The Big Bang theory is the prevailing cosmological model for the observable universe from the earliest known periods through its subsequent large-scale evolution. The model describes how the universe expanded from a very high-density and high-temperature state, and offers a comprehensive explanation for a broad range of phenomena, including the abundance of light elements, the cosmic microwave background (CMB), large scale structure and Hubble's law (the farther away galaxies are, the faster they are moving away from Earth).
If the observed conditions are extrapolated backwards in time using the
known laws of physics, the prediction is that just before a period of
very high density there was a singularity
which is typically associated with the Big Bang. Physicists are
undecided whether this means the universe began from a singularity, or
that current knowledge is insufficient to describe the universe at that
time. Detailed measurements of the expansion rate of the universe place
the Big Bang at around 13.8 billion years ago, which is thus considered the age of the universe. After its initial expansion, the universe cooled sufficiently to allow the formation of subatomic particles, and later simple atoms. Giant clouds of these primordial elements (mostly hydrogen, with some helium and lithium) later coalesced through gravity, eventually forming early stars and galaxies, the descendants of which are visible today. Astronomers also observe the gravitational effects of dark matter
surrounding galaxies. Though most of the mass in the universe seems to
be in the form of dark matter, Big Bang theory and various observations
seem to indicate that it is not made out of conventional baryonic matter (protons, neutrons, and electrons) but it is unclear exactly what it is made out of.
Since Georges Lemaître
first noted in 1927 that an expanding universe could be traced back in
time to an originating single point, scientists have built on his idea
of cosmic expansion. The scientific community was once divided between
supporters of two different theories, the Big Bang and the Steady State theory, but a wide range of empirical evidence has strongly favored the Big Bang which is now universally accepted. In 1929, from analysis of galactic redshifts, Edwin Hubble
concluded that galaxies are drifting apart; this is important
observational evidence consistent with the hypothesis of an expanding
universe. In 1964, the cosmic microwave background radiation was discovered, which was crucial evidence in favor of the Big Bang model,
since that theory predicted the existence of background radiation
throughout the universe before it was discovered. More recently,
measurements of the redshifts of supernovae indicate that the expansion of the universe is accelerating, an observation attributed to dark energy's existence. The known physical laws of nature can be used to calculate the characteristics of the universe in detail back in time to an initial state of extreme density and temperature.
Overview
The Belgian astronomer and Catholic priest Georges Lemaître proposed on theoretical grounds that the universe is expanding, which was observationally confirmed soon afterwards by Edwin Hubble. In 1927 in the Annales de la Société Scientifique de Bruxelles (Annals of the Scientific Society of Brussels)
under the title "Un Univers homogène de masse constante et de rayon
croissant rendant compte de la vitesse radiale des nébuleuses
extragalactiques" ("A homogeneous Universe of constant mass and growing
radius accounting for the radial velocity of extragalactic nebulae"),
he presented his new idea that the universe is expanding and provided
the first observational estimation of what is known as the Hubble constant. What later will be known as the "Big Bang theory" of the origin of the universe, he called his "hypothesis of the primeval atom" or the "Cosmic Egg".
American astronomer Edwin Hubble observed that the distances to faraway galaxies were strongly correlated with their redshifts.
This was interpreted to mean that all distant galaxies and clusters are
receding away from our vantage point with an apparent velocity
proportional to their distance: that is, the farther they are, the
faster they move away from us, regardless of direction. Assuming the Copernican principle
(that the Earth is not the center of the universe), the only remaining
interpretation is that all observable regions of the universe are
receding from all others. Since we know that the distance between
galaxies increases today, it must mean that in the past galaxies were
closer together. The continuous expansion of the universe implies that
the universe was denser and hotter in the past.
Large particle accelerators
can replicate the conditions that prevailed after the early moments of
the universe, resulting in confirmation and refinement of the details of
the Big Bang model. However, these accelerators can only probe so far
into high energy regimes.
Consequently, the state of the universe in the earliest instants of the
Big Bang expansion is still poorly understood and an area of open
investigation and speculation.
The first subatomic particles to be formed included protons, neutrons, and electrons. Though simple atomic nuclei formed within the first three minutes after the Big Bang, thousands of years passed before the first electrically neutral atoms formed. The majority of atoms produced by the Big Bang were hydrogen, along with helium and traces of lithium. Giant clouds of these primordial elements later coalesced through gravity to form stars and galaxies, and the heavier elements were synthesized either within stars or during supernovae.
The Big Bang theory offers a comprehensive explanation for a
broad range of observed phenomena, including the abundance of light
elements, the CMB, large scale structure, and Hubble's Law. The framework for the Big Bang model relies on Albert Einstein's theory of general relativity and on simplifying assumptions such as homogeneity and isotropy of space. The governing equations were formulated by Alexander Friedmann, and similar solutions were worked on by Willem de Sitter. Since then, astrophysicists have incorporated observational and theoretical additions into the Big Bang model, and its parametrization as the Lambda-CDM model
serves as the framework for current investigations of theoretical
cosmology. The Lambda-CDM model is the current "standard model" of Big
Bang cosmology, consensus is that it is the simplest model that can account for the various measurements and observations relevant to cosmology.
