Search This Blog

Friday, March 6, 2015

Hymenoptera (bees, wasps, ants, etc.)


From Wikipedia, the free encyclopedia

Hymenoptera
Temporal range: Triassic – Recent 251–0Ma
Orange Caterpillar Parasite Wasp.jpg
female Netelia producta
Scientific classification e
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
(unranked): Endopterygota
Superorder: Hymenopterida
Order: Hymenoptera
Linnaeus, 1758
Suborders
Apocrita
Symphyta

The Hymenoptera are one of the largest orders of insects, comprising the sawflies, wasps, bees and ants. Over 150,000 species are recognized, with many more remaining to be described. The name refers to the wings of the insects, and is derived from the Ancient Greek ὑμήν (hymen): membrane and πτερόν (pteron): wing. The hind wings are connected to the fore wings by a series of hooks called hamuli.

Females typically have a special ovipositor for inserting eggs into hosts or otherwise inaccessible places. The ovipositor is often modified into a stinger. The young develop through holometabolism, (complete metamorphosis) — that is, they have a worm-like larval stage and an inactive pupal stage before they mature.

Evolution

Hymenoptera originated in the Triassic, the oldest fossils belonging to the family Xyelidae. Social hymenopterans appeared during the Cretaceous.[1] The evolution of this group has been intensively studied by A. Rasnitsyn, M. S. Engel, G. Dlussky, and others.

This clade has been studied by examining the mitochondrial DNA.[2] Although this study was unable to resolve all the ambiguities in this clade some relationships could be established. Aculeata, Ichneumonomorpha and Proctotrupomorpha were monophyletic. The Megalyroidea andTrigonalyoidea are sister clades as are the Chalcidoidea+Diaprioidea. The Cynipoidea was generally recovered as the sister group to Chalcidoidea and Diaprioidea which are each other closest relations.

Anatomy

Hymenopterans range in size from very small to large insects, and usually have two pairs of wings. Their mouthparts are adapted for chewing, with well-developed mandibles (ectognathous mouthparts). Many species have further developed the mouthparts into a lengthy proboscis, with which they can drink liquids, such as nectar. They have large compound eyes, and typically three simple eyes, (ocelli).

The forward margin of the hind wing bears a number of hooked bristles, or "hamuli", which lock onto the fore wing, keeping them held together. The smaller species may have only two or three hamuli on each side, but the largest wasps may have a considerable number, keeping the wings gripped together especially tightly. Hymenopteran wings have relatively few veins compared with many other insects, especially in the smaller species.

In the more ancestral hymenopterans, the ovipositor is blade-like, and has evolved for slicing plant tissues. In the majority, however, it is modified for piercing, and, in some cases, is several times the length of the body. In some species, the ovipositor has become modified as a stinger, and the eggs are laid from the base of the structure, rather than from the tip, which is used only to inject venom. The sting is typically used to immobilise prey, but in some wasps and bees may be used in defense.[3]

The larvae of the more ancestral hymenopterans resemble caterpillars in appearance, and like them, typically feed on leaves. They have large chewing mandibles, three pairs of thoracic limbs, and, in most cases, a number of abdominal prolegs. Unlike caterpillars, however, the prolegs have no grasping spines, and the antennae are reduced to mere stubs.

The larvae of other hymenopterans, however, more closely resemble maggots, and are adapted to life in a protected environment. This may be the body of a host organism, or a cell in a nest, where the adults will care for the larva. Such larvae have soft bodies with no limbs. They are also unable to defecate until they reach adulthood due to having an incomplete digestive tract, presumably to avoid contaminating their environment.[3]

Sex determination

Among most or all hymenopterans, sex is determined by the number of chromosomes an individual possesses.[4] Fertilized eggs get two sets of chromosomes (one from each parent's respective gametes), and so develop into diploid females, while unfertilized eggs only contain one set (from the mother), and so develop into haploid males; the act of fertilization is under the voluntary control of the egg-laying female.[3] This phenomenon is called haplodiploidy.
However, the actual genetic mechanisms of haplodiploid sex determination may be more complex than simple chromosome number. In many Hymenoptera, sex is actually determined by a single gene locus with many alleles.[4] In these species, haploids are male and diploids heterozygous at the sex locus are female, but occasionally a diploid will be homozygous at the sex locus and develop as a male instead. This is especially likely to occur in an individual whose parents were siblings or other close relatives. Diploid males are known to be produced by inbreeding in many ant, bee and wasp species. Diploid biparental males are usually sterile but a few species that have fertile diploid males are known.[5]

One consequence of haplodiploidy is that females on average actually have more genes in common with their sisters than they do with their own daughters. Because of this, cooperation among kindred females may be unusually advantageous, and has been hypothesized to contribute to the multiple origins of eusociality within this order.[3] In many colonies of bees, ants, and wasps, worker females will remove eggs laid by other workers due to increased relatedness to direct siblings, a phenomenon known as worker policing.[6]

Diet

Different species of Hymenoptera show a wide range of feeding habits. The most primitive forms are typically herbivorous, feeding on leaves or pine needles. Stinging wasps are predators, and will provision their larvae with immobilised prey, while bees feed on nectar and pollen.

