Cerebellar cognitive affective syndrome (CCAS), also called Schmahmann's syndrome is a condition that follows from lesions (damage) to the cerebellum of the brain. It refers to a constellation of deficits in the cognitive domains of executive function, spatial cognition, language, and affect resulting from damage to the cerebellum. Impairments of executive function include problems with planning, set-shifting, abstract reasoning, verbal fluency, and working memory, and there is often perseveration, distractibility and inattention. Language problems include dysprosodia, agrammatism and mild anomia.
Deficits in spatial cognition produce visual–spatial disorganization
and impaired visual–spatial memory. Personality changes manifest as
blunting of affect or disinhibited and inappropriate behavior. These
cognitive impairments result in an overall lowering of intellectual
function.
CCAS challenges the traditional view of the cerebellum being
responsible solely for regulation of motor functions. It is now thought
that the cerebellum is responsible for monitoring both motor and
nonmotor functions. The nonmotor deficits described in CCAS are believed
to be caused by dysfunction in cerebellar connections to the cerebral cortex and limbic system.
Symptoms
The CCAS has been described in both adults and children.
The precise manifestations may vary on an individual basis, likely
reflecting the precise location of the injury in the cerebellum. These investigators
subsequently elaborated on the affective component of the CCAS, i.e.,
the neuropsychiatric phenomena. They reported that patients with injury
isolated to the cerebellum may demonstrate distractibility,
hyperactivity, impulsiveness, disinhibition, anxiety, ritualistic and
stereotypical behaviors, illogical thought and lack of empathy,
aggression, irritability, ruminative and obsessive behaviors, dysphoria
and depression, tactile defensiveness and sensory overload, apathy, childlike behavior, and inability to comprehend social boundaries and assign ulterior motives.
The CCAS can be recognized by the pattern of deficits involving
executive function, visual-spatial cognition, linguistic performance and
changes in emotion and personality. Underdiagnosis may reflect lack of
familiarity of this syndrome in the scientific and medical community.
The nature and variety of the symptoms may also prove challenging.
Levels of depression, anxiety, lack of emotion, and affect deregulation
can vary between patients.
The symptoms of CCAS are often moderately severe following acute
injury in adults and children, but tend to lessen with time. This
supports the view that the cerebellum is involved with the regulation of
cognitive processes.
Psychiatric Disorders
There
are a number of psychiatric disorders that are thought to be related to
dysfunction of the cerebellum and that appear similar to symptoms of
CCAS.
It has been suggested that lesions in the cerebellum may be
responsible for certain characteristics of psychiatric disorders, such
as schizophrenia, depression, bipolar disorder, attention deficit hyperactivity disorder (ADHD), developmental dyslexia, Down syndrome, and Fragile X syndrome.
Schmahmann’s dysmetria of thought hypothesis has been applied to these
psychiatric disorders. In schizophrenia, it has been suggested that
there is dysfunction of the cortical-thalamo-cerebellar circuit, which
leads to problems with emotional behaviors and cognition. Supporting this idea are postmortem studies that have shown smaller anterior portions of the vermis and reduced density of the Purkinje cells in the vermis in schizophrenia.
There are several pieces of evidence that support the hypothesis that
symptoms of some psychiatric disorders are the result of cerebellar
dysfunction. One study found that people with schizophrenia had smaller
inferior vermis and less cerebellar hemispheric asymmetry than control
adults. It has also been found that individuals with ADHD have smaller posterior inferior lobes than a control group.
Other studies have suggested that the size of the vermis is correlated
with the severity of ADHD. A study of people with dyslexia showed lower
activation via positron emission tomography (PET) in the cerebellum during a motor task relative to a control group. It may be possible to further understand the pathology of these psychiatric disorders by studying CCAS.
Cause
The causes
of CCAS lead to variations in symptoms, but a common core of symptoms
can be seen regardless of etiology. Causes of CCAS include cerebellar
agenesis, dysplasia and hypoplasia, cerebellar stroke, tumor,
cerebellitis, trauma, and neurodegenerative diseases (such as progressive supranuclear palsy and multiple system atrophy). CCAS can also be seen in children with prenatal, early postnatal, or developmental lesions.