Timeline
Singularity
Extrapolation of the expansion of the universe backwards in time using general relativity yields an infinite density and temperature at a finite time in the past. This singularity indicates that general relativity is not an adequate description of the laws of physics in this regime. Models based on general relativity alone can not extrapolate toward the singularity beyond the end of the Planck epoch.
This primordial singularity is itself sometimes called "the Big Bang", but the term can also refer to a more generic early hot, dense phase
of the universe. In either case, "the Big Bang" as an event is also
colloquially referred to as the "birth" of our universe since it
represents the point in history where the universe can be verified to
have entered into a regime where the laws of physics as we understand them (specifically general relativity and the standard model of particle physics) work. Based on measurements of the expansion using Type Ia supernovae and measurements of temperature fluctuations in the cosmic microwave background, the time that has passed since that event — otherwise known as the "age of the universe" — is 13.799 ± 0.021 billion years. The agreement of independent measurements of this age supports the ΛCDM model that describes in detail the characteristics of the universe.
Despite being extremely dense at this time—far denser than is usually required to form a black hole—the
universe did not re-collapse into a black hole. This may be explained
by considering that commonly-used calculations and limits for gravitational collapse are usually based upon objects of relatively constant size, such as stars, and do not apply to rapidly expanding space such as the Big Bang.
Inflation and baryogenesis
The earliest phases of the Big Bang are subject to much speculation. In the most common models the universe was filled homogeneously and isotropically with a very high energy density and huge temperatures and pressures and was very rapidly expanding and cooling. Approximately 10−37 seconds into the expansion, a phase transition caused a cosmic inflation, during which the universe grew exponentially during which time density fluctuations that occurred because of the uncertainty principle were amplified into the seeds that would later form the large-scale structure of the universe. After inflation stopped, reheating occurred until the universe obtained the temperatures required for the production of a quark–gluon plasma as well as all other elementary particles. Temperatures were so high that the random motions of particles were at relativistic speeds, and particle–antiparticle pairs of all kinds were being continuously created and destroyed in collisions. At some point, an unknown reaction called baryogenesis violated the conservation of baryon number, leading to a very small excess of quarks and leptons over antiquarks and antileptons—of the order of one part in 30 million. This resulted in the predominance of matter over antimatter in the present universe.
Cooling
The universe continued to decrease in density and fall in
temperature, hence the typical energy of each particle was decreasing. Symmetry breaking phase transitions put the fundamental forces of physics and the parameters of elementary particles into their present form. After about 10−11 seconds, the picture becomes less speculative, since particle energies drop to values that can be attained in particle accelerators. At about 10−6 seconds, quarks and gluons combined to form baryons
such as protons and neutrons. The small excess of quarks over
antiquarks led to a small excess of baryons over antibaryons. The
temperature was now no longer high enough to create new
proton–antiproton pairs (similarly for neutrons–antineutrons), so a mass
annihilation immediately followed, leaving just one in 1010
of the original protons and neutrons, and none of their antiparticles. A
similar process happened at about 1 second for electrons and positrons.
After these annihilations, the remaining protons, neutrons and
electrons were no longer moving relativistically and the energy density
of the universe was dominated by photons (with a minor contribution from neutrinos).
A few minutes into the expansion, when the temperature was about a billion (one thousand million) kelvin and the density was about that of air, neutrons combined with protons to form the universe's deuterium and helium nuclei in a process called Big Bang nucleosynthesis. Most protons remained uncombined as hydrogen nuclei.
As the universe cooled, the rest mass energy density of matter came to gravitationally dominate that of the photon radiation.
After about 379,000 years, the electrons and nuclei combined into atoms
(mostly hydrogen); hence the radiation decoupled from matter and
continued through space largely unimpeded. This relic radiation is known
as the cosmic microwave background radiation. The chemistry of life may have begun shortly after the Big Bang, 13.8 billion years ago, during a habitable epoch when the universe was only 10–17 million years old.
Structure formation
Over a long period of time, the slightly denser regions of the nearly
uniformly distributed matter gravitationally attracted nearby matter
and thus grew even denser, forming gas clouds, stars, galaxies, and the
other astronomical structures observable today.
The details of this process depend on the amount and type of matter in
the universe. The four possible types of matter are known as cold dark matter, warm dark matter, hot dark matter, and baryonic matter. The best measurements available, from Wilkinson Microwave Anisotropy Probe
(WMAP), show that the data is well-fit by a Lambda-CDM model in which
dark matter is assumed to be cold (warm dark matter is ruled out by
early reionization), and is estimated to make up about 23% of the matter/energy of the universe, while baryonic matter makes up about 4.6%. In an "extended model" which includes hot dark matter in the form of neutrinos, then if the "physical baryon density" is estimated at about 0.023 (this is different from the 'baryon density'
expressed as a fraction of the total matter/energy density, which as
noted above is about 0.046), and the corresponding cold dark matter
density is about 0.11, the corresponding neutrino density is estimated to be less than 0.0062.
