In celestial mechanics, the Lagrange points /ləˈɡrɑːndʒ/ (also Lagrangian points, L-points, or libration points) are points of equilibrium for small-mass objects under the influence of two massive orbiting bodies. Mathematically, this involves the solution of the restricted three-body problem in which two bodies are very much more massive than the third.
Normally, the two massive bodies exert an unbalanced gravitational force at a point, altering the orbit of whatever is at that point. At the Lagrange points, the gravitational forces of the two large bodies and the centrifugal force balance each other. This can make Lagrange points an excellent location for satellites, as few orbit corrections are needed to maintain the desired orbit. Small objects placed in orbit at Lagrange points are in equilibrium in at least two directions relative to the center of mass of the large bodies.
There are five such points, labelled L1 to L5, all in the orbital plane of the two large bodies, for each given combination of two orbital bodies. For instance, there are five Lagrangian points L1 to L5 for the Sun–Earth system, and in a similar way there are five different Lagrangian points for the Earth–Moon system. L1, L2, and L3 are on the line through the centres of the two large bodies, while L4 and L5 each act as the third vertex of an equilateral triangle formed with the centres of the two large bodies. L4 and L5 are stable, which implies that objects can orbit around them in a rotating coordinate system tied to the two large bodies.
The L4 and L5 points are stable points and have a tendency to pull objects into them. Several planets have trojan asteroids near their L4 and L5 points with respect to the Sun. Jupiter has more than a million of these trojans. Artificial satellites have been placed at L1 and L2 with respect to the Sun and Earth, and with respect to the Earth and the Moon. The Lagrangian points have been proposed for uses in space exploration.
History
The three collinear Lagrange points (L1, L2, L3) were discovered by Leonhard Euler a few years before Joseph-Louis Lagrange discovered the remaining two.
In 1772, Lagrange published an "Essay on the three-body problem". In the first chapter he considered the general three-body problem. From that, in the second chapter, he demonstrated two special constant-pattern solutions, the collinear and the equilateral, for any three masses, with circular orbits.
Lagrange points
The five Lagrange points are labelled and defined as follows:
L1 point
The L1 point lies on the line defined between the two large masses M1 and M2. It is the point where the gravitational attraction of M2 and that of M1 combine to produce an equilibrium. An object that orbits the Sun more closely than Earth would normally have a shorter orbital period than Earth, but that ignores the effect of Earth's own gravitational pull. If the object is directly between Earth and the Sun, then Earth's gravity counteracts some of the Sun's pull on the object, and therefore increases the orbital period of the object. The closer to Earth the object is, the greater this effect is. At the L1 point, the orbital period of the object becomes exactly equal to Earth's orbital period. L1 is about 1.5 million kilometers from Earth, or 0.01 au, 1/100th the distance to the Sun.
L2 point
The L2 point lies on the line through the two large masses, beyond the smaller of the two. Here, the gravitational forces of the two large masses balance the centrifugal effect on a body at L2. On the opposite side of Earth from the Sun, the orbital period of an object would normally be greater than that of Earth. The extra pull of Earth's gravity decreases the orbital period of the object, and at the L2 point that orbital period becomes equal to Earth's. Like L1, L2 is about 1.5 million kilometers or 0.01 au from Earth.
A notable example of an artificial satellite at L2 is the James Webb Space Telescope, designed to operate near the Earth–Sun L2. See other spacecraft at Sun–Earth L2.
L3 point
The L3 point lies on the line defined by the two large masses, beyond the larger of the two. Within the Sun–Earth system, the L3 point exists on the opposite side of the Sun, a little outside Earth's orbit and slightly closer to the center of the Sun than Earth is. This placement occurs because the Sun is also affected by Earth's gravity and so orbits around the two bodies' barycentre, which is well inside the body of the Sun. An object at Earth's distance from the Sun would have an orbital period of one year if only the Sun's gravity is considered. But an object on the opposite side of the Sun from Earth and directly in line with both "feels" Earth's gravity adding slightly to the Sun's and therefore must orbit a little farther from the barycentre of Earth and Sun in order to have the same 1-year period. It is at the L3 point that the combined pull of Earth and Sun causes the object to orbit with the same period as Earth, in effect orbiting an Earth+Sun mass with the Earth-Sun barycentre at one focus of its orbit.