In these cases there are lesions of the cerebellum resulting in
cognitive and affect deficits. The severity of CCAS varies depending on
the site and extent of the lesion. In the original report that
described this syndrome, patients with bihemispheric infarction,
pancerebellar disease, or large unilateral posterior inferior cerebellar
artery (PICA) infarcts had more cognitive deficits than patients with
small right PICA infarcts, small right anterior interior cerebellar
artery infarcts or superior cerebellar artery (SCA) territory. Overall,
patients with damage to either the posterior lobe of the cerebellum or
with bilateral lesions had the greatest severity of symptoms, whereas
patients with lesions in the anterior lobe had less severe symptoms.
In children, it was found that those with astrocytoma performed better
than those with medulloblastoma on neuropsychological tests. When diagnosing a patient with CCAS, medical professionals must remember that CCAS has many different causes.
Pathology
Cerebellar pathways
There
are pathways that have been proposed to explain the non-motor
dysfunctions seen in CCAS. A leading view of CCAS is the dysmetria of
thought hypothesis, which proposes that the non-motor deficits in CCAS
are caused by dysfunction in the cerebrocerebellar system linking the
cerebral cortex with the cerebellum.
The normal cerebellum is now thought to be responsible for regulating
motor, cognitive and emotional behaviors. When there is some type of
damage to the cerebellum, this regulation is affected, leading to
deregulation of emotional behaviors. This effect has been compared to dysmetria of movement, which describes the motor dysfunctions seen after cerebellar lesions.
These ideas build upon earlier theories and results of investigations
indicating that the cerebellum is linked with the frontal orbital
cortex, limbic system, and reticular structures. It was proposed that
these circuits are involved with emotional regulation, such that damage
to this circuit would result in behavioral dysfunctions such as
hyperactivity, apathy, and stimulus-seeking behaviors.
Connections lead from the cerebral cortex (including sensorimotor
regions as well as cognitively relevant association areas and
emotion-related limbic areas) to the cerebellum by a two-stage
feedfoward system. The pathway starts in the layer V neurons of the
cerebral cortex that project via the cerebral peduncle to the neurons of
the anterior portion of the pons (the basis pontis). The pontine axons
projects via the contralateral middle cerebellar peduncle, terminating
in the cerebellar cortex as mossy fibers. The feedback circuit from the
cerebellum to the cerebral cortex is also a two-stage system. The
cerebellar cortex projects to the deep cerebellar nuclei (the
corticonuclear microcomplex). The deep nuclei then project to the
thalamus, which in turn projects back to the cerebral cortex.
This cerebrocerebellar circuit is key to understanding the motor as
well as the non-motor roles of the cerebellum. The relevant cognitive
areas of the cerebral cortex that project to the cerebellum include the
posterior parietal cortex (spatial awareness), the supramodal areas of
the superior temporal gyrus (language), the posterior parahippocampal
areas (spatial memory), the visual association areas in the parastriate
cortices (higher-order visual processing), and the prefrontal cortex
(complex reasoning, judgment attention, and working memory). There are
also projections from the cingulate gyrus to the pons.
The organization of these anatomical pathways helps clarify the role
the cerebellum plays in motor as well as non-motor functions. The
cerebellum has also been shown to connect brainstem nuclei to the limbic
system with implications for the function of the neurotransmitters
serotonin, norepinephrine, and dopamine and the limbic system. The connection with the limbic system presumably underlies the affective symptoms of CCAS.
Cerebellar anatomy
It
has been suggested that specific parts of the cerebellum are
responsible for different functions. Mapping of the cerebellum has
shown that sensorimotor, motor, and somatosensory information is
processed in the anterior lobe, specifically in lobules V, VI, VIII A/B.
