From Wikipedia, the free encyclopedia
In mathematical physics , n -dimensional de Sitter space (often abbreviated to dSn ) is a maximally symmetric Lorentzian manifold with constant positive scalar curvature . It is the Lorentzian analogue of an n -sphere (with its canonical Riemannian metric ).
The main application of de Sitter space is its use in general relativity , where it serves as one of the simplest mathematical models of the universe consistent with the observed accelerating expansion of the universe . More specifically, de Sitter space is the maximally symmetric vacuum solution of Einstein's field equations with a positive cosmological constant
Λ
{\displaystyle \Lambda }
(corresponding to a positive vacuum energy density and negative
pressure). There is cosmological evidence that the universe itself is asymptotically de Sitter .
de Sitter space and anti-de Sitter space are named after Willem de Sitter (1872–1934), professor of astronomy at Leiden University and director of the Leiden Observatory . Willem de Sitter and Albert Einstein worked closely together in Leiden
in the 1920s on the spacetime structure of our universe. de Sitter
space was also discovered, independently, and about the same time, by Tullio Levi-Civita .
Definition de Sitter space can be defined as a submanifold of a generalized Minkowski space of one higher dimension . Take Minkowski space R 1,n with the standard metric :
d
s
2
=
−
d
x
0
2
+
∑
i
=
1
n
d
x
i
2
.
{\displaystyle ds^{2}=-dx_{0}^{2}+\sum _{i=1}^{n}dx_{i}^{2}.}
de Sitter space is the submanifold described by the hyperboloid of one sheet
−
x
0
2
+
∑
i
=
1
n
x
i
2
=
α
2
{\displaystyle -x_{0}^{2}+\sum _{i=1}^{n}x_{i}^{2}=\alpha ^{2}}
where
α
{\displaystyle \alpha }
is some nonzero constant with dimensions of length. The metric on de Sitter space is the metric induced from the ambient Minkowski metric. The induced metric is nondegenerate and has Lorentzian signature. (Note that if one replaces
α
2
{\displaystyle \alpha ^{2}}
with
−
α
2
{\displaystyle -\alpha ^{2}}
in the above definition, one obtains a hyperboloid of two sheets. The induced metric in this case is positive-definite , and each sheet is a copy of hyperbolic n -space .)
de Sitter space can also be defined as the quotient O(1, n ) / O(1, n − 1) of two indefinite orthogonal groups , which shows that it is a non-Riemannian symmetric space .
Topologically , de Sitter space is R × S n −1 (so that if n ≥ 3 then de Sitter space is simply connected ).
Properties The isometry group of de Sitter space is the Lorentz group O(1, n ) . The metric therefore then has n (n + 1)/2 independent Killing vector fields and is maximally symmetric. Every maximally symmetric space has constant curvature. The Riemann curvature tensor of de Sitter is given by
R
ρ
σ
μ
ν
=
1
α
2
(
g
ρ
μ
g
σ
ν
−
g
ρ
ν
g
σ
μ
)
.
{\displaystyle R_{\rho
\sigma \mu \nu }={1 \over \alpha ^{2}}\left(g_{\rho \mu }g_{\sigma \nu
}-g_{\rho \nu }g_{\sigma \mu }\right).}
de Sitter space is an Einstein manifold since the Ricci tensor is proportional to the metric:
R
μ
ν
=
n
−
1
α
2
g
μ
ν
{\displaystyle R_{\mu \nu }={\frac {n-1}{\alpha ^{2}}}g_{\mu \nu }}
This means de Sitter space is a vacuum solution of Einstein's equation with cosmological constant given by
Λ
=
(
n
−
1
)
(
n
−
2
)
2
α
2
.
{\displaystyle \Lambda ={\frac {(n-1)(n-2)}{2\alpha ^{2}}}.}
The scalar curvature of de Sitter space is given by
R
=
n
(
n
−
1
)
α
2
=
2
n
n
−
2
Λ
.
{\displaystyle R={\frac {n(n-1)}{\alpha ^{2}}}={\frac {2n}{n-2}}\Lambda .}
For the case n = 4 , we have Λ = 3/α 2 and R = 4Λ = 12/α 2 .
Static coordinates We can introduce static coordinates
(
t
,
r
,
…
)
{\displaystyle (t,r,\ldots )}
for de Sitter as follows:
x
0
=
α
2
−
r
2
sinh
(
1
α
t
)
x
1
=
α
2
−
r
2
cosh
(
1
α
t
)
x
i
=
r
z
i
2
≤
i
≤
n
.
