Search This Blog

Monday, December 10, 2018

Artificial photosynthesis (updated)

From Wikipedia, the free encyclopedia

A sample of a photoelectric cell in a lab environment. Catalysts are added to the cell, which is submerged in water and illuminated by simulated sunlight. The bubbles seen are oxygen (forming on the front of the cell) and hydrogen (forming on the back of the cell).

Artificial photosynthesis is a chemical process that replicates the natural process of photosynthesis, a process that converts sunlight, water, and carbon dioxide into carbohydrates and oxygen; as an imitation of a natural process it is biomimetic. The term, artificial photosynthesis, is commonly used to refer to any scheme for capturing and storing the energy from sunlight in the chemical bonds of a fuel (a solar fuel). Photocatalytic water splitting converts water into hydrogen and oxygen, and is a major research topic of artificial photosynthesis. Light-driven carbon dioxide reduction is another process studied, that replicates natural carbon fixation

Research of this topic includes the design and assembly of devices for the direct production of solar fuels, photoelectrochemistry and its application in fuel cells, and the engineering of enzymes and photoautotrophic microorganisms for microbial biofuel and biohydrogen production from sunlight.

Overview

The photosynthetic reaction can be divided into two half-reactions of oxidation and reduction, both of which are essential to producing fuel. In plant photosynthesis, water molecules are photo-oxidized to release oxygen and protons. The second phase of plant photosynthesis (also known as the Calvin-Benson cycle) is a light-independent reaction that converts carbon dioxide into glucose (fuel). Researchers of artificial photosynthesis are developing photocatalysts that are able to perform both of these reactions. Furthermore, the protons resulting from water splitting can be used for hydrogen production. These catalysts must be able to react quickly and absorb a large percentage of the incident solar photons.

Natural (left) versus artificial photosynthesis (right)

Whereas photovoltaics can provide energy directly from sunlight, the inefficiency of fuel production from photovoltaic electricity (indirect process) and the fact that sunshine is not constant throughout the day sets a limit to its use. One way of using natural photosynthesis is for the production of a biofuel, which is an indirect process that suffers from low energy conversion efficiency (due to photosynthesis' own low efficiency in converting sunlight to biomass), the cost of harvesting and transporting the fuel, and conflicts due to the increasing need of land mass for food production. The purpose of artificial photosynthesis is to produce a fuel from sunlight that can be stored conveniently and used when sunlight is not available, by using direct processes, that is, to produce a solar fuel. With the development of catalysts able to reproduce the major parts of photosynthesis, water and sunlight would ultimately be the only needed sources for clean energy production. The only by-product would be oxygen, and production of a solar fuel has the potential to be cheaper than gasoline.

One process for the creation of a clean and affordable energy supply is the development of photocatalytic water splitting under solar light. This method of sustainable hydrogen production is a major objective for the development of alternative energy systems. It is also predicted to be one of the more, if not the most, efficient ways of obtaining hydrogen from water. The conversion of solar energy into hydrogen via a water-splitting process assisted by photosemiconductor catalysts is one of the most promising technologies in development. This process has the potential for large quantities of hydrogen to be generated in an ecologically sound manner. The conversion of solar energy into a clean fuel (H2) under ambient conditions is one of the greatest challenges facing scientists in the twenty-first century.

Two methods are generally recognized for the construction of solar fuel cells for hydrogen production:
  1. A homogeneous system is one such that catalysts are not compartmentalized, that is, components are present in the same compartment. This means that hydrogen and oxygen are produced in the same location. This can be a drawback, since they compose an explosive mixture, demanding gas product separation. Also, all components must be active in approximately the same conditions (e.g., pH).
  2. A heterogeneous system has two separate electrodes, an anode and a cathode, making possible the separation of oxygen and hydrogen production. Furthermore, different components do not necessarily need to work in the same conditions. However, the increased complexity of these systems makes them harder to develop and more expensive.
Another area of research within artificial photosynthesis is the selection and manipulation of photosynthetic microorganisms, namely green microalgae and cyanobacteria, for the production of solar fuels. Many strains are able to produce hydrogen naturally, and scientists are working to improve them. Algae biofuels such as butanol and methanol are produced both at laboratory and commercial scales. This method has benefited from the development of synthetic biology, which is also being explored by the J. Craig Venter Institute to produce a synthetic organism capable of biofuel production. In 2017, an efficient process was developed to produce acetic acid from carbon dioxide using "cyborg bacteria".

History

Artificial photosynthesis was first anticipated by the Italian chemist Giacomo Ciamician during 1912. In a lecture that was it later published in Science he proposed a switch from the use of fossil fuels to radiant energy provided by the sun and captured by technical photochemistry devices. In this switch he saw a possibility to lessen the difference between the rich north of Europe and poor south and ventured a guess that this switch from coal to solar energy would "not be harmful to the progress and to human happiness."

During the late 1960s, Akira Fujishima discovered the photocatalytic properties of titanium dioxide, the so-called Honda-Fujishima effect, which could be used for hydrolysis.

The Swedish Consortium for Artificial Photosynthesis, the first of its kind, was established during 1994 as a collaboration between groups of three different universities, Lund, Uppsala and Stockholm, being presently active around Lund and the Ångström Laboratories in Uppsala. The consortium was built with a multidisciplinary approach to focus on learning from natural photosynthesis and applying this knowledge in biomimetic systems.

Research of artificial photosynthesis is experiencing a boom at the beginning of the 21st century. During 2000, Commonwealth Scientific and Industrial Research Organisation (CSIRO) researchers publicized their intent to emphasize carbon dioxide capture and its conversion to hydrocarbons. In 2003, the Brookhaven National Laboratory announced the discovery of an important intermediate part of the reduction of CO2 to CO (the simplest possible carbon dioxide reduction reaction), which could result in better catalysts.

One of the disadvantages of artificial systems for water-splitting catalysts is their general reliance on scarce, expensive elements, such as ruthenium or rhenium. During 2008, with the funding of the United States Air Force Office of Scientific Research, MIT chemist and director of the Solar Revolution Project Daniel G. Nocera and postdoctoral fellow Matthew Kanan attempted to circumvent this problem by using a catalyst containing the cheaper and more abundant elements cobalt and phosphate. The catalyst was able to split water into oxygen and protons using sunlight, and could potentially be coupled to a hydrogen gas producing catalyst such as platinum. Furthermore, while the catalyst broke down during catalysis, it could self-repair. This experimental catalyst design was considered a major improvement by many researchers.

Whereas CO is the prime reduction product of CO2, more complex carbon compounds are usually desired. During 2008, Andrew B. Bocarsly reported the direct conversion of carbon dioxide and water to methanol using solar energy in a very efficient photochemical cell.