Cosmic acceleration
Independent lines of evidence from Type Ia supernovae and the CMB imply that the universe today is dominated by a mysterious form of energy known as dark energy,
which apparently permeates all of space. The observations suggest 73%
of the total energy density of today's universe is in this form. When
the universe was very young, it was likely infused with dark energy, but
with less space and everything closer together, gravity predominated,
and it was slowly braking the expansion. But eventually, after numerous
billion years of expansion, the growing abundance of dark energy caused
the expansion of the universe to slowly begin to accelerate.
Dark energy in its simplest formulation takes the form of the cosmological constant term in Einstein's field equations of general relativity, but its composition and mechanism are unknown and, more generally, the details of its equation of state and relationship with the Standard Model of particle physics continue to be investigated both through observation and theoretically.
All of this cosmic evolution after the inflationary epoch
can be rigorously described and modeled by the ΛCDM model of cosmology,
which uses the independent frameworks of quantum mechanics and
Einstein's General Relativity. There is no well-supported model
describing the action prior to 10−15 seconds or so. Apparently a new unified theory of quantum gravitation
is needed to break this barrier. Understanding this earliest of eras in
the history of the universe is currently one of the greatest unsolved problems in physics.
Features of the model
The Big Bang theory depends on two major assumptions: the universality of physical laws and the cosmological principle. The cosmological principle states that on large scales the universe is homogeneous and isotropic.
These ideas were initially taken as postulates, but today there
are efforts to test each of them. For example, the first assumption has
been tested by observations showing that largest possible deviation of
the fine structure constant over much of the age of the universe is of order 10−5. Also, general relativity has passed stringent tests on the scale of the Solar System and binary stars.
If the large-scale universe appears isotropic as viewed from Earth, the cosmological principle can be derived from the simpler Copernican principle,
which states that there is no preferred (or special) observer or
vantage point. To this end, the cosmological principle has been
confirmed to a level of 10−5 via observations of the CMB. The universe has been measured to be homogeneous on the largest scales at the 10% level.
Expansion of space
General relativity describes spacetime by a metric,
which determines the distances that separate nearby points. The points,
which can be galaxies, stars, or other objects, are themselves
specified using a coordinate chart or "grid" that is laid down over all spacetime. The cosmological principle implies that the metric should be homogeneous and isotropic on large scales, which uniquely singles out the Friedmann–Lemaître–Robertson–Walker metric (FLRW metric).
This metric contains a scale factor, which describes how the size of the universe changes with time. This enables a convenient choice of a coordinate system to be made, called comoving coordinates.
In this coordinate system, the grid expands along with the universe,
and objects that are moving only because of the expansion of the
universe, remain at fixed points on the grid. While their coordinate distance (comoving distance) remains constant, the physical distance between two such co-moving points expands proportionally with the scale factor of the universe.
The Big Bang is not an explosion of matter moving outward to fill an empty universe. Instead, space itself expands
with time everywhere and increases the physical distance between two
comoving points. In other words, the Big Bang is not an explosion in space, but rather an expansion of space.
Because the FLRW metric assumes a uniform distribution of mass and
energy, it applies to our universe only on large scales—local
concentrations of matter such as our galaxy are gravitationally bound
and as such do not experience the large-scale expansion of space.
Horizons
An important feature of the Big Bang spacetime is the presence of particle horizons.
Since the universe has a finite age, and light travels at a finite
speed, there may be events in the past whose light has not had time to
reach us. This places a limit or a past horizon on the most
distant objects that can be observed. Conversely, because space is
expanding, and more distant objects are receding ever more quickly,
light emitted by us today may never "catch up" to very distant objects.
This defines a future horizon, which limits the events in the
future that we will be able to influence. The presence of either type of
horizon depends on the details of the FLRW model that describes our universe.
Our understanding of the universe back to very early times suggests
that there is a past horizon, though in practice our view is also
limited by the opacity of the universe at early times. So our view
cannot extend further backward in time, though the horizon recedes in
space. If the expansion of the universe continues to accelerate, there is a future horizon as well.
History
Etymology
English astronomer Fred Hoyle
is credited with coining the term "Big Bang" during a 1949 BBC radio
broadcast, saying: "These theories were based on the hypothesis that all
the matter in the universe was created in one big bang at a particular
time in the remote past."
It is popularly reported that Hoyle, who favored an alternative "steady state" cosmological model, intended this to be pejorative,
but Hoyle explicitly denied this and said it was just a striking image
meant to highlight the difference between the two models.
Development
The Big Bang theory developed from observations of the structure of the universe and from theoretical considerations. In 1912 Vesto Slipher measured the first Doppler shift of a "spiral nebula"
(spiral nebula is the obsolete term for spiral galaxies), and soon
discovered that almost all such nebulae were receding from Earth. He did
not grasp the cosmological implications of this fact, and indeed at the
time it was highly controversial whether or not these nebulae were "island universes" outside our Milky Way. Ten years later, Alexander Friedmann, a Russian cosmologist and mathematician, derived the Friedmann equations from Albert Einstein's equations of general relativity, showing that the universe might be expanding in contrast to the static universe model advocated by Einstein at that time.
In 1924 Edwin Hubble's measurement of the great distance to the nearest
spiral nebulae showed that these systems were indeed other galaxies.