{\displaystyle
{\begin{aligned}x_{0}&={\sqrt {\alpha ^{2}-r^{2}}}\sinh \left({\frac
{1}{\alpha }}t\right)\\x_{1}&={\sqrt {\alpha ^{2}-r^{2}}}\cosh
\left({\frac {1}{\alpha }}t\right)\\x_{i}&=rz_{i}\qquad \qquad
\qquad \qquad \qquad 2\leq i\leq n.\end{aligned}}}
where
z
i
{\displaystyle z_{i}}
gives the standard embedding the (n − 2) -sphere in R n −1 . In these coordinates the de Sitter metric takes the form:
d
s
2
=
−
(
1
−
r
2
α
2
)
d
t
2
+
(
1
−
r
2
α
2
)
−
1
d
r
2
+
r
2
d
Ω
n
−
2
2
.
{\displaystyle
ds^{2}=-\left(1-{\frac {r^{2}}{\alpha ^{2}}}\right)dt^{2}+\left(1-{\frac
{r^{2}}{\alpha ^{2}}}\right)^{-1}dr^{2}+r^{2}d\Omega _{n-2}^{2}.}
Note that there is a cosmological horizon at
r
=
α
{\displaystyle r=\alpha }
.
Flat slicing Let
x
0
=
α
sinh
(
1
α
t
)
+
1
2
α
r
2
e
1
α
t
,
x
1
=
α
cosh
(
1
α
t
)
−
1
2
α
r
2
e
1
α
t
,
x
i
=
e
1
α
t
y
i
,
2
≤
i
≤
n
{\displaystyle
{\begin{aligned}x_{0}&=\alpha \sinh \left({\frac {1}{\alpha
}}t\right)+{\frac {1}{2\alpha }}r^{2}e^{{\frac {1}{\alpha
}}t},\\x_{1}&=\alpha \cosh \left({\frac {1}{\alpha }}t\right)-{\frac
{1}{2\alpha }}r^{2}e^{{\frac {1}{\alpha }}t},\\x_{i}&=e^{{\frac
{1}{\alpha }}t}y_{i},\qquad 2\leq i\leq n\end{aligned}}}
where
r
2
=
∑
i
y
i
2
{\textstyle r^{2}=\sum _{i}y_{i}^{2}}
. Then in the
(
t
,
y
i
)
{\displaystyle \left(t,y_{i}\right)}
coordinates metric reads:
d
s
2
=
−
d
t
2
+
e
2
1
α
t
d
y
2
{\displaystyle ds^{2}=-dt^{2}+e^{2{\frac {1}{\alpha }}t}dy^{2}}
where
d
y
2
=
∑
i
d
y
i
2
{\textstyle dy^{2}=\sum _{i}dy_{i}^{2}}
is the flat metric on
y
i
{\displaystyle y_{i}}
's.
Setting
ζ
=
ζ
∞
−
α
e
−
1
α
t
{\displaystyle \zeta =\zeta _{\infty }-\alpha e^{-{\frac {1}{\alpha }}t}}
, we obtain the conformally flat metric:
d
s
2
=
α
2
(
ζ
∞
−
ζ
)
2
(
d
y
2
−
d
ζ
2
)
{\displaystyle ds^{2}={\frac {\alpha ^{2}}{(\zeta _{\infty }-\zeta )^{2}}}\left(dy^{2}-d\zeta ^{2}\right)}
Open slicing Let
x
0
=
α
sinh
(
1
α
t
)
cosh
ξ
,
x
1
=
α
cosh
(
1
α
t
)
,
x
i
=
α
z
i
sinh
(
1
α
t
)
sinh
ξ
,
2
≤
i
≤
n
{\displaystyle
{\begin{aligned}x_{0}&=\alpha \sinh \left({\frac {1}{\alpha
}}t\right)\cosh \xi ,\\x_{1}&=\alpha \cosh \left({\frac {1}{\alpha
}}t\right),\\x_{i}&=\alpha z_{i}\sinh \left({\frac {1}{\alpha
}}t\right)\sinh \xi ,\qquad 2\leq i\leq n\end{aligned}}}
where
∑
i
z
i
2
=
1
{\textstyle \sum _{i}z_{i}^{2}=1}
forming a
S
n
−
2
{\displaystyle S^{n-2}}
with the standard metric
∑
i
d
z
i
2
=
d
Ω
n
−
2
2
{\textstyle \sum _{i}dz_{i}^{2}=d\Omega _{n-2}^{2}}
. Then the metric of the de Sitter space reads
d
s
2
=
−
d
t
2
+
α
2
sinh
2
(
1
α
t
)
d
H
n
−
1
2
,
{\displaystyle ds^{2}=-dt^{2}+\alpha ^{2}\sinh ^{2}\left({\frac {1}{\alpha }}t\right)dH_{n-1}^{2},}
where
d
H
n
−
1
2
=
d
ξ
2
+
sinh
2
(
ξ
)
d
Ω
n
−
2
2
{\displaystyle dH_{n-1}^{2}=d\xi ^{2}+\sinh ^{2}(\xi )d\Omega _{n-2}^{2}}
is the standard hyperbolic metric.