While Nocera and coworkers had accomplished water splitting to oxygen and protons, a light-driven process to produce hydrogen is desirable. During 2009, the Leibniz Institute for Catalysis reported inexpensive iron carbonyl complexes able to do just that. During the same year, researchers at the University of East Anglia also used iron carbonyl compounds to achieve photoelectrochemical hydrogen production with 60% efficiency, this time using a gold electrode covered with layers of indium phosphide to which the iron complexes were linked. Both of these processes used a molecular approach, where discrete nanoparticles are responsible for catalysis.

Visible light water splitting with a one piece multijunction cell was first demonstrated and patented by William Ayers at Energy Conversion Devices during 1983. This group demonstrated water photolysis into hydrogen and oxygen, now referred to as an "artificial leaf" or "wireless solar water splitting" with a low cost, thin film amorphous silicon multijunction cell immersed directly in water. Hydrogen evolved on the front amorphous silicon surface decorated with various catalysts while oxygen evolved from the back metal substrate which also eliminated the hazard of mixed hydrogen/oxygen gas evolution. A Nafion membrane above the immersed cell provided a path for proton transport. The higher photovoltage available from the multijuction thin film cell with visible light was a major advance over previous photolysis attempts with UV sensitive single junction cells. The group's patent also lists several other semiconductor multijunction compositions in addition to amorphous silicon. 

During 2009, F. del Valle and K. Domen showed the effect of the thermal treatment in a closed atmosphere using Cd
1-x
Zn
x
S
photocatalysts. Cd
1-x
Zn
x
S
solid solution reports high activity in hydrogen production from water splitting under sunlight irradiation. A mixed heterogeneous/molecular approach by researchers at the University of California, Santa Cruz, during 2010, using both nitrogen-doped and cadmium selenide quantum dots-sensitized titanium dioxide nanoparticles and nanowires, also yielded photoproduced hydrogen.

Artificial photosynthesis remained an academic field for many years. However, in the beginning of 2009, Mitsubishi Chemical Holdings was reported to be developing its own artificial photosynthesis research by using sunlight, water and carbon dioxide to "create the carbon building blocks from which resins, plastics and fibers can be synthesized." This was confirmed with the establishment of the KAITEKI Institute later that year, with carbon dioxide reduction through artificial photosynthesis as one of the main goals.

During 2010, the United States Department of Energy established, as one of its Energy Innovation Hubs, the Joint Center for Artificial Photosynthesis. The mission of JCAP is to find a cost-effective method to produce fuels using only sunlight, water, and carbon-dioxide as inputs.  JCAP is managed by a team from Caltech, directed by Professor Nathan Lewis and brings together more than 120 scientists and engineers from California Institute of Technology and its main partner, Lawrence Berkeley National Laboratory. JCAP also draws on the expertise and capabilities of key partners from Stanford University, the University of California at Berkeley, UCSB, University of California, Irvine, and University of California at San Diego, and the Stanford Linear Accelerator.  Additionally, JCAP serves as a central hub for other solar fuels research teams across the United States, including 20 DOE Energy Frontier Research Center.  The program has a budget of $122M over five years, subject to Congressional appropriation.

Also during 2010, a team directed by professor David Wendell at the University of Cincinnati successfully demonstrated photosynthesis in an artificial construct consisting of enzymes suspended in a foam housing.

During 2011, Daniel Nocera and his research team announced the creation of the first practical artificial leaf. In a speech at the 241st National Meeting of the American Chemical Society, Nocera described an advanced solar cell the size of a poker card capable of splitting water into oxygen and hydrogen, approximately ten times more efficient than natural photosynthesis. The cell is mostly made of inexpensive materials that are widely available, works under simple conditions, and shows increased stability over previous catalysts: in laboratory studies, the authors demonstrated that an artificial leaf prototype could operate continuously for at least forty-five hours without a drop in activity. In May 2012, Sun Catalytix, the startup based on Nocera's research, stated that it will not be scaling up the prototype as the device offers few savings over other ways to make hydrogen from sunlight. Leading experts in the field have supported a proposal for a Global Project on Artificial Photosynthesis as a combined energy security and climate change solution. Conferences on this theme have been held at Lord Howe Island during 2011, at Chicheley Hall in the UK in 2014 and at Canberra and Lord Howe island during 2016.

Current research

In energy terms, natural photosynthesis can be divided in three steps:
  1. Light-harvesting complexes in bacteria and plants capture photons and transduce them into electrons, injecting them into the photosynthetic chain.
  2. Proton-coupled electron transfer along several cofactors of the photosynthetic chain, causing local, spatial charge separation.
  3. Redox catalysis, which uses the aforementioned transferred electrons to oxidize water to dioxygen and protons; these protons can in some species be utilized for dihydrogen production.
A triad assembly, with a photosensitizer (P) linked in tandem to a water oxidation catalyst (D) and a hydrogen evolving catalyst (A). Electrons flow from D to A when catalysis occurs.

Using biomimetic approaches, artificial photosynthesis tries to construct systems doing the same type of processes. Ideally, a triad assembly could oxidize water with one catalyst, reduce protons with another and have a photosensitizer molecule to power the whole system. One of the simplest designs is where the photosensitizer is linked in tandem between a water oxidation catalyst and a hydrogen evolving catalyst:
  • The photosensitizer transfers electrons to the hydrogen catalyst when hit by light, becoming oxidized in the process.
  • This drives the water splitting catalyst to donate electrons to the photosensitizer. In a triad assembly, such a catalyst is often referred to as a donor. The oxidized donor is able to perform water oxidation.
The state of the triad with one catalyst oxidized on one end and the second one reduced on the other end of the triad is referred to as a charge separation, and is a driving force for further electron transfer, and consequently catalysis, to occur. The different components may be assembled in diverse ways, such as supramolecular complexes, compartmentalized cells, or linearly, covalently linked molecules.

Research into finding catalysts that can convert water, carbon dioxide, and sunlight to carbohydrates or hydrogen is a current, active field. By studying the natural oxygen-evolving complex (OEC), researchers have developed catalysts such as the "blue dimer" to mimic its function or inorganic-based materials such as Birnessite with the similar building block as the OEC. Photoelectrochemical cells that reduce carbon dioxide into carbon monoxide (CO), formic acid (HCOOH) and methanol (CH3OH) are under development. However, these catalysts are still very inefficient.

Hydrogen catalysts

Hydrogen is the simplest solar fuel to synthesize, since it involves only the transference of two electrons to two protons. It must, however, be done stepwise, with formation of an intermediate hydride anion:
2 e + 2 H+ ⇌ H+ + H ⇌ H2
The proton-to-hydrogen converting catalysts present in nature are hydrogenases. These are enzymes that can either reduce protons to molecular hydrogen or oxidize hydrogen to protons and electrons. Spectroscopic and crystallographic studies spanning several decades have resulted in a good understanding of both the structure and mechanism of hydrogenase catalysis. Using this information, several molecules mimicking the structure of the active site of both nickel-iron and iron-iron hydrogenases have been synthesized. Other catalysts are not structural mimics of hydrogenase but rather functional ones. Synthesized catalysts include structural H-cluster models, a dirhodium photocatalyst, and cobalt catalysts.

