Mission type | Lander, lunar rover |
---|---|
Operator | CNSA |
Mission duration | Lander: 12 months Rover: 3 months |
Spacecraft properties | |
Launch mass | Lander: 1,200 kg Rover: 140 kg |
Landing mass | Total: ~1,200 kg; rover: 140 kg |
Dimensions | Rover: 1.5 × 1.0 × 1.0 m |
Start of mission | |
Launch date | Queqiao relay satellite: 20 May 2018 Lander and rover: 7 December 2018, 18:23 UTC |
Rocket | Long March 3B |
Launch site | Xichang Satellite Launch Center |
Moon rover | |
Landing date | Lander and rover: 3 January 2019, 2:26 UTC |
Landing site | Von Kármán crater in the South Pole-Aitken Basin |
Chang'e 4 (/tʃɑːŋˈə/; Chinese: 嫦娥四号; pinyin: Cháng'é Sìhào; literally: "Chang'e No. 4") is a Chinese lunar exploration mission that achieved the first soft landing on the far side of the Moon, on 3 January 2019. A communication relay satellite, Queqiao, was first launched to a halo orbit near the Earth-Moon L2 point in May 2018. The robotic lander and Yutu 2 (Chinese: 玉兔二号; literally :"Jade Rabbit No. 2") rover were launched on 7 December 2018 and entered orbit around the Moon on 12 December 2018.
The mission is the follow-up to Chang'e 3, the first Chinese landing on the Moon. The spacecraft was originally built as a backup for Chang'e 3 and became available after Chang'e 3 landed successfully in 2013. The configuration of Chang'e 4 was adjusted to meet new scientific objectives. Like its predecessors, the mission is named after Chang'e, the Chinese Moon goddess.
Overview
The Chinese Lunar Exploration Program
is designed to be conducted in three phases of incremental
technological advancement: the first is to reach lunar orbit, a task
completed by Chang'e 1 in 2007 and Chang'e 2 in 2010; the second is to land and rove on the Moon, as Chang'e 3 did in 2013 and Chang'e 4 did in January 2019; the third is to collect lunar samples from the near-side and send them to Earth, a task for the future Chang'e 5 and Chang'e 6 missions. The program aims to facilitate a crewed lunar landing in the 2030s and possibly build an outpost near the south pole.
The Chinese Lunar Exploration Program has started to incorporate
private investment from individuals and enterprises for the first time, a
move aimed at accelerating aerospace innovation, cutting production
costs, and promoting military–civilian relationships.
The Chang'e 4 mission was first scheduled for launch in 2015 as
part of the second phase of the Chinese Lunar Exploration Program. But the adjusted objectives and design of the mission imposed delays, and finally launched on 7 December 2018, 18:23 UTC. The spacecraft entered lunar orbit on 12 December 2018, 08:45 UTC. The orbit's perilune was lowered to 15 km (9.3 mi) on 30 December 2018, 00:55 UTC. Landing took place on 3 January 2019 at 02:26 UTC, shortly after lunar sunrise over the crater Von Kármán.
This mission will attempt to determine the age and composition of
an unexplored region of the Moon, as well as develop technologies
required for the later stages of the program.
Objectives
An ancient collision event on the Moon left behind a very large crater, called the Aitken Basin, that is now about 13 km (8.1 mi) deep, and it is thought that the massive impactor likely exposed the deep lunar crust, and probably the mantle
materials. If Chang'e 4 can find and study some of this material, it
would get an unprecedented view into the Moon's internal structure and
origins. The specific scientific objectives are:
- Measure the chemical compositions of lunar rocks and soils
- Measure lunar surface temperature over the duration of the mission.
- Carry out low-frequency radio astronomical observation and research using a radio telescope
- Study of cosmic rays
- Observe the solar corona, investigate its radiation characteristics and mechanism, and to explore the evolution and transport of coronal mass ejections (CME) between the Sun and Earth.