A number of species are parasitoid as larvae. The adults inject the eggs into a paralysed host, which they begin to consume after hatching. Some species are even hyperparasitoid, with the host itself being another parasitoid insect. Habits intermediate between those of the herbivorous and parasitoid forms are shown in some hymenopterans, which inhabit the galls or nests of other insects, stealing their food, and eventually killing and eating the occupant.[3]

Classification

Symphyta

The suborder Symphyta includes the sawflies, horntails, and parasitic wood wasps. The group may be paraphyletic, as it has been suggested that the family Orussidae may be the group from which the Apocrita arose. They have an unconstricted junction between the thorax and abdomen. The larvae are herbivorous free-living eruciforms, with three pairs of true legs, prolegs (on every segment, unlike Lepidoptera) and ocelli. The prolegs do not have crochet hooks at the ends unlike the larvae of the Lepidoptera.

Apocrita

The wasps, bees, and ants together make up the suborder Apocrita, characterized by a constriction between the first and second abdominal segments called a wasp-waist (petiole), also involving the fusion of the first abdominal segment to the thorax. Also, the larvae of all Apocrita do not have legs, prolegs, or ocelli. The hindgut of the larvae also remains closed during development, with feces being stored inside the body, with the exception of some bee larvae where the larval anus through developmental reversion has reappeared again. In general, the anus only opens at the completion of larval growth.[7]

References in fiction

In the play-by-post role-playing game Blue Dwarf, the name Hymenoptera is given to a species of large space-travelling insects. Hymenoptera are a recurring enemy that conquer planets to convert the planet's living protein into food. They are allergic to alcohol.

"Hymenoptera" is a short story written by Michael Blumlein in 1993.

Mentioned also in Bailey White's novel Mama Makes Up Her Mind.

Gasoline


From Wikipedia, the free encyclopedia


A Shell gasoline station in Hiroshima, Japan

Gasoline /ˈɡæsəln/, known as petrol /ˈpɛtrəl/ outside of North America, is a transparent, petroleum-derived liquid that is used primarily as a fuel in internal combustion engines. It consists mostly of organic compounds obtained by the fractional distillation of petroleum, enhanced with a variety of additives; a 42-gallon barrel of crude oil yields about 19 gallons of gasoline, when processed in an oil refinery.

The characteristic of a particular gasoline blend to resist igniting too early (which causes knocking and reduces efficiency in reciprocating engines) is measured by its octane rating. Gasoline is produced in several grades of octane rating. Tetraethyllead and other lead compounds are no longer used in most areas to regulate and increase octane-rating, but many other additives are put into gasoline to improve its chemical stability, control corrosiveness and provide fuel system 'cleaning,' and determine performance characteristics under intended use. Sometimes, gasoline also contains ethanol as an alternative fuel, for economic or environmental reasons.

Gasoline, as used worldwide in the vast number of internal combustion engines used in transport and industry, has a significant impact on the environment, both in local effects (e.g., smog) and in global effects (e.g., effect on the climate). Gasoline may also enter the environment uncombusted, as liquid and as vapors, from leakage and handling during production, transport and delivery, from storage tanks, from spills, etc. As an example of efforts to control such leakage, many (underground) storage tanks are required to have extensive measures in place to detect and prevent such leaks. The material safety data sheet for unleaded gasoline shows at least 15 hazardous chemicals occurring in various amounts. Benzene and many anti-knocking additives are carcinogenic.

Inhaled (huffed) gasoline vapor is a common intoxicant that has become epidemic in some poorer communities and indigenous groups in Australia, Canada, New Zealand, and some Pacific Islands.[1] In response, Opal fuel has been developed by the BP Kwinana Refinery in Australia, and contains only 5% aromatics (unlike the usual 25%), which weakens the effects of inhalation.[2]

Octane rating

Spark ignition engines are designed to burn gasoline in a controlled process called deflagration. In some cases, however, the unburned mixture can autoignite by detonating from pressure and heat alone, rather than ignite from the spark plug at exactly the right time, which causes rapid pressure rise which can damage the engine. This phenomenon is often referred to as engine knocking or end-gas knock. One way to reduce knock in spark ignition engines is to increase the gasoline's resistance to autoignition, which is expressed by its octane rating.

Octane rating is measured relative to a mixture of 2,2,4-trimethylpentane (an isomer of octane) and n-heptane. There are different conventions for expressing octane ratings, so the same physical fuel may have several different octane ratings based on the measure used. One of the best known is the research octane number (RON).