Water-oxidizing catalysts

Water oxidation is a more complex chemical reaction than proton reduction. In nature, the oxygen-evolving complex performs this reaction by accumulating reducing equivalents (electrons) in a manganese-calcium cluster within photosystem II (PS II), then delivering them to water molecules, with the resulting production of molecular oxygen and protons:
2 H2O → O2 + 4 H+ + 4e
Without a catalyst (natural or artificial), this reaction is very endothermic, requiring high temperatures (at least 2500 K).

The exact structure of the oxygen-evolving complex has been hard to determine experimentally. As of 2011, the most detailed model was from a 1.9 Å resolution crystal structure of photosystem II. The complex is a cluster containing four manganese and one calcium ions, but the exact location and mechanism of water oxidation within the cluster is unknown. Nevertheless, bio-inspired manganese and manganese-calcium complexes have been synthesized, such as [Mn4O4] cubane-type clusters, some with catalytic activity.

Some ruthenium complexes, such as the dinuclear µ-oxo-bridged "blue dimer" (the first of its kind to be synthesized), are capable of light-driven water oxidation, thanks to being able to form high valence states. In this case, the ruthenium complex acts as both photosensitizer and catalyst. 

Many metal oxides have been found to have water oxidation catalytic activity, including ruthenium(IV) oxide (RuO2), iridium(IV) oxide (IrO2), cobalt oxides (including nickel-doped Co3O4), manganese oxide (including layered MnO2 (birnessite), Mn2O3), and a mix of Mn2O3 with CaMn2O4. Oxides are easier to obtain than molecular catalysts, especially those from relatively abundant transition metals (cobalt and manganese), but suffer from low turnover frequency and slow electron transfer properties, and their mechanism of action is hard to decipher and, therefore, to adjust.

Recently Metal-Organic Framework (MOF)-based materials have been shown to be a highly promising candidate for water oxidation with first row transition metals. The stability and tunability of this system is projected to be highly beneficial for future development.

Photosensitizers

Structure of [Ru(bipy)3]2+, a broadly used photosensitizer.

Nature uses pigments, mainly chlorophylls, to absorb a broad part of the visible spectrum. Artificial systems can use either one type of pigment with a broad absorption range or combine several pigments for the same purpose. 

Ruthenium polypyridine complexes, in particular tris(bipyridine)ruthenium(II) and its derivatives, have been extensively used in hydrogen photoproduction due to their efficient visible light absorption and long-lived consequent metal-to-ligand charge transfer excited state, which makes the complexes strong reducing agents. Other noble metal-containing complexes used include ones with platinum, rhodium and iridium.

Metal-free organic complexes have also been successfully employed as photosensitizers. Examples include eosin Y and rose bengal. Pyrrole rings such as porphyrins have also been used in coating nanomaterials or semiconductors for both homogeneous and heterogeneous catalysis.

As part of current research efforts artificial photonic antenna systems are being studied to determine efficient and sustainable ways to collect light for artificial photosynthesis. Gion Calzaferri (2009) describes one such antenna that uses zeolite L as a host for organic dyes, to mimic plant's light collecting systems. The antenna is fabricated by inserting dye molecules into the channels of zeolite L. The insertion process, which takes place under vacuum and at high temperature conditions, is made possible by the cooperative vibrational motion of the zeolite framework and of the dye molecules. The resulting material may be interfaced to an external device via a stopcock intermediate.

Carbon dioxide reduction catalysts

In nature, carbon fixation is done by green plants using the enzyme RuBisCO as a part of the Calvin cycle. RuBisCO is a rather slow catalyst compared to the vast majority of other enzymes, incorporating only a few molecules of carbon dioxide into ribulose-1,5-bisphosphate per minute, but does so at atmospheric pressure and in mild, biological conditions. The resulting product is further reduced and eventually used in the synthesis of glucose, which in turn is a precursor to more complex carbohydrates, such as cellulose and starch. The process consumes energy in the form of ATP and NADPH

Artificial CO2 reduction for fuel production aims mostly at producing reduced carbon compounds from atmospheric CO2. Some transition metal polyphosphine complexes have been developed for this end; however, they usually require previous concentration of CO2 before use, and carriers (molecules that would fixate CO2) that are both stable in aerobic conditions and able to concentrate CO2 at atmospheric concentrations haven't been yet developed. The simplest product from CO2 reduction is carbon monoxide (CO), but for fuel development, further reduction is needed, and a key step also needing further development is the transfer of hydride anions to CO.

Other materials and components

Charge separation is a major property of dyad and triad assemblies. Some nanomaterials employed are fullerenes (such as carbon nanotubes), a strategy that explores the pi-bonding properties of these materials. Diverse modifications (covalent and non-covalent) of carbon nanotubes have been attempted to increase the efficiency of charge separation, including the addition of ferrocene and pyrrole-like molecules such as porphyrins and phthalocyanines.

Since photodamage is usually a consequence in many of the tested systems after a period of exposure to light, bio-inspired photoprotectants have been tested, such as carotenoids (which are used in photosynthesis as natural protectants).

Light-driven methodologies under development

Photoelectrochemical cells

Photoelectrochemical cells are a heterogeneous system that use light to produce either electricity or hydrogen. The vast majority of photoelectrochemical cells use semiconductors as catalysts. There have been attempts to use synthetic manganese complex-impregnated Nafion as a working electrode, but it has been since shown that the catalytically active species is actually the broken-down complex.

A promising, emerging type of solar cell is the dye-sensitized solar cell. This type of cell still depends on a semiconductor (such as TiO2) for current conduction on one electrode, but with a coating of an organic or inorganic dye that acts as a photosensitizer; the counter electrode is a platinum catalyst for H2 production. These cells have a self-repair mechanism and solar-to-electricity conversion efficiencies rivaling those of solid-state semiconductor ones.

Photocatalytic water splitting in homogeneous systems

Direct water oxidation by photocatalysts is a more efficient usage of solar energy than photoelectrochemical water splitting because it avoids an intermediate thermal or electrical energy conversion step.

Bio-inspired manganese clusters have been shown to possess water oxidation activity when adsorbed on clays together with ruthenium photosensitizers, although with low turnover numbers.

As mentioned above, some ruthenium complexes are able to oxidize water under solar light irradiation. Although their photostability is still an issue, many can be reactivated by a simple adjustment of the conditions in which they work. Improvement of catalyst stability has been tried resorting to polyoxometalates, in particular ruthenium-based ones.

Whereas a fully functional artificial system is usually intended when constructing a water splitting device, some mixed methods have been tried. One of these involve the use of a gold electrode to which photosystem II is linked; an electric current is detected upon illumination.

Hydrogen-producing artificial systems

A H-cluster FeFe hydrogenase model compound covalently linked to a ruthenium photosensitizer. The ruthenium complex absorbs light and transduces its energy to the iron compound, which can then reduce protons to H2.