Independently deriving Friedmann's equations in 1927, Georges Lemaître, a Belgian physicist, proposed that the inferred recession of the nebulae was due to the expansion of the universe.
In 1931 Lemaître went further and suggested that the evident
expansion of the universe, if projected back in time, meant that the
further in the past the smaller the universe was, until at some finite
time in the past all the mass of the universe was concentrated into a
single point, a "primeval atom" where and when the fabric of time and
space came into existence.
Starting in 1924, Hubble painstakingly developed a series of distance indicators, the forerunner of the cosmic distance ladder, using the 100-inch (2.5 m) Hooker telescope at Mount Wilson Observatory.
This allowed him to estimate distances to galaxies whose redshifts had
already been measured, mostly by Slipher. In 1929 Hubble discovered a
correlation between distance and recession velocity—now known as Hubble's law. Lemaître had already shown that this was expected, given the cosmological principle.
In the 1920s and 1930s almost every major cosmologist preferred an eternal steady state
universe, and several complained that the beginning of time implied by
the Big Bang imported religious concepts into physics; this objection
was later repeated by supporters of the steady state theory. This perception was enhanced by the fact that the originator of the Big Bang theory, Georges Lemaître, was a Roman Catholic priest. Arthur Eddington agreed with Aristotle that the universe did not have a beginning in time, viz., that matter is eternal. A beginning in time was "repugnant" to him. Lemaître, however, thought that
If the world has begun with a single quantum, the notions of space and time would altogether fail to have any meaning at the beginning; they would only begin to have a sensible meaning when the original quantum had been divided into a sufficient number of quanta. If this suggestion is correct, the beginning of the world happened a little before the beginning of space and time.
During the 1930s other ideas were proposed as non-standard cosmologies to explain Hubble's observations, including the Milne model, the oscillatory universe (originally suggested by Friedmann, but advocated by Albert Einstein and Richard Tolman) and Fritz Zwicky's tired light hypothesis.
After World War II, two distinct possibilities emerged. One was Fred Hoyle's steady state model,
whereby new matter would be created as the universe seemed to expand.
In this model the universe is roughly the same at any point in time. The other was Lemaître's Big Bang theory, advocated and developed by George Gamow, who introduced big bang nucleosynthesis (BBN) and whose associates, Ralph Alpher and Robert Herman, predicted the CMB. Ironically, it was Hoyle who coined the phrase that came to be applied to Lemaître's theory, referring to it as "this big bang idea" during a BBC Radio broadcast in March 1949. For a while, support was split between these two theories. Eventually, the observational evidence, most notably from radio source counts,
began to favor Big Bang over Steady State. The discovery and
confirmation of the CMB in 1964 secured the Big Bang as the best theory
of the origin and evolution of the universe.
Much of the current work in cosmology includes understanding how
galaxies form in the context of the Big Bang, understanding the physics
of the universe at earlier and earlier times, and reconciling
observations with the basic theory.
In 1968 and 1970 Roger Penrose, Stephen Hawking, and George F. R. Ellis published papers where they showed that mathematical singularities were an inevitable initial condition of general relativistic models of the Big Bang.
Then, from the 1970s to the 1990s, cosmologists worked on
characterizing the features of the Big Bang universe and resolving
outstanding problems. In 1981, Alan Guth made a breakthrough in theoretical work on resolving certain outstanding theoretical problems in the Big Bang theory with the introduction of an epoch of rapid expansion in the early universe he called "inflation". Meanwhile, during these decades, two questions in observational cosmology that generated much discussion and disagreement were over the precise values of the Hubble Constant and the matter-density of the universe (before the discovery of dark energy, thought to be the key predictor for the eventual fate of the universe).
In the mid-1990s, observations of certain globular clusters appeared to indicate that they were about 15 billion years old, which conflicted
with most then-current estimates of the age of the universe (and indeed
with the age measured today). This issue was later resolved when new
computer simulations, which included the effects of mass loss due to stellar winds, indicated a much younger age for globular clusters.
While there still remain some questions as to how accurately the ages
of the clusters are measured, globular clusters are of interest to
cosmology as some of the oldest objects in the universe.
Significant progress in Big Bang cosmology has been made since the late 1990s as a result of advances in telescope technology as well as the analysis of data from satellites such as COBE, the Hubble Space Telescope and WMAP.
Cosmologists now have fairly precise and accurate measurements of many
of the parameters of the Big Bang model, and have made the unexpected
discovery that the expansion of the universe appears to be accelerating.
Observational evidence
[The] big bang picture is too firmly grounded in data from every area to be proved invalid in its general features. -- Lawrence Krauss
The earliest and most direct observational evidence of the validity
of the theory are the expansion of the universe according to Hubble's law (as indicated by the redshifts of galaxies), discovery and measurement of the cosmic microwave background and the relative abundances of light elements produced by Big Bang nucleosynthesis. More recent evidence includes observations of galaxy formation and evolution, and the distribution of large-scale cosmic structures, These are sometimes called the "four pillars" of the Big Bang theory.