Components
Queqiao relay satellite
Direct communication with Earth is impossible on the far side of the Moon, since transmissions are blocked by the Moon. Communications must go through a communications relay satellite, which is placed at a location that has a clear view of both the landing site and the Earth. On 20 May 2018, the China National Space Administration (CNSA) launched the Queqiao (Chinese: 鹊桥; pinyin: Quèqiáo; literally: "Magpie Bridge") relay satellite to a halo orbit around the Earth–Moon L2 point. The relay satellite is based on the Chang'e 2 design, has a mass of 425 kg (937 lb), and it uses a 4.2 m (14 ft) antenna to receive X band signals from the lander and rover, and relay them to Earth control on the S band.
The spacecraft took 24 days to reach L2, using a lunar swing-by to save fuel. On 14 June 2018, Queqiao finished its final adjustment burn and entered the L2
halo mission orbit, which is about 65,000 kilometers (40,000 mi) from
the Moon. This is the first lunar relay satellite at this location.
The name Queqiao ("Magpie Bridge") is inspired and came from the Chinese tale The Cowherd and the Weaver Girl.
Longjiang microsatellites
As part of the Chang'e 4 mission, two microsatellites (45 kg or 99 lb each) named Longjiang-1 and Longjiang-2 (Chinese: 龙江; pinyin: Lóng Jiāng; literally: "Dragon River"), were launched along with Queqiao in May 2018. However, Longjiang-1 failed to enter lunar orbit, while Longjiang-2
succeeded and is currently operational in lunar orbit. These
microsatellites were tasked to observe the sky at very low frequencies
(1–30 MegaHertz), corresponding to wavelengths of 300 to 10 metres (984 to 33 ft), with the aim of studying energetic phenomena from celestial sources. Due to the Earth's ionosphere, no observations in this frequency range have been done in Earth orbit, offering potential breakthrough science.
Chang'e lander and Yutu-2 rover
As is the case with many of China's space missions, the details of the spacecraft and the mission have been limited. What is known is that much of the Chang'e 4 lander and rover design is modeled after Chang'e-3 and its Yutu rover. In fact, Chang'e 4 was built as a backup to Chang'e 3, and based on the experience and results from that mission, Chang'e 4 was adapted to the specifics of the new mission. The lander and rover were launched on 7 December 2018, 18:23 UTC, six months after the launch of the Queqiao relay satellite.
The total landing mass is 1,200 kg (2,600 lb). Both the stationary lander and Yutu-2 rover are equipped with a radioisotope heater unit (RHU) in order to heat their subsystems during the long lunar nights, while electrical power is generated by solar panels. After landing, the lander extended a ramp to deploy the Yutu-2 rover (literally: "Jade Rabbit") to the lunar surface. The rover measures 1.5 × 1.0 × 1.0 m (4.9 × 3.3 × 3.3 ft) and has a mass of 140 kg (310 lb). Yutu-2 rover was fabricated at Dongguan, Guangdong province; it is solar-powered, RHU-heated, and it is propelled by six wheels. The rover's nominal operating time is three months, but after the experience with Yutu rover in 2013, the rover design was improved and Chinese engineers are hopeful it will operate for "a few years."
Wide images
Science payloads
The
communications relay satellite, orbiting microsatellite, lander and
rover each carry scientific payloads. The relay satellite is performing radio astronomy, whereas the lander and Yutu-2 rover will study the geophysics of the landing zone. The science payloads are, in part, supplied by international partners in Sweden, Germany, the Netherlands, and Saudi Arabia.
Relay satellite
The primary function of the Queqiao relay satellite that is deployed in a halo orbit around the Earth–Moon L2 point is to provide continuous relay communications between Earth and the lander on the far side of the Moon.
Additionally, this satellite hosts the Netherlands-China Low-Frequency Explorer (NCLE), an instrument performing astrophysical studies in the unexplored radio regime of 80 kilohertz to 80 megahertz. It was developed by the Radboud University in Netherlands and the Chinese Academy of Sciences.