The octane rating of typical commercially-available gasoline varies by country. In Finland, Sweden, and Norway, 95 RON is the standard for regular unleaded gasoline and 98 RON is also available as a more expensive option. In the UK, ordinary regular unleaded gasoline is 95 RON (commonly available), premium unleaded gasoline is always 97 RON, and super unleaded is usually 97-98 RON.[citation needed] However, both Shell and BP produce fuel at 102 RON for cars with high-performance engines, and the supermarket chain Tesco began in 2006 to sell super unleaded gasoline rated at 99 RON. In the US, octane ratings in unleaded fuels can vary between 85[3] and 87 AKI (91-92 RON) for regular, through 89-90 AKI (94-95 RON) for mid-grade (equivalent to European regular), up to 90-94 AKI (95-99 RON) for premium (European premium).

South Africa's largest city, Johannesburg, is located on the Highveld at 1,753 metres (5,751 ft) above sea level. So the South African AA recommends 95 octane petrol (gasoline) as low altitude and 93 octane for use in Johannesburg because "The higher the altitude the lower the air pressure, and the lower the need for a high octane fuel as there is no real performance gain".[4]

The octane rating became important as the military sought higher output for aircraft engines in the late 1930s and the 1940s. A higher octane rating allows a higher compression ratio or supercharger boost, and thus higher temperatures and pressures, which translate to higher power output. Some scientists even predicted that a nation with a good supply of high octane gasoline would have the advantage in air power. In 1943, the Rolls Royce Merlin aero engine produced 1320 horsepower (984 kW) using 100 RON fuel from a modest 27 liter displacement. Towards the end of the second world war, experiments were conducted using 150 RON fuel (100/150[clarification needed] avgas), obtained by adding 2.5% aniline to 100 octane avgas.[5]

Stability

Quality gasoline should be stable for six months if stored properly but gasoline will break down slowly over time due to the separation of the components. Gasoline stored for a year will most likely be able to be burned in an internal combustion engine without too much trouble but the effects of long term storage will become more noticeable with each passing month until a time comes when the gasoline should be diluted with ever increasing amounts of freshly made fuel so that the older gasoline may be used up. If left undiluted, improper operation will occur and this may include engine damage from misfiring and/or the lack of proper action of the fuel within a fuel injection system and from an onboard computer attempting to compensate (if applicable to the vehicle). Storage should be in an airtight container (to prevent oxidation or water vapors mixing in with the gas) that can withstand the vapor pressure of the gasoline without venting (to prevent the loss of the more volatile fractions) at a stable cool temperature (to reduce the excess pressure from liquid expansion, and to reduce the rate of any decomposition reactions). When gasoline is not stored correctly, gums and solids may be created, which can corrode system components and accumulate on wetted surfaces, resulting in a condition called "stale fuel". Gasoline containing ethanol is especially subject to absorbing atmospheric moisture, then forming gums, solids, or two phases (a hydrocarbon phase floating on top of a water-alcohol phase).

The presence of these degradation products in the fuel tank, fuel lines plus a carburetor or fuel injection components makes it harder to start the engine or causes reduced engine performance. On resumption of regular engine use, the buildup may or may not eventually cleaned out by the flow of fresh gasoline. The addition of a fuel stabilizer to gasoline can extend the life of fuel that is not or cannot be stored properly though removal of all fuel from a fuel system is the only real solution to the problem of long term storage of an engine or a machine or vehicle. Some typical fuel stabilizers are proprietary mixtures containing mineral spirits, isopropyl alcohol, 1,2,4-trimethylbenzene,or other additives. Fuel stabilizer is commonly used for small engines, such as lawnmower and tractor engines, especially when their use is seasonal (low to no use for one or more seasons of the year). Users have been advised to keep gasoline containers more than half full and properly capped to reduce air exposure, to avoid storage at high temperatures, to run an engine for ten minutes to circulate the stabilizer through all components prior to storage, and to run the engine at intervals to purge stale fuel from the carburetor.[6]

Energy content

Energy is obtained from the combustion of gasoline by the conversion of a hydrocarbon to carbon dioxide and water. The combustion of octane follows this reaction:
2 C8H18 + 25 O2 → 16 CO2 + 18 H2O
Gasoline contains about 42.4 MJ/kg (120 MJ/US gal, 33.3 kWh/US gal) quoting the lower heating value[citation needed]. Gasoline blends differ, and therefore actual energy content varies according to the season and producer by up to 4% more or less than the average, according to the US EPA. On average, about 74 L of gasoline (19.5 US gal, 16.3 imp gal) are available from a barrel of crude oil (about 46% by volume), varying due to quality of crude and grade of gasoline. The remainder are products ranging from tar to naphtha.[7]

