From Wikipedia, the free encyclopedia

Protein design is the rational design of new protein molecules to design novel activity, behavior, or purpose, and to advance basic understanding of protein function[1]. Proteins can be designed from scratch (de novo design) or by making calculated variants of a known protein structure and its sequence (termed protein redesign). Rational protein design approaches make protein-sequence predictions that will fold to specific structures. These predicted sequences can then be validated experimentally through methods such as peptide synthesis, site-directed mutagenesis, or artificial gene synthesis.

Rational protein design dates back to the mid-1970s, although initial protein design approaches were based mostly on sequence composition and did not account for specific interactions between side-chains at the atomic level.[2] Recently, however, improvements in molecular force fields, protein design algorithms, and structural bioinformatics, such as libraries of amino acid conformations, have enabled the development of advanced computational protein design tools. These computational tools can make complex calculations on protein energetics and flexibility, and perform searches over vast configuration spaces, which would be unfeasible to perform manually. Due to the development of computational protein design programs, and important successes in the field (see examples below), rational protein design has become one of the most important tools in protein engineering.