Precise modern models of the Big Bang appeal to various exotic
physical phenomena that have not been observed in terrestrial laboratory
experiments or incorporated into the Standard Model of particle physics. Of these features, dark matter is currently subjected to the most active laboratory investigations. Remaining issues include the cuspy halo problem and the dwarf galaxy problem
of cold dark matter. Dark energy is also an area of intense interest
for scientists, but it is not clear whether direct detection of dark
energy will be possible. Inflation
and baryogenesis remain more speculative features of current Big Bang
models. Viable, quantitative explanations for such phenomena are still
being sought. These are currently unsolved problems in physics.
Hubble's law and the expansion of space
Observations of distant galaxies and quasars show that these objects are redshifted—the light emitted from them has been shifted to longer wavelengths. This can be seen by taking a frequency spectrum of an object and matching the spectroscopic pattern of emission lines or absorption lines corresponding to atoms of the chemical elements interacting with the light. These redshifts are uniformly
isotropic, distributed evenly among the observed objects in all
directions. If the redshift is interpreted as a Doppler shift, the
recessional velocity of the object can be calculated. For some galaxies, it is possible to estimate distances via the cosmic distance ladder. When the recessional velocities are plotted against these distances, a linear relationship known as Hubble's law is observed:
where
- is the recessional velocity of the galaxy or other distant object,
- is the comoving distance to the object, and
- is Hubble's constant, measured to be 70.4+1.3
−1.4 km/s/Mpc by the WMAP probe.
Hubble's law has two possible explanations. Either we are at the center of an explosion of galaxies—which is untenable given the Copernican principle—or the universe is uniformly expanding everywhere. This universal expansion was predicted from general relativity by Alexander Friedmann in 1922 and Georges Lemaître in 1927,
well before Hubble made his 1929 analysis and observations, and it
remains the cornerstone of the Big Bang theory as developed by Friedmann, Lemaître, Robertson, and Walker.
The theory requires the relation to hold at all times, where is the comoving distance, v is the recessional velocity, and , , and vary as the universe expands (hence we write to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity .
However, the redshift is not a true Doppler shift, but rather the
result of the expansion of the universe between the time the light was
emitted and the time that it was detected.
That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological principle and the Copernican principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogeneous,
supporting the Cosmological principle that the universe looks the same
in all directions, along with much other evidence. If the redshifts were
the result of an explosion from a center distant from us, they would
not be so similar in different directions.
Measurements of the effects of the cosmic microwave background radiation
on the dynamics of distant astrophysical systems in 2000 proved the
Copernican principle, that, on a cosmological scale, the Earth is not in
a central position.
Radiation from the Big Bang was demonstrably warmer at earlier times
throughout the universe. Uniform cooling of the CMB over billions of
years is explainable only if the universe is experiencing a metric
expansion, and excludes the possibility that we are near the unique
center of an explosion.
Cosmic microwave background radiation
In 1964 Arno Penzias and Robert Wilson serendipitously discovered the cosmic background radiation, an omnidirectional signal in the microwave band.
Their discovery provided substantial confirmation of the big-bang
predictions by Alpher, Herman and Gamow around 1950. Through the 1970s
the radiation was found to be approximately consistent with a black body
spectrum in all directions; this spectrum has been redshifted by the
expansion of the universe, and today corresponds to approximately
2.725 K. This tipped the balance of evidence in favor of the Big Bang
model, and Penzias and Wilson were awarded a Nobel Prize in 1978.
The surface of last scattering corresponding to emission of the CMB occurs shortly after recombination,
the epoch when neutral hydrogen becomes stable. Prior to this, the
universe comprised a hot dense photon-baryon plasma sea where photons
were quickly scattered from free charged particles. Peaking at around 372±14 kyr, the mean free path for a photon becomes long enough to reach the present day and the universe becomes transparent.
In 1989, NASA launched the Cosmic Background Explorer satellite (COBE), which made two major advances: in 1990, high-precision spectrum measurements showed that the CMB frequency spectrum is an almost perfect blackbody with no deviations at a level of 1 part in 104,
and measured a residual temperature of 2.726 K (more recent
measurements have revised this figure down slightly to 2.7255 K); then
in 1992, further COBE measurements discovered tiny fluctuations
(anisotropies) in the CMB temperature across the sky, at a level of
about one part in 105. John C. Mather and George Smoot were awarded the 2006 Nobel Prize in Physics for their leadership in these results.
During the following decade, CMB anisotropies were further
investigated by a large number of ground-based and balloon experiments.
In 2000–2001 several experiments, most notably BOOMERanG, found the shape of the universe to be spatially almost flat by measuring the typical angular size (the size on the sky) of the anisotropies.
In early 2003, the first results of the Wilkinson Microwave Anisotropy Probe
(WMAP) were released, yielding what were at the time the most accurate
values for some of the cosmological parameters. The results disproved
several specific cosmic inflation models, but are consistent with the inflation theory in general. The Planck space probe was launched in May 2009. Other ground and balloon based cosmic microwave background experiments are ongoing.