L4 and L5 points
The L4 and L5 points lie at the third corners of the two equilateral triangles in the plane of orbit whose common base is the line between the centres of the two masses, such that the point lies behind (L5) or ahead (L4) of the smaller mass with regard to its orbit around the larger mass.
Stability
The triangular points (L4 and L5) are stable equilibria, provided that the ratio of M1/M2 is greater than 24.96. This is the case for the Sun–Earth system, the Sun–Jupiter system, and, by a smaller margin, the Earth–Moon system. When a body at these points is perturbed, it moves away from the point, but the factor opposite of that which is increased or decreased by the perturbation (either gravity or angular momentum-induced speed) will also increase or decrease, bending the object's path into a stable, kidney bean-shaped orbit around the point (as seen in the corotating frame of reference).
The points L1, L2, and L3 are positions of unstable equilibrium. Any object orbiting at L1, L2, or L3 will tend to fall out of orbit; it is therefore rare to find natural objects there, and spacecraft inhabiting these areas must employ station keeping in order to maintain their position.
Put Simply:
A Lagrange (Lagrangian) Point is one of five infinitely small points where, in relation to two mutually orbiting bodies, the forces due to the gravity of each body in opposition to each other and to the centrifugal force, mutually exactly oppose each other.
Lagrange Point 1 (L1) is found along a line drawn between the centres of gravity of the two objects, at a distance from one and the other which is proportional to their masses.
L2 is a point along the same line extended beyond the smaller body to a distance where the same counterbalance of forces holds true.
L3 is a corresponding point along that line extended beyond the larger body.
L4 and L5 are found at the opposite vertices of the equilateral triangles whose common base is the line drawn between the centers of gravity the of the larger and smaller masses.
Infinitely small items placed at these points will, in the absence of random instabilities, stay there. If displaced, they will, without any other force, move away at ever increasing speeds. However, at L4 and L5, the Coriolis force will act upon an item to tend to return it to that point.
Natural objects at Lagrange points
Due to the natural stability of L4 and L5, it is common for natural objects to be found orbiting in those Lagrange points of planetary systems. Objects that inhabit those points are generically referred to as 'trojans' or 'trojan asteroids'. The name derives from the names that were given to asteroids discovered orbiting at the Sun–Jupiter L4 and L5 points, which were taken from mythological characters appearing in Homer's Iliad, an epic poem set during the Trojan War. Asteroids at the L4 point, ahead of Jupiter, are named after Greek characters in the Iliad and referred to as the "Greek camp". Those at the L5 point are named after Trojan characters and referred to as the "Trojan camp". Both camps are considered to be types of trojan bodies.
As the Sun and Jupiter are the two most massive objects in the Solar System, there are more Sun-Jupiter trojans than for any other pair of bodies. However, smaller numbers of objects are known at the Lagrange points of other orbital systems:
- The Sun–Earth L4 and L5 points contain interplanetary dust and at least two asteroids, 2010 TK7 and 2020 XL5.
- The Earth–Moon L4 and L5 points contain concentrations of interplanetary dust, known as Kordylewski clouds. Stability at these specific points is greatly complicated by solar gravitational influence.
- The Sun–Neptune L4 and L5 points contain several dozen known objects, the Neptune trojans.
- Mars has four accepted Mars trojans: 5261 Eureka, 1999 UJ7, 1998 VF31, and 2007 NS2.
- Saturn's moon Tethys has two smaller moons of Saturn in its L4 and L5 points, Telesto and Calypso. Another Saturn moon, Dione also has two Lagrangian co-orbitals, Helene at its L4 point and Polydeuces at L5. The moons wander azimuthally about the Lagrangian points, with Polydeuces describing the largest deviations, moving up to 32° away from the Saturn–Dione L5 point.
- One version of the giant impact hypothesis postulates that an object named Theia formed at the Sun–Earth L4 or L5 point and crashed into Earth after its orbit destabilized, forming the Moon.
- In binary stars, the Roche lobe has its apex located at L1; if one of the stars expands past its Roche lobe, then it will lose matter to its companion star, known as Roche lobe overflow.
Objects which are on horseshoe orbits are sometimes erroneously described as trojans, but do not occupy Lagrange points. Known objects on horseshoe orbits include 3753 Cruithne with Earth, and Saturn's moons Epimetheus and Janus.
