From Wikipedia, the free encyclopedia
 
A quantum Turing machine (QTM), also a universal quantum computer, is an abstract machine used to model the effect of a quantum computer. It provides a very simple model which captures all of the power of quantum computation. Any quantum algorithm can be expressed formally as a particular quantum Turing machine.

In 1980 and 1982, physicist Paul Benioff published papers that first described a quantum mechanical model of Turing machines. A 1985 article written by Oxford University physicist David Deutsch further developed the idea of quantum computers by suggesting quantum gates could function in a similar fashion to traditional digital computing binary logic gates.

Quantum Turing machines are not always used for analyzing quantum computation; the quantum circuit is a more common model. These models are computationally equivalent.

Quantum Turing machines can be related to classical and probabilistic Turing machines in a framework based on transition matrices. That is, a matrix can be specified whose product with the matrix representing a classical or probabilistic machine provides the quantum probability matrix representing the quantum machine. This was shown by Lance Fortnow.

Iriyama, Ohya, and Volovich have developed a model of a linear quantum Turing machine (LQTM). This is a generalization of a classical QTM that has mixed states and that allows irreversible transition functions. These allow the representation of quantum measurements without classical outcomes.

A quantum Turing machine with postselection was defined by Scott Aaronson, who showed that the class of polynomial time on such a machine (PostBQP) is equal to the classical complexity class PP.

Informal sketch