Abundance of primordial elements
Using the Big Bang model it is possible to calculate the concentration of helium-4, helium-3, deuterium, and lithium-7 in the universe as ratios to the amount of ordinary hydrogen. The relative abundances depend on a single parameter, the ratio of photons to baryons. This value can be calculated independently from the detailed structure of CMB fluctuations. The ratios predicted (by mass, not by number) are about 0.25 for , about 10−3 for , about 10−4 for and about 10−9 for .
The measured abundances all agree at least roughly with those
predicted from a single value of the baryon-to-photon ratio. The
agreement is excellent for deuterium, close but formally discrepant for , and off by a factor of two for ; in the latter two cases there are substantial systematic uncertainties.
Nonetheless, the general consistency with abundances predicted by Big
Bang nucleosynthesis is strong evidence for the Big Bang, as the theory
is the only known explanation for the relative abundances of light
elements, and it is virtually impossible to "tune" the Big Bang to
produce much more or less than 20–30% helium.
Indeed, there is no obvious reason outside of the Big Bang that, for
example, the young universe (i.e., before star formation, as determined
by studying matter supposedly free of stellar nucleosynthesis products) should have more helium than deuterium or more deuterium than , and in constant ratios, too.
Galactic evolution and distribution
Detailed observations of the morphology and distribution of galaxies and quasars
are in agreement with the current state of the Big Bang theory. A
combination of observations and theory suggest that the first quasars
and galaxies formed about a billion years after the Big Bang, and since
then, larger structures have been forming, such as galaxy clusters and superclusters.
Populations of stars have been aging and evolving, so that
distant galaxies (which are observed as they were in the early universe)
appear very different from nearby galaxies (observed in a more recent
state). Moreover, galaxies that formed relatively recently, appear
markedly different from galaxies formed at similar distances but shortly
after the Big Bang. These observations are strong arguments against the
steady-state model. Observations of star formation,
galaxy and quasar distributions and larger structures, agree well with
Big Bang simulations of the formation of structure in the universe, and
are helping to complete details of the theory.
Primordial gas clouds
In 2011, astronomers found what they believe to be pristine clouds of
primordial gas by analyzing absorption lines in the spectra of distant
quasars. Before this discovery, all other astronomical objects have been
observed to contain heavy elements that are formed in stars. These two
clouds of gas contain no elements heavier than hydrogen and deuterium. Since the clouds of gas have no heavy elements, they likely formed in the first few minutes after the Big Bang, during Big Bang nucleosynthesis.
Other lines of evidence
The age of the universe as estimated from the Hubble expansion and the CMB is now in good agreement with other estimates using the ages of the oldest stars, both as measured by applying the theory of stellar evolution to globular clusters and through radiometric dating of individual Population II stars.
The prediction that the CMB temperature was higher in the past
has been experimentally supported by observations of very low
temperature absorption lines in gas clouds at high redshift. This prediction also implies that the amplitude of the Sunyaev–Zel'dovich effect in clusters of galaxies
does not depend directly on redshift. Observations have found this to
be roughly true, but this effect depends on cluster properties that do
change with cosmic time, making precise measurements difficult.
Future observations
Future gravitational waves observatories
might be able to detect primordial gravitational waves, relics of the
early universe, up to less than a second after the Big Bang.
As with any theory, a number of mysteries and problems have arisen as
a result of the development of the Big Bang theory. Some of these
mysteries and problems have been resolved while others are still
outstanding. Proposed solutions to some of the problems in the Big Bang
model have revealed new mysteries of their own. For example, the horizon problem, the magnetic monopole problem, and the flatness problem are most commonly resolved with inflationary theory,
but the details of the inflationary universe are still left unresolved
and many, including some founders of the theory, say it has been
disproven.
What follows are a list of the mysterious aspects of the Big Bang
theory still under intense investigation by cosmologists and
astrophysicists.
Baryon asymmetry
It is not yet understood why the universe has more matter than antimatter.
It is generally assumed that when the universe was young and very hot
it was in statistical equilibrium and contained equal numbers of baryons
and antibaryons. However, observations suggest that the universe,
including its most distant parts, is made almost entirely of matter. A
process called baryogenesis was hypothesized to account for the
asymmetry. For baryogenesis to occur, the Sakharov conditions must be satisfied. These require that baryon number is not conserved, that C-symmetry and CP-symmetry are violated and that the universe depart from thermodynamic equilibrium. All these conditions occur in the Standard Model, but the effects are not strong enough to explain the present baryon asymmetry.
Dark energy
Measurements of the redshift–magnitude relation for type Ia supernovae indicate that the expansion of the universe has been accelerating
since the universe was about half its present age. To explain this
acceleration, general relativity requires that much of the energy in the
universe consists of a component with large negative pressure, dubbed "dark energy".
Dark energy, though speculative, solves numerous problems. Measurements of the cosmic microwave background
indicate that the universe is very nearly spatially flat, and therefore
according to general relativity the universe must have almost exactly
the critical density
of mass/energy. But the mass density of the universe can be measured
from its gravitational clustering, and is found to have only about 30%
of the critical density.
Since theory suggests that dark energy does not cluster in the usual
way it is the best explanation for the "missing" energy density. Dark
energy also helps to explain two geometrical measures of the overall
curvature of the universe, one using the frequency of gravitational lenses, and the other using the characteristic pattern of the large-scale structure as a cosmic ruler.