The simplest photocatalytic hydrogen production unit consists of a hydrogen-evolving catalyst linked to a photosensitizer. In this dyad assembly, a so-called sacrificial donor for the photosensitizer is needed, that is, one that is externally supplied and replenished; the photosensitizer donates the necessary reducing equivalents to the hydrogen-evolving catalyst, which uses protons from a solution where it is immersed or dissolved in. Cobalt compounds such as cobaloximes are some of the best hydrogen catalysts, having been coupled to both metal-containing and metal-free photosensitizers. The first H-cluster models linked to photosensitizers (mostly ruthenium photosensitizers, but also porphyrin-derived ones) were prepared during the early 2000s. Both types of assembly are under development to improve their stability and increase their turnover numbers, both necessary for constructing a sturdy, long-lived solar fuel cell.

As with water oxidation catalysis, not only fully artificial systems have been idealized: hydrogenase enzymes themselves have been engineered for photoproduction of hydrogen, by coupling the enzyme to an artificial photosensitizer, such as [Ru(bipy)3]2+ or even photosystem I.

NADP+/NADPH coenzyme-inspired catalyst

In natural photosynthesis, the NADP+ coenzyme is reducible to NADPH through binding of a proton and two electrons. This reduced form can then deliver the proton and electrons, potentially as a hydride, to reactions that culminate in the production of carbohydrates (the Calvin cycle). The coenzyme is recyclable in a natural photosynthetic cycle, but this process is yet to be artificially replicated. 

A current goal is to obtain an NADPH-inspired catalyst capable of recreating the natural cyclic process. Utilizing light, hydride donors would be regenerated and produced where the molecules are continuously used in a closed cycle. Brookhaven chemists are now using a ruthenium-based complex to serve as the acting model. The complex is proven to perform correspondingly with NADP+/NADPH, behaving as the foundation for the proton and two electrons needed to convert acetone to isopropanol

Currently, Brookhaven researchers are aiming to find ways for light to generate the hydride donors. The general idea is to use this process to produce fuels from carbon dioxide.

Photobiological production of fuels

Some photoautotrophic microorganisms can, under certain conditions, produce hydrogen. Nitrogen-fixing microorganisms, such as filamentous cyanobacteria, possess the enzyme nitrogenase, responsible for conversion of atmospheric N2 into ammonia; molecular hydrogen is a byproduct of this reaction, and is many times not released by the microorganism, but rather taken up by a hydrogen-oxidizing (uptake) hydrogenase. One way of forcing these organisms to produce hydrogen is then to annihilate uptake hydrogenase activity. This has been done on a strain of Nostoc punctiforme: one of the structural genes of the NiFe uptake hydrogenase was inactivated by insertional mutagenesis, and the mutant strain showed hydrogen evolution under illumination.

Many of these photoautotrophs also have bidirectional hydrogenases, which can produce hydrogen under certain conditions. However, other energy-demanding metabolic pathways can compete with the necessary electrons for proton reduction, decreasing the efficiency of the overall process; also, these hydrogenases are very sensitive to oxygen.

Several carbon-based biofuels have also been produced using cyanobacteria, such as 1-butanol.

Synthetic biology techniques are predicted to be useful for this topic. Microbiological and enzymatic engineering have the potential of improving enzyme efficiency and robustness, as well as constructing new biofuel-producing metabolic pathways in photoautotrophs that previously lack them, or improving on the existing ones. Another topic being developed is the optimization of photobioreactors for commercial application.

Employed research techniques

Research in artificial photosynthesis is necessarily a multidisciplinary topic, requiring a multitude of different expertise. Some techniques employed in making and investigating catalysts and solar cells include:

Advantages, disadvantages, and efficiency

Advantages of solar fuel production through artificial photosynthesis include:
  • The solar energy can be immediately converted and stored. In photovoltaic cells, sunlight is converted into electricity and then converted again into chemical energy for storage, with some necessary loss of energy associated with the second conversion.
  • The byproducts of these reactions are environmentally friendly. Artificially photosynthesized fuel would be a carbon-neutral source of energy, which could be used for transportation or homes.
Disadvantages include:
  • Materials used for artificial photosynthesis often corrode in water, so they may be less stable than photovoltaics over long periods of time. Most hydrogen catalysts are very sensitive to oxygen, being inactivated or degraded in its presence; also, photodamage may occur over time.
  • The cost is not (yet) advantageous enough to compete with fossil fuels as a commercially viable source of energy.
A concern usually addressed in catalyst design is efficiency, in particular how much of the incident light can be used in a system in practice. This is comparable with photosynthetic efficiency, where light-to-chemical-energy conversion is measured. Photosynthetic organisms are able to collect about 50% of incident solar radiation, however the theoretical limit of photosynthetic efficiency is 4.6 and 6.0% for C3 and C4 plants respectively. In reality, the efficiency of photosynthesis is much lower and is usually below 1%, with some exceptions such as sugarcane in tropical climate. In contrast, the highest reported efficiency for artificial photosynthesis lab prototypes is 22.4%. However, plants are efficient in using CO2 at atmospheric concentrations, something that artificial catalysts still cannot perform.

Solar energy

From Wikipedia, the free encyclopedia

The source of Earth's solar power: the Sun

Solar energy is radiant light and heat from the Sun that is harnessed using a range of ever-evolving technologies such as solar heating, photovoltaics, solar thermal energy, solar architecture, molten salt power plants and artificial photosynthesis.

It is an important source of renewable energy and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light-dispersing properties, and designing spaces that naturally circulate air.

The large magnitude of solar energy available makes it a highly appealing source of electricity. The United Nations Development Programme in its 2000 World Energy Assessment found that the annual potential of solar energy was 1,575–49,837 exajoules (EJ). This is several times larger than the total world energy consumption, which was 559.8 EJ in 2012.

In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating global warming, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared".

Potential

About half the incoming solar energy reaches the Earth's surface.
Average insolation. The theoretical area of the small black dots is sufficient to supply the world's total energy needs of 18 TW with solar power.
 
The Earth receives 174 petawatts (PW) of incoming solar radiation (insolation) at the upper atmosphere. Approximately 30% is reflected back to space while the rest is absorbed by clouds, oceans and land masses. The spectrum of solar light at the Earth's surface is mostly spread across the visible and near-infrared ranges with a small part in the near-ultraviolet. Most of the world's population live in areas with insolation levels of 150–300 watts/m², or 3.5–7.0 kWh/m² per day.

Solar radiation is absorbed by the Earth's land surface, oceans – which cover about 71% of the globe – and atmosphere. Warm air containing evaporated water from the oceans rises, causing atmospheric circulation or convection. When the air reaches a high altitude, where the temperature is low, water vapor condenses into clouds, which rain onto the Earth's surface, completing the water cycle. The latent heat of water condensation amplifies convection, producing atmospheric phenomena such as wind, cyclones and anti-cyclones. Sunlight absorbed by the oceans and land masses keeps the surface at an average temperature of 14 °C. By photosynthesis, green plants convert solar energy into chemically stored energy, which produces food, wood and the biomass from which fossil fuels are derived.