Physical and mathematical details
Lagrangian points are the constant-pattern solutions of the restricted three-body problem. For example, given two massive bodies in orbits around their common barycenter, there are five positions in space where a third body, of comparatively negligible mass, could be placed so as to maintain its position relative to the two massive bodies. As seen in a rotating reference frame that matches the angular velocity of the two co-orbiting bodies, the gravitational fields of two massive bodies combined providing the centripetal force at the Lagrangian points, allowing the smaller third body to be relatively stationary with respect to the first two.
L1
The location of L1 is the solution to the following equation, gravitation providing the centripetal force:
We may also write this as:
This distance can be described as being such that the orbital period, corresponding to a circular orbit with this distance as radius around M2 in the absence of M1, is that of M2 around M1, divided by √3 ≈ 1.73:
L2
The location of L2 is the solution to the following equation, gravitation providing the centripetal force:
The same remarks about tidal influence and apparent size apply as for the L1 point. For example, the angular radius of the sun as viewed from L2 is arcsin(695.5×103/151.1×106) ≈ 0.264°, whereas that of the earth is arcsin(6371/1.5×106) ≈ 0.242°. Looking toward the sun from L2 one sees an annular eclipse. It is necessary for a spacecraft, like Gaia, to follow a Lissajous orbit or a halo orbit around L2 in order for its solar panels to get full sun.
L3
The location of L3 is the solution to the following equation, gravitation providing the centripetal force:
L4 and L5
The reason these points are in balance is that, at L4 and L5, the distances to the two masses are equal. Accordingly, the gravitational forces from the two massive bodies are in the same ratio as the masses of the two bodies, and so the resultant force acts through the barycenter of the system; additionally, the geometry of the triangle ensures that the resultant acceleration is to the distance from the barycenter in the same ratio as for the two massive bodies. The barycenter being both the center of mass and center of rotation of the three-body system, this resultant force is exactly that required to keep the smaller body at the Lagrange point in orbital equilibrium with the other two larger bodies of the system (indeed, the third body needs to have negligible mass). The general triangular configuration was discovered by Lagrange working on the three-body problem.
Radial acceleration
The radial acceleration a of an object in orbit at a point along the line passing through both bodies is given by:
Stability
Although the L1, L2, and L3 points are nominally unstable, there are quasi-stable periodic orbits called halo orbits around these points in a three-body system. A full n-body dynamical system such as the Solar System does not contain these periodic orbits, but does contain quasi-periodic (i.e. bounded but not precisely repeating) orbits following Lissajous-curve trajectories. These quasi-periodic Lissajous orbits are what most of Lagrangian-point space missions have used until now. Although they are not perfectly stable, a modest effort of station keeping keeps a spacecraft in a desired Lissajous orbit for a long time.
For Sun–Earth-L1 missions, it is preferable for the spacecraft to be in a large-amplitude (100,000–200,000 km or 62,000–124,000 mi) Lissajous orbit around L1 than to stay at L1, because the line between Sun and Earth has increased solar interference on Earth–spacecraft communications. Similarly, a large-amplitude Lissajous orbit around L2 keeps a probe out of Earth's shadow and therefore ensures continuous illumination of its solar panels.
The L4 and L5 points are stable provided that the mass of the primary body (e.g. the Earth) is at least 25 times the mass of the secondary body (e.g. the Moon), and the mass of the secondary is at least 10 times that of the tertiary (e.g. the satellite). The Earth is over 81 times the mass of the Moon (the Moon is 1.23% of the mass of the Earth). Although the L4 and L5 points are found at the top of a "hill", as in the effective potential contour plot above, they are nonetheless stable. The reason for the stability is a second-order effect: as a body moves away from the exact Lagrange position, Coriolis acceleration (which depends on the velocity of an orbiting object and cannot be modeled as a contour map) curves the trajectory into a path around (rather than away from) the point. Because the source of stability is the Coriolis force, the resulting orbits can be stable, but generally are not planar, but "three-dimensional": they lie on a warped surface intersecting the ecliptic plane. The kidney-shaped orbits typically shown nested around L4 and L5 are the projections of the orbits on a plane (e.g. the ecliptic) and not the full 3-D orbits.