A high-octane-rated fuel, such as liquefied petroleum gas (LPG) has an overall lower power output at the typical 10:1 compression ratio of a gasoline engine. However, with an engine tuned to the use of LPG (i.e. via higher compression ratios, such as 12:1 instead of 10:1), the power output can be improved. This is because higher-octane fuels allow for a higher compression ratio without knocking, resulting in a higher cylinder temperature, which improves efficiency. Also, increased mechanical efficiency is created by a higher compression ratio through the concomitant higher expansion ratio on the power stroke, which is by far the greater effect. The higher expansion ratio extracts more work from the high-pressure gas created by the combustion process. An Atkinson cycle engine uses the timing of the valve events to produce the benefits of a high expansion ratio without the disadvantages, chiefly detonation, of a high compression ratio. A high expansion ratio is also one of the two key reasons for the efficiency of diesel engines, along with the elimination of pumping losses due to throttling of the intake air flow.

The lower energy content (per liter) of LPG in comparison to gasoline is due mainly to its lower density. Energy content per kilogram is higher than for gasoline (higher hydrogen to carbon ratio, for an example see Standard enthalpy of formation).

Molecular weights of the above reagents are C8H18 114, O2 32, CO2 44, H2O 18; therefore 1 kg of fuel reacts with 3.51 kg of oxygen to produce 3.09 kg of carbon dioxide and 1.42 kg of water.

Density

The density of gasoline ranges from 0.71–0.77 kg/L (719.7 kg/m3 ; 0.026 lb/in3; 6.073 lb/US gal; 7.29 lb/imp gal), higher densities having a greater volume of aromatics.[8] Since gasoline floats on water, water cannot generally be used to extinguish a gasoline fire unless used in a fine mist. Finished marketable gasoline is traded with a standard reference of 0.755 kg/L, and its price is escalated/de-escalated according to its actual density.

Chemical analysis and production


A pumpjack in the United States

An oil rig in the Gulf of Mexico

Gasoline is produced in oil refineries. Roughly 19 gallons of gasoline is derived from a 42 gallon barrel of crude oil. Material separated from crude oil via distillation, called virgin or straight-run gasoline, does not meet specifications for modern engines (particularly the octane rating, see below), but can be pooled to the gasoline blend.

Some of the main components of gasoline:
isooctane, butane, 3-ethyltoluene, and the octane enhancer MTBE.

The bulk of a typical gasoline consists of hydrocarbons with between 4 and 12 carbon atoms per molecule (commonly referred to as C4-C12).[6] It is a mixture of paraffins (alkanes), cycloalkanes (naphthenes), and olefins (alkenes), where the usage of the terms paraffin and olefin is particular to the oil industry. The actual ratio depends on:
  • the oil refinery that makes the gasoline, as not all refineries have the same set of processing units;
  • the crude oil feed used by the refinery;
  • the grade of gasoline, in particular, the octane rating.
The various refinery streams blended to make gasoline have different characteristics. Some important streams are:
  • straight-run gasoline, usually also called naphtha is distilled directly from crude oil. Once the leading source of fuel, its low octane rating required lead additives. It is low in aromatics (depending on the grade of crude oil), containing some cycloalkanes (naphthenes) and no olefins (alkenes). Between 0 and 20% of this stream is pooled into the finished gasoline, because the supply of this fraction is insufficient[clarification needed] and its RON is too low.[citation needed]. The chemical properties (namely octane and RVP) of the straight-run gasoline can be improved through reforming and isomerisation. However, before feeding those units, the naphtha needs to be split in light and heavy naphtha. Straight-run gasoline can be also used as a feedstock into steam-crackers to produce olefins.
  • reformate, produced in a catalytic reformer has a high octane rating with high aromatic content, and relatively low olefins (alkenes). Most of the benzene, toluene, and xylene (the so-called BTX) are more valuable as chemical feedstocks and are thus removed to some extent.
  • catalytic cracked gasoline or catalytic cracked naphtha, produced from a catalytic cracker, with a moderate octane rating, high olefins (alkene) content, and moderate aromatics level.
  • hydrocrackate (heavy, mid, and light) produced from a hydrocracker, with medium to low octane rating and moderate aromatic levels.
  • alkylate is produced in an alkylation unit, using as feedstocks isobutane and alkenes. Alkylate contains no aromatics and alkenes and has high MON[clarification needed].
  • isomerate is obtained by isomerizing low octane straight run gasoline to iso-paraffins (non-chain alkanes, like isooctane). Isomerate has medium RON and MON, but nil aromatics and olefins.
The terms above are the jargon used in the oil industry and terminology varies.

Currently, many countries set limits on gasoline aromatics in general, benzene in particular, and olefin (alkene) content. Such regulations led to increasing preference for high octane pure paraffin (alkane) components, such as alkylate, and is forcing refineries to add processing units to reduce benzene content. In the EU the benzene limit is set at 1% volume for all grade of automotive gasoline.