The total solar energy absorbed by Earth's atmosphere, oceans and land masses is approximately 3,850,000 exajoules (EJ) per year. In 2002, this was more energy in one hour than the world used in one year. Photosynthesis captures approximately 3,000 EJ per year in biomass. The amount of solar energy reaching the surface of the planet is so vast that in one year it is about twice as much as will ever be obtained from all of the Earth's non-renewable resources of coal, oil, natural gas, and mined uranium combined.

Yearly solar fluxes & human consumption1
Solar 3,850,000
Wind 2,250
Biomass potential ~200
Primary energy use2 539
Electricity2 ~67
1 Energy given in Exajoule (EJ) = 1018 J = 278 TWh 
2 Consumption as of year 2010

The potential solar energy that could be used by humans differs from the amount of solar energy present near the surface of the planet because factors such as geography, time variation, cloud cover, and the land available to humans limit the amount of solar energy that we can acquire. 

Geography affects solar energy potential because areas that are closer to the equator have a greater amount of solar radiation. However, the use of photovoltaics that can follow the position of the sun can significantly increase the solar energy potential in areas that are farther from the equator. Time variation effects the potential of solar energy because during the nighttime there is little solar radiation on the surface of the Earth for solar panels to absorb. This limits the amount of energy that solar panels can absorb in one day. Cloud cover can affect the potential of solar panels because clouds block incoming light from the sun and reduce the light available for solar cells.

In addition, land availability has a large effect on the available solar energy because solar panels can only be set up on land that is otherwise unused and suitable for solar panels. Roofs have been found to be a suitable place for solar cells, as many people have discovered that they can collect energy directly from their homes this way. Other areas that are suitable for solar cells are lands that are not being used for businesses where solar plants can be established.

Solar technologies are characterized as either passive or active depending on the way they capture, convert and distribute sunlight and enable solar energy to be harnessed at different levels around the world, mostly depending on distance from the equator. Although solar energy refers primarily to the use of solar radiation for practical ends, all renewable energies, other than Geothermal power and Tidal power, derive their energy either directly or indirectly from the Sun.

Active solar techniques use photovoltaics, concentrated solar power, solar thermal collectors, pumps, and fans to convert sunlight into useful outputs. Passive solar techniques include selecting materials with favorable thermal properties, designing spaces that naturally circulate air, and referencing the position of a building to the Sun. Active solar technologies increase the supply of energy and are considered supply side technologies, while passive solar technologies reduce the need for alternate resources and are generally considered demand side technologies.

In 2000, the United Nations Development Programme, UN Department of Economic and Social Affairs, and World Energy Council published an estimate of the potential solar energy that could be used by humans each year that took into account factors such as insolation, cloud cover, and the land that is usable by humans. The estimate found that solar energy has a global potential of 1,575–49,837 EJ per year (see table below).

Annual solar energy potential by region (Exajoules) 
Region North America Latin America and Caribbean Western Europe Central and Eastern Europe Former Soviet Union Middle East and North Africa Sub-Saharan Africa Pacific Asia South Asia Centrally planned Asia Pacific OECD
Minimum 181.1 112.6 25.1 4.5 199.3 412.4 371.9 41.0 38.8 115.5 72.6
Maximum 7,410 3,385 914 154 8,655 11,060 9,528 994 1,339 4,135 2,263
Note:
  • Total global annual solar energy potential amounts to 1,575 EJ (minimum) to 49,837 EJ (maximum)
  • Data reflects assumptions of annual clear sky irradiance, annual average sky clearance, and available land area. All figures given in Exajoules.
Quantitative relation of global solar potential vs. the world's primary energy consumption:
  • Ratio of potential vs. current consumption (402 EJ) as of year: 3.9 (minimum) to 124 (maximum)
  • Ratio of potential vs. projected consumption by 2050 (590–1,050 EJ): 1.5–2.7 (minimum) to 47–84 (maximum)
  • Ratio of potential vs. projected consumption by 2100 (880–1,900 EJ): 0.8–1.8 (minimum) to 26–57 (maximum)
Source: United Nations Development Programme – World Energy Assessment (2000)

Thermal energy

Solar thermal technologies can be used for water heating, space heating, space cooling and process heat generation.

Early commercial adaptation

In 1878, at the Universal Exposition in Paris, Augustin Mouchot successfully demonstrated a solar steam engine, but couldn't continue development because of cheap coal and other factors. 

1917 Patent drawing of Shuman's solar collector

In 1897, Frank Shuman, a U.S. inventor, engineer and solar energy pioneer, built a small demonstration solar engine that worked by reflecting solar energy onto square boxes filled with ether, which has a lower boiling point than water, and were fitted internally with black pipes which in turn powered a steam engine. In 1908 Shuman formed the Sun Power Company with the intent of building larger solar power plants. He, along with his technical advisor A.S.E. Ackermann and British physicist Sir Charles Vernon Boys, developed an improved system using mirrors to reflect solar energy upon collector boxes, increasing heating capacity to the extent that water could now be used instead of ether. Shuman then constructed a full-scale steam engine powered by low-pressure water, enabling him to patent the entire solar engine system by 1912. 

Shuman built the world's first solar thermal power station in Maadi, Egypt, between 1912 and 1913. His plant used parabolic troughs to power a 45–52 kilowatts (60–70 hp) engine that pumped more than 22,000 litres (4,800 imp gal; 5,800 US gal) of water per minute from the Nile River to adjacent cotton fields. Although the outbreak of World War I and the discovery of cheap oil in the 1930s discouraged the advancement of solar energy, Shuman's vision and basic design were resurrected in the 1970s with a new wave of interest in solar thermal energy. In 1916 Shuman was quoted in the media advocating solar energy's utilization, saying:
We have proved the commercial profit of sun power in the tropics and have more particularly proved that after our stores of oil and coal are exhausted the human race can receive unlimited power from the rays of the sun.
— Frank Shuman, New York Times, 2 July 1916

Water heating

Solar water heaters facing the Sun to maximize gain

Solar hot water systems use sunlight to heat water. In low geographical latitudes (below 40 degrees) from 60 to 70% of the domestic hot water use with temperatures up to 60 °C can be provided by solar heating systems. The most common types of solar water heaters are evacuated tube collectors (44%) and glazed flat plate collectors (34%) generally used for domestic hot water; and unglazed plastic collectors (21%) used mainly to heat swimming pools.

As of 2007, the total installed capacity of solar hot water systems was approximately 154 thermal gigawatt (GWth). China is the world leader in their deployment with 70 GWth installed as of 2006 and a long-term goal of 210 GWth by 2020. Israel and Cyprus are the per capita leaders in the use of solar hot water systems with over 90% of homes using them. In the United States, Canada, and Australia, heating swimming pools is the dominant application of solar hot water with an installed capacity of 18 GWth as of 2005.