Solar System values
This table lists sample values of L1, L2, and L3 within the Solar System. Calculations assume the two bodies orbit in a perfect circle with separation equal to the semimajor axis and no other bodies are nearby. Distances are measured from the larger body's center of mass with L3 showing a negative location. The percentage columns show how the distances compare to the semimajor axis. E.g. for the Moon, L1 is located 326400 km from Earth's center, which is 84.9% of the Earth–Moon distance or 15.1% in front of the Moon; L2 is located 448900 km from Earth's center, which is 116.8% of the Earth–Moon distance or 16.8% beyond the Moon; and L3 is located −381700 km from Earth's center, which is 99.3% of the Earth–Moon distance or 0.7084% in front of the Moon's 'negative' position.
Body pair | Semimajor axis, SMA (×109 m) | L1 (×109 m) | 1 − L1/SMA (%) | L2 (×109 m) | L2/SMA − 1 (%) | L3 (×109 m) | 1 + L3/SMA (%) |
---|---|---|---|---|---|---|---|
Earth–Moon | 0.3844 | 0.32639 | 15.09 | 0.4489 | 16.78 | −0.38168 | 0.7084 |
Sun–Mercury | 57.909 | 57.689 | 0.3806 | 58.13 | 0.3815 | −57.909 | 0.000009683 |
Sun–Venus | 108.21 | 107.2 | 0.9315 | 109.22 | 0.9373 | −108.21 | 0.0001428 |
Sun–Earth | 149.6 | 148.11 | 0.997 | 151.1 | 1.004 | −149.6 | 0.0001752 |
Sun–Mars | 227.94 | 226.86 | 0.4748 | 229.03 | 0.4763 | −227.94 | 0.00001882 |
Sun–Jupiter | 778.34 | 726.45 | 6.667 | 832.65 | 6.978 | −777.91 | 0.05563 |
Sun–Saturn | 1426.7 | 1362.5 | 4.496 | 1492.8 | 4.635 | −1426.4 | 0.01667 |
Sun–Uranus | 2870.7 | 2801.1 | 2.421 | 2941.3 | 2.461 | −2870.6 | 0.002546 |
Sun–Neptune | 4498.4 | 4383.4 | 2.557 | 4615.4 | 2.602 | −4498.3 | 0.003004 |
Spaceflight applications
Sun–Earth
Sun–Earth L1 is suited for making observations of the Sun–Earth system. Objects here are never shadowed by Earth or the Moon and, if observing Earth, always view the sunlit hemisphere. The first mission of this type was the 1978 International Sun Earth Explorer 3 (ISEE-3) mission used as an interplanetary early warning storm monitor for solar disturbances. Since June 2015, DSCOVR has orbited the L1 point. Conversely it is also useful for space-based solar telescopes, because it provides an uninterrupted view of the Sun and any space weather (including the solar wind and coronal mass ejections) reaches L1 up to an hour before Earth. Solar and heliospheric missions currently located around L1 include the Solar and Heliospheric Observatory, Wind, and the Advanced Composition Explorer. Planned missions include the Interstellar Mapping and Acceleration Probe (IMAP) and the NEO Surveyor.
Sun–Earth L2 is a good spot for space-based observatories. Because an object around L2 will maintain the same relative position with respect to the Sun and Earth, shielding and calibration are much simpler. It is, however, slightly beyond the reach of Earth's umbra, so solar radiation is not completely blocked at L2. Spacecraft generally orbit around L2, avoiding partial eclipses of the Sun to maintain a constant temperature. From locations near L2, the Sun, Earth and Moon are relatively close together in the sky; this means that a large sunshade with the telescope on the dark-side can allow the telescope to cool passively to around 50 K – this is especially helpful for infrared astronomy and observations of the cosmic microwave background. The James Webb Space Telescope has been positioned at L2 (12/25/21).
Sun–Earth L3 was a popular place to put a "Counter-Earth" in pulp science fiction and comic books. Once space-based observation became possible via satellites and probes, it was shown to hold no such object. The Sun–Earth L3 is unstable and could not contain a natural object, large or small, for very long. This is because the gravitational forces of the other planets are stronger than that of Earth (Venus, for example, comes within 0.3 AU of this L3 every 20 months).
A spacecraft orbiting near Sun–Earth L3 would be able to closely monitor the evolution of active sunspot regions before they rotate into a geoeffective position, so that a seven-day early warning could be issued by the NOAA Space Weather Prediction Center. Moreover, a satellite near Sun–Earth L3 would provide very important observations not only for Earth forecasts, but also for deep space support (Mars predictions and for crewed mission to near-Earth asteroids). In 2010, spacecraft transfer trajectories to Sun–Earth L3 were studied and several designs were considered.