Closed slicing Let
x
0
=
α
sinh
(
1
α
t
)
,
x
i
=
α
cosh
(
1
α
t
)
z
i
,
1
≤
i
≤
n
{\displaystyle
{\begin{aligned}x_{0}&=\alpha \sinh \left({\frac {1}{\alpha
}}t\right),\\x_{i}&=\alpha \cosh \left({\frac {1}{\alpha
}}t\right)z_{i},\qquad 1\leq i\leq n\end{aligned}}}
where
z
i
{\displaystyle z_{i}}
s describe a
S
n
−
1
{\displaystyle S^{n-1}}
. Then the metric reads:
d
s
2
=
−
d
t
2
+
α
2
cosh
2
(
1
α
t
)
d
Ω
n
−
1
2
.
{\displaystyle ds^{2}=-dt^{2}+\alpha ^{2}\cosh ^{2}\left({\frac {1}{\alpha }}t\right)d\Omega _{n-1}^{2}.}
Changing the time variable to the conformal time via
tan
(
1
2
η
)
=
tanh
(
1
2
α
t
)
{\textstyle \tan \left({\frac {1}{2}}\eta \right)=\tanh \left({\frac {1}{2\alpha }}t\right)}
we obtain a metric conformally equivalent to Einstein static universe:
d
s
2
=
α
2
cos
2
η
(
−
d
η
2
+
d
Ω
n
−
1
2
)
.
{\displaystyle ds^{2}={\frac {\alpha ^{2}}{\cos ^{2}\eta }}\left(-d\eta ^{2}+d\Omega _{n-1}^{2}\right).}
These coordinates, also known as "global coordinates" cover the
maximal extension of de Sitter space, and can therefore be used to find
its Penrose diagram .
dS slicing Let
x
0
=
α
sin
(
1
α
χ
)
sinh
(
1
α
t
)
cosh
ξ
,
x
1
=
α
cos
(
1
α
χ
)
,
x
2
=
α
sin
(
1
α
χ
)
cosh
(
1
α
t
)
,
x
i
=
α
z
i
sin
(
1
α
χ
)
sinh
(
1
α
t
)
sinh
ξ
,
3
≤
i
≤
n
{\displaystyle
{\begin{aligned}x_{0}&=\alpha \sin \left({\frac {1}{\alpha }}\chi
\right)\sinh \left({\frac {1}{\alpha }}t\right)\cosh \xi
,\\x_{1}&=\alpha \cos \left({\frac {1}{\alpha }}\chi
\right),\\x_{2}&=\alpha \sin \left({\frac {1}{\alpha }}\chi
\right)\cosh \left({\frac {1}{\alpha }}t\right),\\x_{i}&=\alpha
z_{i}\sin \left({\frac {1}{\alpha }}\chi \right)\sinh \left({\frac
{1}{\alpha }}t\right)\sinh \xi ,\qquad 3\leq i\leq n\end{aligned}}}
where
z
i
{\displaystyle z_{i}}
s describe a
S
n
−
3
{\displaystyle S^{n-3}}
. Then the metric reads:
d
s
2
=
d
χ
2
+
sin
2
(
1
α
χ
)
d
s
d
S
,
α
,
n
−
1
2
,
{\displaystyle ds^{2}=d\chi ^{2}+\sin ^{2}\left({\frac {1}{\alpha }}\chi \right)ds_{dS,\alpha ,n-1}^{2},}
where
d
s
d
S
,
α
,
n
−
1
2
=
−
d
t
2
+
α
2
sinh
2
(
1
α
t
)
d
H
n
−
2
2
{\displaystyle ds_{dS,\alpha ,n-1}^{2}=-dt^{2}+\alpha ^{2}\sinh ^{2}\left({\frac {1}{\alpha }}t\right)dH_{n-2}^{2}}
is the metric of an
n
−
1
{\displaystyle n-1}
dimensional de Sitter space with radius of curvature
α
{\displaystyle \alpha }
in open slicing coordinates. The hyperbolic metric is given by:
d
H
n
−
2
2
=
d
ξ
2
+
sinh
2
(
ξ
)
d
Ω
n
−
3
2
.
{\displaystyle dH_{n-2}^{2}=d\xi ^{2}+\sinh ^{2}(\xi )d\Omega _{n-3}^{2}.}
This is the analytic continuation of the open slicing coordinates under
(
t
,
ξ
,
θ
,
ϕ
1
,
ϕ
2
,
…
,
ϕ
n
−
3
)
→
(
i
χ
,
ξ
,
i
t
,
θ
,
ϕ
1
,
…
,
ϕ
n
−
4
)
{\displaystyle \left(t,\xi
,\theta ,\phi _{1},\phi _{2},\ldots ,\phi _{n-3}\right)\to \left(i\chi
,\xi ,it,\theta ,\phi _{1},\ldots ,\phi _{n-4}\right)}
and also switching
x
0
{\displaystyle x_{0}}
and
x
2
{\displaystyle x_{2}}
because they change their timelike/spacelike nature.