Heating, cooling and ventilation

In the United States, heating, ventilation and air conditioning (HVAC) systems account for 30% (4.65 EJ/yr) of the energy used in commercial buildings and nearly 50% (10.1 EJ/yr) of the energy used in residential buildings. Solar heating, cooling and ventilation technologies can be used to offset a portion of this energy. 

MIT's Solar House #1, built in 1939 in the U.S., used seasonal thermal energy storage for year-round heating.

Thermal mass is any material that can be used to store heat—heat from the Sun in the case of solar energy. Common thermal mass materials include stone, cement and water. Historically they have been used in arid climates or warm temperate regions to keep buildings cool by absorbing solar energy during the day and radiating stored heat to the cooler atmosphere at night. However, they can be used in cold temperate areas to maintain warmth as well. The size and placement of thermal mass depend on several factors such as climate, daylighting and shading conditions. When properly incorporated, thermal mass maintains space temperatures in a comfortable range and reduces the need for auxiliary heating and cooling equipment.

A solar chimney (or thermal chimney, in this context) is a passive solar ventilation system composed of a vertical shaft connecting the interior and exterior of a building. As the chimney warms, the air inside is heated causing an updraft that pulls air through the building. Performance can be improved by using glazing and thermal mass materials in a way that mimics greenhouses. 

Deciduous trees and plants have been promoted as a means of controlling solar heating and cooling. When planted on the southern side of a building in the northern hemisphere or the northern side in the southern hemisphere, their leaves provide shade during the summer, while the bare limbs allow light to pass during the winter. Since bare, leafless trees shade 1/3 to 1/2 of incident solar radiation, there is a balance between the benefits of summer shading and the corresponding loss of winter heating. In climates with significant heating loads, deciduous trees should not be planted on the Equator-facing side of a building because they will interfere with winter solar availability. They can, however, be used on the east and west sides to provide a degree of summer shading without appreciably affecting winter solar gain.

Cooking

Parabolic dish produces steam for cooking, in Auroville, India

Solar cookers use sunlight for cooking, drying and pasteurization. They can be grouped into three broad categories: box cookers, panel cookers and reflector cookers. The simplest solar cooker is the box cooker first built by Horace de Saussure in 1767. A basic box cooker consists of an insulated container with a transparent lid. It can be used effectively with partially overcast skies and will typically reach temperatures of 90–150 °C (194–302 °F). Panel cookers use a reflective panel to direct sunlight onto an insulated container and reach temperatures comparable to box cookers. Reflector cookers use various concentrating geometries (dish, trough, Fresnel mirrors) to focus light on a cooking container. These cookers reach temperatures of 315 °C (599 °F) and above but require direct light to function properly and must be repositioned to track the Sun.

Process heat

Solar concentrating technologies such as parabolic dish, trough and Scheffler reflectors can provide process heat for commercial and industrial applications. The first commercial system was the Solar Total Energy Project (STEP) in Shenandoah, Georgia, USA where a field of 114 parabolic dishes provided 50% of the process heating, air conditioning and electrical requirements for a clothing factory. This grid-connected cogeneration system provided 400 kW of electricity plus thermal energy in the form of 401 kW steam and 468 kW chilled water, and had a one-hour peak load thermal storage. Evaporation ponds are shallow pools that concentrate dissolved solids through evaporation. The use of evaporation ponds to obtain salt from seawater is one of the oldest applications of solar energy. Modern uses include concentrating brine solutions used in leach mining and removing dissolved solids from waste streams. Clothes lines, clotheshorses, and clothes racks dry clothes through evaporation by wind and sunlight without consuming electricity or gas. In some states of the United States legislation protects the "right to dry" clothes. Unglazed transpired collectors (UTC) are perforated sun-facing walls used for preheating ventilation air. UTCs can raise the incoming air temperature up to 22 °C (40 °F) and deliver outlet temperatures of 45–60 °C (113–140 °F). The short payback period of transpired collectors (3 to 12 years) makes them a more cost-effective alternative than glazed collection systems. As of 2003, over 80 systems with a combined collector area of 35,000 square metres (380,000 sq ft) had been installed worldwide, including an 860 m2 (9,300 sq ft) collector in Costa Rica used for drying coffee beans and a 1,300 m2 (14,000 sq ft) collector in Coimbatore, India, used for drying marigolds.

Water treatment


Solar distillation can be used to make saline or brackish water potable. The first recorded instance of this was by 16th-century Arab alchemists. A large-scale solar distillation project was first constructed in 1872 in the Chilean mining town of Las Salinas. The plant, which had solar collection area of 4,700 m2 (51,000 sq ft), could produce up to 22,700 L (5,000 imp gal; 6,000 US gal) per day and operate for 40 years. Individual still designs include single-slope, double-slope (or greenhouse type), vertical, conical, inverted absorber, multi-wick, and multiple effect. These stills can operate in passive, active, or hybrid modes. Double-slope stills are the most economical for decentralized domestic purposes, while active multiple effect units are more suitable for large-scale applications.

Solar water disinfection (SODIS) involves exposing water-filled plastic polyethylene terephthalate (PET) bottles to sunlight for several hours. Exposure times vary depending on weather and climate from a minimum of six hours to two days during fully overcast conditions. It is recommended by the World Health Organization as a viable method for household water treatment and safe storage. Over two million people in developing countries use this method for their daily drinking water.

Solar energy may be used in a water stabilization pond to treat waste water without chemicals or electricity. A further environmental advantage is that algae grow in such ponds and consume carbon dioxide in photosynthesis, although algae may produce toxic chemicals that make the water unusable.

Molten salt technology

Molten salt can be employed as a thermal energy storage method to retain thermal energy collected by a solar tower or solar trough of a concentrated solar power plant, so that it can be used to generate electricity in bad weather or at night. It was demonstrated in the Solar Two project from 1995–1999. The system is predicted to have an annual efficiency of 99%, a reference to the energy retained by storing heat before turning it into electricity, versus converting heat directly into electricity. The molten salt mixtures vary. The most extended mixture contains sodium nitrate, potassium nitrate and calcium nitrate. It is non-flammable and nontoxic, and has already been used in the chemical and metals industries as a heat-transport fluid, so experience with such systems exists in non-solar applications. 

The salt melts at 131 °C (268 °F). It is kept liquid at 288 °C (550 °F) in an insulated "cold" storage tank. The liquid salt is pumped through panels in a solar collector where the focused sun heats it to 566 °C (1,051 °F). It is then sent to a hot storage tank. This is so well insulated that the thermal energy can be usefully stored for up to a week.

When electricity is needed, the hot salt is pumped to a conventional steam-generator to produce superheated steam for a turbine/generator as used in any conventional coal, oil, or nuclear power plant. A 100-megawatt turbine would need a tank about 9.1 metres (30 ft) tall and 24 metres (79 ft) in diameter to drive it for four hours by this design.