Missions to Lagrangian points generally orbit the points rather than occupy them directly.
Another interesting and useful property of the collinear Lagrangian points and their associated Lissajous orbits is that they serve as "gateways" to control the chaotic trajectories of the Interplanetary Transport Network.
Earth–Moon
Earth–Moon L1 allows comparatively easy access to Lunar and Earth orbits with minimal change in velocity and this has as an advantage to position a habitable space station intended to help transport cargo and personnel to the Moon and back.
Earth–Moon L2 has been used for a communications satellite covering the Moon's far side, for example, Queqiao, launched in 2018, and would be an ideal location for a propellant depot as part of the proposed depot-based space transportation architecture.
Sun–Venus
Scientists at the B612 Foundation were planning to use Venus's L3 point to position their planned Sentinel telescope, which aimed to look back towards Earth's orbit and compile a catalogue of near-Earth asteroids.
Sun–Mars
In 2017, the idea of positioning a magnetic dipole shield at the Sun–Mars L1 point for use as an artificial magnetosphere for Mars was discussed at a NASA conference. The idea is that this would protect the planet's atmosphere from the Sun's radiation and solar winds.
Lagrangian spacecraft and missions
Spacecraft at Sun–Earth L1
International Sun Earth Explorer 3 (ISEE-3) began its mission at the Sun–Earth L1 before leaving to intercept a comet in 1982. The Sun–Earth L1 is also the point to which the Reboot ISEE-3 mission was attempting to return the craft as the first phase of a recovery mission (as of September 25, 2014 all efforts have failed and contact was lost).
Solar and Heliospheric Observatory (SOHO) is stationed in a halo orbit at L1, and the Advanced Composition Explorer (ACE) in a Lissajous orbit. WIND is also at L1. Currently slated for launch in late 2024, the Interstellar Mapping and Acceleration Probe will be placed near L1.
Deep Space Climate Observatory (DSCOVR), launched on 11 February 2015, began orbiting L1 on 8 June 2015 to study the solar wind and its effects on Earth. DSCOVR is unofficially known as GORESAT, because it carries a camera always oriented to Earth and capturing full-frame photos of the planet similar to the Blue Marble. This concept was proposed by then-Vice President of the United States Al Gore in 1998 and was a centerpiece in his 2006 film An Inconvenient Truth.
LISA Pathfinder (LPF) was launched on 3 December 2015, and arrived at L1 on 22 January 2016, where, among other experiments, it tested the technology needed by (e)LISA to detect gravitational waves. LISA Pathfinder used an instrument consisting of two small gold alloy cubes.
After ferrying lunar samples back to Earth, the transport module of Chang'e 5 was sent to L1 with its remaining fuel as part of the Chinese Lunar Exploration Program on 16 December 2020 where it is permanently stationed to conduct limited Earth-Sun observations.
Spacecraft at Sun–Earth L2
Spacecraft at the Sun–Earth L2 point are in a Lissajous orbit until decommissioned, when they are sent into a heliocentric graveyard orbit.
- 1 October 2001 – October 2010: Wilkinson Microwave Anisotropy Probe
- November 2003 – April 2004: WIND, then it returned to Earth orbit before going to L1 where it still remains
- July 2009 – 29 April 2013: Herschel Space Telescope
- 3 July 2009 – 21 October 2013: Planck Space Observatory
- 25 August 2011 – April 2012: Chang'e 2, from where it travelled to 4179 Toutatis and then into deep space
- January 2014: Gaia Space Observatory
- 2019: Spektr-RG X-Ray Observatory
- 2021: James Webb Space Telescope uses a halo orbit
- 2022: Euclid Space Telescope
- 2024: Nancy Grace Roman Space Telescope (WFIRST) will use a halo orbit
- 2031: Advanced Telescope for High-Energy Astrophysics (ATHENA) will use a halo orbit
Spacecraft at Earth–Moon L2
- Chang'e 5-T1 experimental spacecraft DFH-3A "service module" was sent to the Earth-Moon L2 lunar Lissajous orbit on 13 January 2015, where it used the remaining 800 kg of fuel to test maneuvers key to future lunar missions.
- Queqiao entered orbit around the Earth–Moon L2 on 14 June 2018. It serves as a relay satellite for the Chang'e 4 lunar far-side lander, which cannot communicate directly with Earth.