Gasoline can also contain other organic compounds, such as organic ethers (deliberately added), plus small levels of contaminants, in particular organosulfur compounds, but these are usually removed at the refinery.

Additives

Antiknock additives


A plastic container for storing gasoline used in Germany

Almost all countries in the world have phased out automotive leaded fuel. In 2011 six countries[9] in the world were still using leaded gasoline: Afghanistan, Myanmar, North Korea, Algeria, Iraq and Yemen. It was expected that by the end of 2013 those countries would ban leaded petrol,[10] but actually it will take longer. Algeria will replace leaded with unleaded automotive fuel only in 2015. Different additives have replaced the lead compounds. The most popular additives include aromatic hydrocarbons, ethers and alcohol (usually ethanol or methanol). For technical reasons the use of leaded additives is still permitted world-wide for the formulation of some grades of aviation gasoline such as 100LL, because the required octane rating would be technically infeasible to reach without the use of leaded additives.

Tetraethyllead

Gasoline, when used in high-compression internal combustion engines, tends to autoignite (detonate) causing damaging "engine knocking" (also called "pinging" or "pinking") noise. To address this problem, tetraethyllead (TEL) was widely adopted as an additive for gasoline in the 1920s. With the discovery of the extent of environmental and health damage caused by the lead, however, and the incompatibility of lead with catalytic converters, leaded gasoline was phased out beginning in 1973. 
By 1995, leaded fuel accounted for only 0.6% of total gasoline sales and less than 2000 short tons (1814 t) of lead per year in the USA. From 1 January 1996, the U.S. Clean Air Act banned the sale of leaded fuel for use in on-road vehicles in the USA. The use of TEL also necessitated other additives, such as dibromoethane. First European countries started replacing lead by the end of the 1980s and by the end of the 1990s leaded petrol was banned within the entire European Union.

MMT

Methylcyclopentadienyl manganese tricarbonyl (MMT) is used in Canada and in Australia to boost octane. It also helps old cars designed for leaded fuel run on unleaded fuel without need for additives to prevent valve problems. Its use in the US has been restricted by regulations.

Fuel stabilizers (antioxidants and metal deactivators)


Substituted phenols and derivatives of phenylenediamine are common antioxidants used to inhibit gum formation in gasoline (gasoline).

Gummy, sticky resin deposits result from oxidative degradation of gasoline upon long term storage. These harmful deposits arise from the oxidation of alkenes and other minor components in gasoline (see drying oils). Improvements in refinery techniques have generally reduced the susceptibility of gasolines to these problems. Previously, catalytically or thermally cracked gasolines are most susceptible to oxidation. The formation of these gums is accelerated by copper salts, which can be neutralized by additives called metal deactivators.

This degradation can be prevented through the addition of 5–100 ppm of antioxidants, such as phenylenediamines and other amines.[6] Hydrocarbons with a bromine number of 10 or above can be protected with the combination of unhindered or partially hindered phenols and oil soluble strong amine bases, such as hindered phenols. "Stale" gasoline can be detected by a colorimetric enzymatic test for organic peroxides produced by oxidation of the gasoline.[11]

Gasolines are also treated with metal deactivators, which are compounds that sequester (deactivate) metal salts that otherwise accelerate the formation of gummy residues. The metal impurities might arise from the engine itself or as contaminants in the fuel.

Detergents

Gasoline, as delivered at the pump, also contains additives to reduce internal engine carbon buildups, improve combustion, and to allow easier starting in cold climates. High levels of detergent can be found in Top Tier Detergent Gasolines. The specification for Top Tier Detergent gasolines was developed by four automakers: GM, Honda, Toyota and BMW. According to the bulletin, the minimal EPA requirement is not sufficient to keep engines clean.[12] Typical detergents include alkylamines and alkyl phosphates at the level of 50-100 ppm.[6]

Ethanol

European Union

In the EU, 5% ethanol can be added within the common gasoline spec (EN 228). Discussions are ongoing to allow 10% blending of ethanol (available in Finnish, French and German gas stations). In Finland most gasoline stations sell 95E10, which is 10% of ethanol; and 98E5, which is 5% ethanol. Most gasoline sold in Sweden has 5-15% ethanol added.

Brazil

In Brazil, the Brazilian National Agency of Petroleum, Natural Gas and Biofuels (ANP) requires gasoline for automobile use, to have from 18 to 25% of ethanol added to its composition.[13]

Australia

Legislation requires retailers to label fuels containing ethanol on the dispenser, and limits ethanol use to 10% of petrol in Australia. Such petrol is commonly called E10 by major brands, and it is cheaper than regular unleaded petrol.

