchangeably, emulsion should be used when both phases, dispersed and continuous, are liquids. In an emulsion, one liquid (the dispersed phase) is dispersed in the other (the continuous phase). Examples of emulsions include vinaigrettes, homogenized milk, and some cutting fluids for metal working. Graphene and its modified forms are also a good example of recent unconventional surfactants helping in stabilizing emulsion systems.

The word "emulsion" comes from the Latin mulgeo, mulgere "to milk", as milk is an emulsion of fat and water, along with other components.

Two liquids can form different types of emulsions. As an example, oil and water can form, first, an oil-in-water emulsion, wherein the oil is the dispersed phase, and water is the dispersion medium. (Lipoproteins, used by all complex living organisms, are one example of this.) Second, they can form a water-in-oil emulsion, wherein water is the dispersed phase and oil is the external phase. Multiple emulsions are also possible, including a "water-in-oil-in-water" emulsion and an "oil-in-water-in-oil" emulsion.

Emulsions, being liquids, do not exhibit a static internal structure. The droplets dispersed in the liquid matrix (called the “dispersion medium”) are usually assumed to be statistically distributed.

The term "emulsion" is also used to refer to the photo-sensitive side of photographic film. Such a photographic emulsion consists of silver halide colloidal particles dispersed in a gelatin matrix. Nuclear emulsions are similar to photographic emulsions, except that they are used in particle physics to detect high-energy elementary particles.

Appearance and properties