The posterior lobe (notably cerebellar lobules VI and VII) is
responsible for cognitive and emotional functions. Lobule VII includes
the vermis in the midline, and the hemispheric parts of lobule VIIA
(Crus I and Crus II), and lobule VIIB). This explains why CCAS occurs
with damage to the posterior lobe. In the study of Levisohn et al.
children with CCAS showed a positive correlation between damage to the
midline vermis and impairments in affect. The authors hypothesized that
deficits in affect are linked to damage of the vermis and fastigial
nuclei, whereas deficits in cognition are linked to damage of the vermis
and cerebellar hemispheres. These notions were consistent with the
earlier suggestion (by psychiatrist Robert G. Heath),
that the vermis of the cerebellum is responsible for emotional
regulation. The deep nuclei of the cerebellum also have specific
functions. The interpositus nucleus is involved with motor function,
the dentate nucleus with cognitive functions, and the fastigial nucleus
with limbic functions. It has been shown that phylogenetically the dentate nuclei developed with the association areas of the frontal cortex, supporting the view that the dentate nucleus is responsible for cognitive functions.
Lateralization
There have been studies that show laterality
effects of cerebellar damage with relation to CCAS. Language in the
cerebellum seems to be contralateral to the dominant language hemisphere
in the frontal lobes, meaning if the language is dominant in the left
hemisphere of the frontal lobes, the right side of the cerebellum will
be responsible for language (see Tedesco et al.
for a discussion of lack of lateralization). Lateralization is also
observed with visuospatial functions. One study found that patients
with left cerebellar lesions performed more poorly on a visuospatial
task than did patients with right cerebellar lesions and healthy control
adults.
It has also been shown that lesions of the right cerebellum result in
greater cognitive deficits than lesions of the left hemisphere.
Treatments
The current treatments for CCAS focus on relieving the symptoms. One treatment is a cognitive-behavioral therapy (CBT)
technique that involves making the patient aware of his or hers
cognitive problems. For example, many CCAS patients struggle with
multitasking. With CBT, the patient would have to be aware of this
problem and focus on just one task at a time. This technique is also
used to relieve some motor symptoms.
In a case study with a patient who had a stroke and developed CCAS,
improvements in mental function and attention were achieved through
reality orientation therapy and attention process training. Reality
orientation therapy consists of continually exposing the patient to
stimuli of past events, such as photos. Attention process training
consists of visual and auditory tasks that have been shown to improve
attention. The patient struggled in applying these skills to
“real-life” situations. It was the help of his family at home that
significantly helped him regain his ability to perform activities of
daily living. The family would motivate the patient to perform basic
tasks and made a regular schedule for him to follow.
Transcranial magnetic stimulation (TMS) has also been proposed to
be a possible treatment of psychiatric disorders of the cerebellum.
One study used TMS on the vermis of patients with schizophrenia. After
stimulation, the patients showed increased happiness, alertness and
energy, and decreased sadness. Neuropsychological testing
post-stimulation showed improvements in working memory, attention, and
visual spatial skill.
Another possible method of treatment for CCAS is doing exercises that
are used to relieve the motor symptoms. These physical exercises have
been shown to also help with the cognitive symptoms.
Medications that help relieve deficits in traumatic brain
injuries in adults have been proposed as candidates to treat CCAS.
Bromocriptine, a direct D2 agonist, has been shown to help with deficits
in executive function and spatial learning abilities. Methylphenidate
has been shown to help with deficits in attention and inhibition.
Neither of these drugs has yet been tested on a CCAS population.
It may also be that some of the symptoms of CCAS improve over time
without any formal treatment. In the original report of CCAS, four
patients with CCAS were re-examined one to nine months after their
initial neuropsychological evaluation. Three of the patients showed
improvement in deficits without any kind of formal treatment, though
executive function was still found to be one standard deviation below
average. In one patient, the deficits worsened over time. This patient
had cerebellar atrophy and worsened in visual spatial abilities,
concept formation, and verbal memory.
It should be noted that none of these treatments were tested on a
large enough sample to determine if they would help with the general
CCAS population. Further research needs to be done on treatments for
CCAS.
Future research
There
is much research that needs to be conducted on CCAS. A necessity for
future research is to conduct more longitudinal studies in order to
determine the long-term effects of CCAS.
One way this can be done is by studying cerebellar hemorrhage that
occurs during infancy. This would allow CCAS to be studied over a long
period to see how CCAS affects development.
It may be of interest to researchers to conduct more research on
children with CCAS, as the survival rate of children with tumors in the
cerebellum is increasing. Hopefully future research will bring new insights on CCAS and develop better treatments.