Several parabolic trough power plants in Spain and solar power tower developer SolarReserve use this thermal energy storage concept. The Solana Generating Station in the U.S. has six hours of storage by molten salt. The María Elena plant is a 400 MW thermo-solar complex in the northern Chilean region of Antofagasta employing molten salt technology.

Electricity production


Some of the world's largest solar power stations: Ivanpah (CSP) and Topaz (PV)

Solar power is the conversion of sunlight into electricity, either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP). CSP systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. PV converts light into electric current using the photoelectric effect

Solar power is anticipated to become the world's largest source of electricity by 2050, with solar photovoltaics and concentrated solar power contributing 16 and 11 percent to the global overall consumption, respectively. In 2016, after another year of rapid growth, solar generated 1.3% of global power.

Commercial concentrated solar power plants were first developed in the 1980s. The 392 MW Ivanpah Solar Power Facility, in the Mojave Desert of California, is the largest solar power plant in the world. Other large concentrated solar power plants include the 150 MW Solnova Solar Power Station and the 100 MW Andasol solar power station, both in Spain. The 250 MW Agua Caliente Solar Project, in the United States, and the 221 MW Charanka Solar Park in India, are the world's largest photovoltaic plants. Solar projects exceeding 1 GW are being developed, but most of the deployed photovoltaics are in small rooftop arrays of less than 5 kW, which are connected to the grid using net metering and/or a feed-in tariff.

Photovoltaics

In the last two decades, photovoltaics (PV), also known as solar PV, has evolved from a pure niche market of small scale applications towards becoming a mainstream electricity source. A solar cell is a device that converts light directly into electricity using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s. In 1931 a German engineer, Dr Bruno Lange, developed a photo cell using silver selenide in place of copper oxide. Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery. Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the crystalline silicon solar cell in 1954. These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%. By 2012 available efficiencies exceeded 20%, and the maximum efficiency of research photovoltaics was in excess of 40%.

Concentrated solar power

Concentrating Solar Power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. The concentrated heat is then used as a heat source for a conventional power plant. A wide range of concentrating technologies exists; the most developed are the parabolic trough, the concentrating linear fresnel reflector, the Stirling dish and the solar power tower. Various techniques are used to track the Sun and focus light. In all of these systems a working fluid is heated by the concentrated sunlight, and is then used for power generation or energy storage.

Architecture and urban planning

Darmstadt University of Technology, Germany, won the 2007 Solar Decathlon in Washington, D.C. with this passive house designed for humid and hot subtropical climate.
 
Sunlight has influenced building design since the beginning of architectural history. Advanced solar architecture and urban planning methods were first employed by the Greeks and Chinese, who oriented their buildings toward the south to provide light and warmth.

The common features of passive solar architecture are orientation relative to the Sun, compact proportion (a low surface area to volume ratio), selective shading (overhangs) and thermal mass. When these features are tailored to the local climate and environment they can produce well-lit spaces that stay in a comfortable temperature range. Socrates' Megaron House is a classic example of passive solar design. The most recent approaches to solar design use computer modeling tying together solar lighting, heating and ventilation systems in an integrated solar design package. Active solar equipment such as pumps, fans and switchable windows can complement passive design and improve system performance. 

Urban heat islands (UHI) are metropolitan areas with higher temperatures than that of the surrounding environment. The higher temperatures result from increased absorption of solar energy by urban materials such as asphalt and concrete, which have lower albedos and higher heat capacities than those in the natural environment. A straightforward method of counteracting the UHI effect is to paint buildings and roads white, and to plant trees in the area. Using these methods, a hypothetical "cool communities" program in Los Angeles has projected that urban temperatures could be reduced by approximately 3 °C at an estimated cost of US$1 billion, giving estimated total annual benefits of US$530 million from reduced air-conditioning costs and healthcare savings.

Agriculture and horticulture

Greenhouses like these in the Westland municipality of the Netherlands grow vegetables, fruits and flowers.

Agriculture and horticulture seek to optimize the capture of solar energy in order to optimize the productivity of plants. Techniques such as timed planting cycles, tailored row orientation, staggered heights between rows and the mixing of plant varieties can improve crop yields. While sunlight is generally considered a plentiful resource, the exceptions highlight the importance of solar energy to agriculture. During the short growing seasons of the Little Ice Age, French and English farmers employed fruit walls to maximize the collection of solar energy. These walls acted as thermal masses and accelerated ripening by keeping plants warm. Early fruit walls were built perpendicular to the ground and facing south, but over time, sloping walls were developed to make better use of sunlight. In 1699, Nicolas Fatio de Duillier even suggested using a tracking mechanism which could pivot to follow the Sun. Applications of solar energy in agriculture aside from growing crops include pumping water, drying crops, brooding chicks and drying chicken manure. More recently the technology has been embraced by vintners, who use the energy generated by solar panels to power grape presses.

Greenhouses convert solar light to heat, enabling year-round production and the growth (in enclosed environments) of specialty crops and other plants not naturally suited to the local climate. Primitive greenhouses were first used during Roman times to produce cucumbers year-round for the Roman emperor Tiberius. The first modern greenhouses were built in Europe in the 16th century to keep exotic plants brought back from explorations abroad. Greenhouses remain an important part of horticulture today, and plastic transparent materials have also been used to similar effect in polytunnels and row covers.

Transport

Winner of the 2013 World Solar Challenge in Australia
 
Solar electric aircraft circumnavigating the globe in 2015
 
Development of a solar-powered car has been an engineering goal since the 1980s. The World Solar Challenge is a biannual solar-powered car race, where teams from universities and enterprises compete over 3,021 kilometres (1,877 mi) across central Australia from Darwin to Adelaide. In 1987, when it was founded, the winner's average speed was 67 kilometres per hour (42 mph) and by 2007 the winner's average speed had improved to 90.87 kilometres per hour (56.46 mph). The North American Solar Challenge and the planned South African Solar Challenge are comparable competitions that reflect an international interest in the engineering and development of solar powered vehicles.

Some vehicles use solar panels for auxiliary power, such as for air conditioning, to keep the interior cool, thus reducing fuel consumption.

In 1975, the first practical solar boat was constructed in England. By 1995, passenger boats incorporating PV panels began appearing and are now used extensively. In 1996, Kenichi Horie made the first solar-powered crossing of the Pacific Ocean, and the Sun21 catamaran made the first solar-powered crossing of the Atlantic Ocean in the winter of 2006–2007. There were plans to circumnavigate the globe in 2010.