Negative pressure is believed to be a property of vacuum energy,
but the exact nature and existence of dark energy remains one of the
great mysteries of the Big Bang. Results from the WMAP team in 2008 are
in accordance with a universe that consists of 73% dark energy, 23% dark
matter, 4.6% regular matter and less than 1% neutrinos.
According to theory, the energy density in matter decreases with the
expansion of the universe, but the dark energy density remains constant
(or nearly so) as the universe expands. Therefore, matter made up a
larger fraction of the total energy of the universe in the past than it
does today, but its fractional contribution will fall in the far future as dark energy becomes even more dominant.
The dark energy component of the universe has been explained by
theorists using a variety of competing theories including Einstein's cosmological constant but also extending to more exotic forms of quintessence or other modified gravity schemes. A cosmological constant problem,
sometimes called the "most embarrassing problem in physics", results
from the apparent discrepancy between the measured energy density of
dark energy, and the one naively predicted from Planck units.
Dark matter
During the 1970s and the 1980s, various observations showed that
there is not sufficient visible matter in the universe to account for
the apparent strength of gravitational forces within and between
galaxies. This led to the idea that up to 90% of the matter in the
universe is dark matter that does not emit light or interact with normal
baryonic
matter. In addition, the assumption that the universe is mostly normal
matter led to predictions that were strongly inconsistent with
observations. In particular, the universe today is far more lumpy and
contains far less deuterium than can be accounted for without dark
matter. While dark matter has always been controversial, it is inferred
by various observations: the anisotropies in the CMB, galaxy cluster velocity dispersions, large-scale structure distributions, gravitational lensing studies, and X-ray measurements of galaxy clusters.
Indirect evidence for dark matter comes from its gravitational
influence on other matter, as no dark matter particles have been
observed in laboratories. Many particle physics candidates for dark matter have been proposed, and several projects to detect them directly are underway.
Additionally, there are outstanding problems associated with the currently favored cold dark matter model which include the dwarf galaxy problem and the cuspy halo problem.
Alternative theories have been proposed that do not require a large
amount of undetected matter, but instead modify the laws of gravity
established by Newton and Einstein; yet no alternative theory has been
as successful as the cold dark matter proposal in explaining all extant
observations.
Horizon problem
The horizon problem results from the premise that information cannot travel faster than light. In a universe of finite age this sets a limit—the particle horizon—on the separation of any two regions of space that are in causal contact. The observed isotropy of the CMB
is problematic in this regard: if the universe had been dominated by
radiation or matter at all times up to the epoch of last scattering, the
particle horizon at that time would correspond to about 2 degrees on
the sky. There would then be no mechanism to cause wider regions to have
the same temperature.
A resolution to this apparent inconsistency is offered by inflationary theory
in which a homogeneous and isotropic scalar energy field dominates the
universe at some very early period (before baryogenesis). During
inflation, the universe undergoes exponential expansion, and the
particle horizon expands much more rapidly than previously assumed, so
that regions presently on opposite sides of the observable universe are
well inside each other's particle horizon. The observed isotropy of the
CMB then follows from the fact that this larger region was in causal
contact before the beginning of inflation.
Heisenberg's uncertainty principle predicts that during the inflationary phase there would be quantum thermal fluctuations, which would be magnified to cosmic scale. These fluctuations serve as the seeds of all current structure in the universe. Inflation predicts that the primordial fluctuations are nearly scale invariant and Gaussian, which has been accurately confirmed by measurements of the CMB.
If inflation occurred, exponential expansion would push large regions of space well beyond our observable horizon.
A related issue to the classic horizon problem arises because in
most standard cosmological inflation models, inflation ceases well
before electroweak symmetry breaking occurs, so inflation should not be able to prevent large-scale discontinuities in the electroweak vacuum since distant parts of the observable universe were causally separate when the electroweak epoch ended.
Magnetic monopoles
The magnetic monopole objection was raised in the late 1970s. Grand unified theories predicted topological defects in space that would manifest as magnetic monopoles.
These objects would be produced efficiently in the hot early universe,
resulting in a density much higher than is consistent with observations,
given that no monopoles have been found. This problem is also resolved
by cosmic inflation, which removes all point defects from the observable universe, in the same way that it drives the geometry to flatness.
Flatness problem
The flatness problem (also known as the oldness problem) is an observational problem associated with a Friedmann–Lemaître–Robertson–Walker metric (FLRW). The universe may have positive, negative, or zero spatial curvature depending on its total energy density. Curvature is negative if its density is less than the critical density; positive if greater; and zero at the critical density, in which case space is said to be flat.
The problem is that any small departure from the critical density
grows with time, and yet the universe today remains very close to flat. Given that a natural timescale for departure from flatness might be the Planck time, 10−43 seconds, the fact that the universe has reached neither a heat death nor a Big Crunch
after billions of years requires an explanation. For instance, even at
the relatively late age of a few minutes (the time of nucleosynthesis),
the density of the universe must have been within one part in 1014 of its critical value, or it would not exist as it does today.