The NCLE on the orbiter and the LFS on the lander will work in synergy
performing low-frequency (0.1 MHz–80 MHz) radio astronomical
observations.
Lunar lander
The
lander and rover carry scientific payloads to study the geophysics of
the landing zone, with a modest chemical analysis capability. The lander is equipped with the following payloads:
- Landing Camera (LCAM), mounted on the bottom of the spacecraft, the camera began to produce a video stream at the height of 12 km (7.5 mi) above the lunar surface.
- Terrain Camera (TCAM), mounted on top of the lander and able to rotate 360°, is being used to image the lunar surface and the rover in high definition.
- Low Frequency Spectrometer (LFS) to research solar radio bursts at frequencies between 0.1–40 MHz and to study the lunar ionosphere.
- Lunar Lander Neutrons and Dosimetry (LND), a neutron dosimeter developed by Kiel University in Germany. It will gather radiation dosimetry for future human exploration of the Moon, and will contribute to solar wind studies.
- Lunar Micro Ecosystem, is a 3 kg (6.6 lb) sealed biosphere cylinder 18 cm (7.1 in) long and 16 cm (6.3 in) in diameter with seeds and insect eggs to test whether plants and insects could hatch and grow together in synergy. The experiment includes six types of organisms: cottonseed, potato, rapeseed, Arabidopsis thaliana (a flowering plant), as well as yeast and fruit fly eggs. Environmental systems keep the container hospitable and Earth-like, except for the low lunar gravity and radiation. If the fly eggs hatch, the larvae would produce carbon dioxide, while the germinated plants would release oxygen through photosynthesis. It was hoped that together, the plants and fruit flies could establish a simple synergy within the container. Yeast would play a role in regulating carbon dioxide and oxygen, as well as decomposing processed waste from the flies and the dead plants to create an additional food source for the insects. The biological experiment was designed by 28 Chinese universities. Research in such closed ecological systems informs astrobiology and the development of biological life support systems for long duration missions in space stations or space habitats for eventual space farming.
- Result: Within a few hours after landing on 3 January 2019, the biosphere's temperature was adjusted to 24°C and the seeds were watered. On January 15, 2019, it was reported that cottonseed, rapeseed and potato seeds had sprouted, but images of only cottonseed were released. However, on January 16, it was reported that the experiment was terminated due to an external temperature drop to −52 °C (−62 °F) as the lunar night set in, and a failure to warm the biosphere close to 24°C. The experiment was terminated after nine days instead of the planned 100 days, but valuable information was obtained.
Lunar rover
- Panoramic Camera (PCAM), is installed on the rover's mast and can rotate 360°. It has a spectral range of 420 nm–700 nm and it acquires 3D images by binocular stereovision.
- Lunar penetrating radar (LPR), is a ground penetrating radar with a probing depth of approximately 30 m with 30 cm vertical resolution, and more than 100 m with 10 m vertical resolution.
- Visible and Near-Infrared Imaging Spectrometer (VNIS), for imaging spectroscopy that can then be used for identification of surface materials and atmospheric trace gases. The spectral range covers visible to near-infrared wavelengths (450 nm - 950 nm).
- Advanced Small Analyzer for Neutrals (ASAN), is an energetic neutral atom analyzer provided by the Swedish Institute of Space Physics (IRF). It will reveal how solar wind interacts with the lunar surface, that may help determine the process behind the formation of lunar water.
Landing site
The landing site is within a crater called Von Kármán (180 km or 110 mi diameter) in the South Pole-Aitken Basin on the far side of the Moon that was still unexplored by landers. The site has symbolic as well as scientific value. Theodore von Kármán was the PhD advisor of Qian Xuesen, the founder of the Chinese space program.
The landing craft touched down at 02:26 UTC on 3 January 2019,
becoming the first spacecraft to land on the far side of the Moon. Yutu-2 rover was deployed about 12 hours after the landing.