In 1974, the unmanned AstroFlight Sunrise airplane made the first solar flight. On 29 April 1979, the Solar Riser made the first flight in a solar-powered, fully controlled, man-carrying flying machine, reaching an altitude of 40 ft (12 m). In 1980, the Gossamer Penguin made the first piloted flights powered solely by photovoltaics. This was quickly followed by the Solar Challenger which crossed the English Channel in July 1981. In 1990 Eric Scott Raymond in 21 hops flew from California to North Carolina using solar power. Developments then turned back to unmanned aerial vehicles (UAV) with the Pathfinder (1997) and subsequent designs, culminating in the Helios which set the altitude record for a non-rocket-propelled aircraft at 29,524 metres (96,864 ft) in 2001. The Zephyr, developed by BAE Systems, is the latest in a line of record-breaking solar aircraft, making a 54-hour flight in 2007, and month-long flights were envisioned by 2010. As of 2016, Solar Impulse, an electric aircraft, is currently circumnavigating the globe. It is a single-seat plane powered by solar cells and capable of taking off under its own power. The design allows the aircraft to remain airborne for several days.

A solar balloon is a black balloon that is filled with ordinary air. As sunlight shines on the balloon, the air inside is heated and expands causing an upward buoyancy force, much like an artificially heated hot air balloon. Some solar balloons are large enough for human flight, but usage is generally limited to the toy market as the surface-area to payload-weight ratio is relatively high.

Fuel production

Concentrated solar panels are getting a power boost. Pacific Northwest National Laboratory (PNNL) will be testing a new concentrated solar power system – one that can help natural gas power plants reduce their fuel usage by up to 20 percent.

Solar chemical processes use solar energy to drive chemical reactions. These processes offset energy that would otherwise come from a fossil fuel source and can also convert solar energy into storable and transportable fuels. Solar induced chemical reactions can be divided into thermochemical or photochemical. A variety of fuels can be produced by artificial photosynthesis. The multielectron catalytic chemistry involved in making carbon-based fuels (such as methanol) from reduction of carbon dioxide is challenging; a feasible alternative is hydrogen production from protons, though use of water as the source of electrons (as plants do) requires mastering the multielectron oxidation of two water molecules to molecular oxygen. Some have envisaged working solar fuel plants in coastal metropolitan areas by 2050 – the splitting of sea water providing hydrogen to be run through adjacent fuel-cell electric power plants and the pure water by-product going directly into the municipal water system. Another vision involves all human structures covering the earth's surface (i.e., roads, vehicles and buildings) doing photosynthesis more efficiently than plants.

Hydrogen production technologies have been a significant area of solar chemical research since the 1970s. Aside from electrolysis driven by photovoltaic or photochemical cells, several thermochemical processes have also been explored. One such route uses concentrators to split water into oxygen and hydrogen at high temperatures (2,300–2,600 °C or 4,200–4,700 °F). Another approach uses the heat from solar concentrators to drive the steam reformation of natural gas thereby increasing the overall hydrogen yield compared to conventional reforming methods. Thermochemical cycles characterized by the decomposition and regeneration of reactants present another avenue for hydrogen production. The Solzinc process under development at the Weizmann Institute of Science uses a 1 MW solar furnace to decompose zinc oxide (ZnO) at temperatures above 1,200 °C (2,200 °F). This initial reaction produces pure zinc, which can subsequently be reacted with water to produce hydrogen.

Energy storage methods

Thermal energy storage. The Andasol CSP plant uses tanks of molten salt to store solar energy.

Thermal mass systems can store solar energy in the form of heat at domestically useful temperatures for daily or interseasonal durations. Thermal storage systems generally use readily available materials with high specific heat capacities such as water, earth and stone. Well-designed systems can lower peak demand, shift time-of-use to off-peak hours and reduce overall heating and cooling requirements.

Phase change materials such as paraffin wax and Glauber's salt are another thermal storage medium. These materials are inexpensive, readily available, and can deliver domestically useful temperatures (approximately 64 °C or 147 °F). The "Dover House" (in Dover, Massachusetts) was the first to use a Glauber's salt heating system, in 1948. Solar energy can also be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two project used this method of energy storage, allowing it to store 1.44 terajoules (400,000 kWh) in its 68 m³ storage tank with an annual storage efficiency of about 99%.

Off-grid PV systems have traditionally used rechargeable batteries to store excess electricity. With grid-tied systems, excess electricity can be sent to the transmission grid, while standard grid electricity can be used to meet shortfalls. Net metering programs give household systems a credit for any electricity they deliver to the grid. This is handled by 'rolling back' the meter whenever the home produces more electricity than it consumes. If the net electricity use is below zero, the utility then rolls over the kilowatt hour credit to the next month. Other approaches involve the use of two meters, to measure electricity consumed vs. electricity produced. This is less common due to the increased installation cost of the second meter. Most standard meters accurately measure in both directions, making a second meter unnecessary. 

Pumped-storage hydroelectricity stores energy in the form of water pumped when energy is available from a lower elevation reservoir to a higher elevation one. The energy is recovered when demand is high by releasing the water, with the pump becoming a hydroelectric power generator.

Development, deployment and economics

Participants in a workshop on sustainable development inspect solar panels at Monterrey Institute of Technology and Higher Education, Mexico City on top of a building on campus.

Beginning with the surge in coal use which accompanied the Industrial Revolution, energy consumption has steadily transitioned from wood and biomass to fossil fuels. The early development of solar technologies starting in the 1860s was driven by an expectation that coal would soon become scarce. However, development of solar technologies stagnated in the early 20th century in the face of the increasing availability, economy, and utility of coal and petroleum.

The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies. Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the U.S. and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the U.S. (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer Institute for Solar Energy Systems ISE).

Commercial solar water heaters began appearing in the United States in the 1890s. These systems saw increasing use until the 1920s but were gradually replaced by cheaper and more reliable heating fuels. As with photovoltaics, solar water heating attracted renewed attention as a result of the oil crises in the 1970s but interest subsided in the 1980s due to falling petroleum prices. Development in the solar water heating sector progressed steadily throughout the 1990s and annual growth rates have averaged 20% since 1999. Although generally underestimated, solar water heating and cooling is by far the most widely deployed solar technology with an estimated capacity of 154 GW as of 2007.

The International Energy Agency has said that solar energy can make considerable contributions to solving some of the most urgent problems the world now faces:
The development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating climate change, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared.
In 2011, a report by the International Energy Agency found that solar energy technologies such as photovoltaics, solar hot water and concentrated solar power could provide a third of the world's energy by 2060 if politicians commit to limiting climate change. The energy from the sun could play a key role in de-carbonizing the global economy alongside improvements in energy efficiency and imposing costs on greenhouse gas emitters. "The strength of solar is the incredible variety and flexibility of applications, from small scale to big scale".
We have proved ... that after our stores of oil and coal are exhausted the human race can receive unlimited power from the rays of the sun.
— Frank Shuman, New York Times, 2 July 1916

ISO standards

The International Organization for Standardization has established several standards relating to solar energy equipment. For example, ISO 9050 relates to glass in building while ISO 10217 relates to the materials used in solar water heaters.

Rydberg atom

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Rydberg_atom Figure 1: Electron orbi...