Cause
Physics may conclude that time
did not exist before 'Big Bang', but 'started' with the Big Bang and
hence there might be no 'beginning', 'before' or potentially 'cause' and
instead always existed. Quantum fluctuations,
or other laws of physics that may have existed at the start of the Big
Bang could then create the conditions for matter to occur.
Ultimate fate of the universe
Before observations of dark energy, cosmologists considered two scenarios for the future of the universe. If the mass density of the universe were greater than the critical density,
then the universe would reach a maximum size and then begin to
collapse. It would become denser and hotter again, ending with a state
similar to that in which it started—a Big Crunch.
Alternatively, if the density in the universe were equal to or
below the critical density, the expansion would slow down but never
stop. Star formation would cease with the consumption of interstellar
gas in each galaxy; stars would burn out, leaving white dwarfs, neutron stars, and black holes.
Very gradually, collisions between these would result in mass
accumulating into larger and larger black holes. The average temperature
of the universe would asymptotically approach absolute zero—a Big Freeze. Moreover, if the proton were unstable,
then baryonic matter would disappear, leaving only radiation and black
holes. Eventually, black holes would evaporate by emitting Hawking radiation. The entropy
of the universe would increase to the point where no organized form of
energy could be extracted from it, a scenario known as heat death.
Modern observations of accelerating expansion imply that more and more of the currently visible universe will pass beyond our event horizon
and out of contact with us. The eventual result is not known. The ΛCDM
model of the universe contains dark energy in the form of a cosmological constant.
This theory suggests that only gravitationally bound systems, such as
galaxies, will remain together, and they too will be subject to heat
death as the universe expands and cools. Other explanations of dark
energy, called phantom energy
theories, suggest that ultimately galaxy clusters, stars, planets,
atoms, nuclei, and matter itself will be torn apart by the
ever-increasing expansion in a so-called Big Rip.
Misconceptions
The following is a partial list of misconceptions about the Big Bang model:
The Big Bang as the origin of the universe: One of the
common misconceptions about the Big Bang model is the belief that it was
the origin of the universe. However, the Big Bang model does not
comment about how the universe came into being. Current conception of
the Big Bang model assumes the existence of energy, time, and space, and
does not comment about their origin or the cause of the dense and high
temperature initial state of the universe.
The Big Bang was "small": It is misleading to visualize
the Big Bang by comparing its size to everyday objects. When the size of
the universe at Big Bang is described, it refers to the size of the
observable universe, and not the entire universe.
Hubble's law violates the special theory of relativity: Hubble's law predicts that galaxies that are beyond Hubble Distance recede faster than the speed of light.
However, special relativity does not apply beyond motion through space.
Hubble's law describes velocity that results from expansion of space, rather than through space.
Doppler redshift vs cosmological red-shift: Astronomers often refer to the cosmological red-shift as a normal Doppler shift, which
is a misconception. Although similar, the cosmological red-shift is not
identical to the Doppler redshift. The Doppler redshift is based on
special relativity, which does not consider the expansion of space. On
the contrary, the cosmological red-shift is based on general relativity,
in which the expansion of space is considered. Although they may appear
identical for nearby galaxies, it may cause confusion if the behavior
of distant galaxies is understood through the Doppler redshift.
Speculations
While the Big Bang model is well established in cosmology, it is
likely to be refined. The Big Bang theory, built upon the equations of
classical general relativity, indicates a singularity at the origin of cosmic time; this infinite energy density is regarded as impossible in physics. Still, it is known that the equations are not applicable before the time when the universe cooled down to the Planck temperature, and this conclusion depends on various assumptions, of which some could never be experimentally verified.
One proposed refinement to avoid this would-be singularity is to develop a correct treatment of quantum gravity.
It is not known what could have preceded the hot dense state of
the early universe or how and why it originated, though speculation
abounds in the field of cosmogony.
Some proposals, each of which entails untested hypotheses, are:
- Models including the Hartle–Hawking no-boundary condition, in which the whole of space-time is finite; the Big Bang does represent the limit of time but without any singularity.
- Big Bang lattice model, states that the universe at the moment of the Big Bang consists of an infinite lattice of fermions, which is smeared over the fundamental domain so it has rotational, translational and gauge symmetry. The symmetry is the largest symmetry possible and hence the lowest entropy of any state.
- Brane cosmology models, in which inflation is due to the movement of branes in string theory; the pre-Big Bang model; the ekpyrotic model, in which the Big Bang is the result of a collision between branes; and the cyclic model, a variant of the ekpyrotic model in which collisions occur periodically. In the latter model the Big Bang was preceded by a Big Crunch and the universe cycles from one process to the other.
- Eternal inflation, in which universal inflation ends locally here and there in a random fashion, each end-point leading to a bubble universe, expanding from its own big bang.
Proposals in the last two categories see the Big Bang as an event in either a much larger and older universe or in a multiverse.
Religious and philosophical interpretations
As a description of the origin of the universe, the Big Bang has significant bearing on religion and philosophy. As a result, it has become one of the liveliest areas in the discourse between science and religion. Some believe the Big Bang implies a creator, and some see its mention in their holy books, while others argue that Big Bang cosmology makes the notion of a creator superfluous.