United States of America

The federal Renewable Fuel Standard (RFS) effectively requires refiners and blenders to blend renewable biofuels (mostly ethanol) with gasoline, sufficient to meet a growing annual target of total gallons blended. Although the mandate does not require a specific percentage of ethanol, annual increases in the target combined with declining gasoline consumption has caused the typical ethanol content in gasoline to approach 10%. Most fuel pumps display a sticker that states that the fuel may contain up to 10% ethanol, an intentional disparity that reflects the varying actual percentage. Until late 2010, fuels retailers were only authorized to sell fuel containing up to 10 percent ethanol (E10), and most vehicle warranties (except for flexible fuel vehicles) authorize fuels that contain no more than 10 percent ethanol.[14] In parts of the United States, ethanol is sometimes added to gasoline without an indication that it is a component.

India

The Government of India in October 2007 decided to make 5% ethanol blending (with gasoline) mandatory. Currently, 10% Ethanol blended product (E10) is being sold in various parts of the country.[15][16]

Dye

In Australia, the lowest grade of petrol (RON 91) is dyed a light shade of red/orange and the medium grade (RON 95) is dyed yellow.[17]
In the United States, aviation gasoline (avgas) is dyed to identify its octane rating and to distinguish it from kerosene-based jet fuel, which is clear.[18]

In Canada the gasoline for marine and farm use is dyed red and is not subject to road tax[citation needed].

Oxygenate blending

Oxygenate blending adds oxygen-bearing compounds such as MTBE, ETBE and ethanol. The presence of these oxygenates reduces the amount of carbon monoxide and unburned fuel in the exhaust gas. In many areas throughout the US, oxygenate blending is mandated by EPA regulations to reduce smog and other airborne pollutants. For example, in Southern California, fuel must contain 2% oxygen by weight, resulting in a mixture of 5.6% ethanol in gasoline. The resulting fuel is often known as reformulated gasoline (RFG) or oxygenated gasoline, or in the case of California,
California reformulated gasoline. The federal requirement that RFG contain oxygen was dropped on 6 May 2006 because the industry had developed VOC-controlled RFG that did not need additional oxygen.[19]

MTBE use is being phased out in some states due to issues with contamination of ground water. In some places, such as California, it is already banned. Ethanol and, to a lesser extent, the ethanol-derived ETBE are common replacements. A common ethanol-gasoline mix of 10% ethanol mixed with gasoline is called gasohol or E10, and an ethanol-gasoline mix of 85% ethanol mixed with gasoline is called E85. The most extensive use of ethanol takes place in Brazil, where the ethanol is derived from sugarcane. In 2004, over 3.4 billion US gallons (2.8 billion imp gal/13 million m³) of ethanol was produced in the United States for fuel use, mostly from corn, and E85 is slowly becoming available in much of the United States, though many of the relatively few stations vending E85 are not open to the general public.[20] The use of bioethanol, either directly or indirectly by conversion of such ethanol to bio-ETBE, is encouraged by the European Union Directive on the Promotion of the use of biofuels and other renewable fuels for transport. Since producing bioethanol from fermented sugars and starches involves distillation, though, ordinary people in much of Europe cannot legally ferment and distill their own bioethanol at present (unlike in the US, where getting a BATF distillation permit has been easy since the 1973 oil crisis).

Safety


HAZMAT Class 3 Gasoline

Environmental considerations

Combustion of 1 US gallon (3.8 L) of gasoline produces 8,788 grams (19.374 lb) of carbon dioxide (2.3 kg/l), a greenhouse gas.[21]

The main concern with gasoline on the environment, aside from the complications of its extraction and refining, is the potential effect on the climate. Unburnt gasoline and evaporation from the tank, when in the atmosphere, react in sunlight to produce photochemical smog. Vapor pressure initially rises with some addition of ethanol to gasoline, but the increase is greatest at 10% by volume. At higher concentrations of ethanol above 10%, the vapor pressure of the blend starts to decrease. At a 10% ethanol by volume, the rise in vapor pressure may potentially increase the problem of photochemical smog. This rise in vapor pressure could be mitigated by increasing the percentage of ethanol in the gasoline mixture.

The chief risks of such leaks come not from vehicles, but from gasoline delivery truck accidents and leaks from storage tanks. Because of this risk, most (underground) storage tanks now have extensive measures in place to detect and prevent any such leaks, such as monitoring systems (Veeder-Root, Franklin Fueling).

Toxicity

The material safety data sheet for unleaded gasoline shows at least 15 hazardous chemicals occurring in various amounts, including benzene (up to 5% by volume), toluene (up to 35% by volume), naphthalene (up to 1% by volume), trimethylbenzene (up to 7% by volume), methyl tert-butyl ether (MTBE) (up to 18% by volume, in some states) and about ten others.[22] Hydrocarbons in gasoline generally exhibit low acute toxicities, with LD50 of 700 – 2700 mg/kg for simple aromatic compounds.[23] Benzene and many antiknocking additives are carcinogenic.

Inhalation

Huffed gasoline is a common intoxicant that has become epidemic in some poorer communities and indigenous groups in Australia, New Zealand, and some Pacific Islands.[1] In response, Opal fuel has been developed by the BP Kwinana Refinery in Australia, and contains only 5% aromatics (unlike the usual 25%), which weakens the effects of inhalation.[2]

Flammability


Uncontrolled burning of gasoline produces large quantities of soot and carbon monoxide.

Like other hydrocarbons, gasoline burns in a limited range of its vapor phase and, coupled with its volatility, this makes leaks highly dangerous when sources of ignition are present. Gasoline has a lower explosion limit of 1.4% by volume and an upper explosion limit of 7.6%. If the concentration is below 1.4%, the air-gasoline mixture is too lean and does not ignite. If the concentration is above 7.6%, the mixture is too rich and also does not ignite. However, gasoline vapor rapidly mixes and spreads with air, making unconstrained gasoline quickly flammable.

Use and pricing

UK gasoline prices

The United States accounts for about 44% of the world’s gasoline consumption.[24] In 2003 The US consumed 476 gigaliters (126 billion U.S. gallons; 105 billion imperial gallons),[25] which equates to 1.3 gigaliters (340 million U.S. gallons; 290 million imperial gallons) of gasoline each day. The US used about 510 gigaliters (130 billion U.S. gallons; 110 billion imperial gallons) of gasoline in 2006, of which 5.6% was mid-grade and 9.5% was premium grade.[26]

Europe

Unlike the US, countries in Europe impose substantial taxes on fuels such as gasoline. The price of gasoline in Europe is typically more than twice that in the US. In Italy, due to the amendments imposed by Monti's Government in December 2011, the price of gasoline has passed, in the period of two weeks, from 1.50 €/l (7.48 US$/gal) to 1.75 €/l (8.72 US$/gal); on March 17, a gasoline station located near Ancona has reached the psychological threshold of 2 €/l: the price was €2.001/l (9.97 US$/gal). This chart must be compared to the USA national average price of gasoline of 0.71 €/l.
Pump price (in Euro/liter) 2004 to 2012 lead-free 95 Octane gasoline in selected European countries.

To convert prices for Euro/liter to US$/gal, multiply by 4.84 (16 Oct 2014 US$1.28 = 1.00 Euro).
Country Dec 2004 May 2005 July 2007 April 2008 Jan 2009 Mar 2010 Feb 2011 Jan 2012 Feb 2012 Mar 2012 May 2012
Germany 1.19 1.18 1.37 1.43 1.09 1.35 1.50
France 1.05 1.15 1.31 1.38 1.07 1.35 1.53
Italy 1.10 1.23 1.35 1.39 1.10 1.34 1.46 1.75 1.78 1.88 1.82
Netherlands 1.26 1.33 1.51 1.56 1.25 1.54 1.66 1.72
Poland 0.80 0.92 1.15 1.23 0.82 1.12 1.26
Switzerland 0.92 0.98 1.06 1.14 0.88 1.12 1.29 1.40 1.47
Hungary 1.00 1.01 1.13 1.13 0.86 1.22 1.32 1.38 1.44 1.47 1.55

United States

From 1998 to 2004, the price of gasoline fluctuated between $1 and $2 USD per U.S. gallon.[27]
After 2004, the price increased until the average gas price reached a high of $4.11 per U.S. gallon in mid-2008, but receded to approximately $2.60 per U.S. gallon by September 2009.[27] More recently, the U.S. experienced an upswing in gas prices through 2011,[28] and by 1 March 2012, the national average was $3.74 per gallon.

In the United States, most consumer goods bear pre-tax prices, but gasoline prices are posted with taxes included. Taxes are added by federal, state, and local governments. As of 2009, the federal tax is 18.4¢ per gallon for gasoline and 24.4¢ per gallon for diesel (excluding red diesel).[29] Among states, the highest gasoline tax rates, including the federal taxes as of 2005, are New York (62.9¢/gal), Hawaii (60.1¢/gal), and California (60¢/gal).[28] However, many states' taxes are a percentage and thus vary in amount depending on the cost of the gasoline.

About 9% of all gasoline sold in the US in May 2009 was premium grade, according to the Energy Information Administration. Consumer Reports magazine says, “If [your owner’s manual] says to use regular fuel, do so—there’s no advantage to a higher grade.”[30] The Associated Press said premium gas—which is a higher octane and costs more per gallon than regular unleaded—should be used only if the manufacturer says it is “required”.[31] Cars with turbocharged engines and high compression ratios often specify premium gas because higher octane fuels reduce the incidence of "knock", or fuel pre-detonation.[32] If regular fuel is used, the engine computer usually switches to a less aggressive fuel map to protect the engine, and performance is decreased.

Mid grade unleaded gasoline was introduced in the 1970s when leaded gas was phased out. The reason is that unleaded fuel builds up carbon deposits on the piston whereas leaded fuel causes the carbon deposits to flake off. At around 15000 miles every car using regular grade needs to change to mid grade to avoid pinging from hot spot predetonation. While modern cars use knock sensors to retard timing to avoid pinging, to maintain original engine performance mid grade should be used. Mid grade is also used by some manufacturers to increase engine power, and if so, then they would need to start using premium grade at around 15000 miles to maintain their original performance.

History

The first automotive combustion engines, so-called Otto engines, were developed in the last quarter of the 19th century in Germany. The fuel was a relatively volatile hydrocarbon obtained from coal gas. With a boiling point near 85 °C (octanes boil about 40 °C higher), it was well suited for early carburetors (evaporators). The development of a "spray nozzle" carburetor enabled the use of less volatile fuels. Further improvements in engine efficiency were attempted at higher compression ratios, but early attempts were blocked by knocking (premature explosion of fuel). In the 1920s, antiknock compounds were introduced by Migley and Boyd, specifically tetraethyllead (TEL). This innovation started a cycle of improvements in fuel efficiency that coincided with the large-scale development of oil refining to provide more products in the boiling range of gasolines. In the 1950s oil refineries started to focus on high octane fuels, and then detergents were added to gasoline to clean the jets and carburetors. The 1970s witnessed greater attention to the environmental consequences of burning gasoline. These considerations led to the phasing out of TEL and its replacement by other antiknock compounds. Subsequently, low-sulfur gasoline was introduced, in part to preserve the catalysts in modern exhaust systems.[6]

Etymology and terminology

"Gasoline" is cited (under the spelling "gasolene") from 1863 in the Oxford English Dictionary. It was never a trademark, although it may have been derived from older trademarks such as "Cazeline" and "Gazeline".[33]

Variant spellings of "gasoline" have been used to refer to raw petroleum since the 16th century.[33] "Petrol" was first used as the name of a refined petroleum product around 1870 by British wholesaler Carless, Capel & Leonard, who marketed it as a solvent.[34] When the product later found a new use as a motor fuel, Frederick Simms, an associate of Gottlieb Daimler, suggested to Carless that they register the trade mark "petrol",[35] but by this time the word was already in general use, possibly inspired by the French pétrole,[33] and the registration was not allowed. Carless registered a number of alternative names for the product, while their competitors used the term "motor spirit" until the 1930s.[36][37]

In many countries, gasoline has a colloquial name derived from that of the chemical benzene (e.g., German Benzin, Dutch benzine, Italian benzina, Polish benzyna, Chilean Spanish bencina, Thai เบนซิน bayn sin , Greek βενζίνη venzini, Romanian benzină, Swedish bensin, Arabic بنزين binzīn). Argentina, Uruguay and Paraguay use the colloquial name nafta derived from that of the chemical naphtha.[38]

The terms "mogas", short for motor gasoline, or "autogas", short for automobile gasoline, are used to distinguish automobile fuel from aviation fuel, or "avgas".[39][40][41]

Comparison with other fuels

Volumetric and mass energy density of some fuels compared with gasoline (in the rows with gross and net, they are from[42]):

Fuel type[clarification needed] Gross MJ/L      MJ/kg Gross BTU/gal
(imp)
Gross BTU/gal
(U.S.)
Net BTU/gal (U.S.)     RON
Conventional gasoline 34.8 44.4[43] 150,100 125,000 115,400 91-92
Autogas (LPG) (Consisting mostly of C2 to C4 range hydrocarbons)[citation needed] 26.8 46 5,587 6,710 108
Ethanol 21.2[43] 26.8[43] 101,600 84,600 75,700 108.7[44]
Methanol 17.9 19.9[43] 77,600 64,600 56,600 123
Butanol[4] 29.2 36.6 6,087 7,311 91-99[clarification needed]
Gasohol 31.2 145,200 120,900 112,400 93/94[clarification needed]
Diesel(*) 38.6 45.4 166,600 138,700 128,700 25
Biodiesel 33.3-35.7[45][clarification needed] 126,200 117,100
Avgas (high octane gasoline) 33.5 46.8 144,400 120,200 112,000
Jet fuel (kerosene based) 35.1 43.8 151,242 125,935
Jet fuel (naphtha) 127,500 118,700
Liquefied natural gas 25.3 ~55 109,000 90,800
Liquefied petroleum gas 46.1 91,300 83,500
Hydrogen 10.1 (at 20 kelvin) 142 130[46]
(*) Diesel fuel is not used in a gasoline engine, so its low octane rating is not an issue; the relevant metric for diesel engines is the cetane number

Occam's razor

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Occam%27s_razor In philosophy , Occa...