Search This Blog

Thursday, May 1, 2025

Environmental resource management

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Environmental_resource_management
The shrinking Aral Sea, an example of poor water resource management diverted for irrigation

Environmental resource management or environmental management is the management of the interaction and impact of human societies on the environment. It is not, as the phrase might suggest, the management of the environment itself. Environmental resources management aims to ensure that ecosystem services are protected and maintained for future human generations, and also maintain ecosystem integrity through considering ethical, economic, and scientific (ecological) variables. Environmental resource management tries to identify factors between meeting needs and protecting resources. It is thus linked to environmental protection, resource management, sustainability, integrated landscape management, natural resource management, fisheries management, forest management, wildlife management, environmental management systems, and others.

Significance

Environmental resource management is an issue of increasing concern, as reflected in its prevalence in several texts influencing global sociopolitical frameworks such as the Brundtland Commission's Our Common Future, which highlighted the integrated nature of the environment and international development, and the Worldwatch Institute's annual State of the World reports.

The environment determines the nature of people, animals, plants, and places around the Earth, affecting behaviour, religion, culture and economic practices.

Scope

Improved agricultural practices such as these terraces in northwest Iowa can serve to preserve soil and improve water quality.

Environmental resource management can be viewed from a variety of perspectives. It involves the management of all components of the biophysical environment, both living (biotic) and non-living (abiotic), and the relationships among all living species and their habitats. The environment also involves the relationships of the human environment, such as the social, cultural, and economic environment, with the biophysical environment. The essential aspects of environmental resource management are ethical, economical, social, and technological. These underlie principles and help make decisions.

The concept of environmental determinism, probabilism, and possibilism are significant in the concept of environmental resource management.

Environmental resource management covers many areas in science, including geography, biology, social sciences, political sciences, public policy, ecology, physics, chemistry, sociology, psychology, and physiology. Environmental resource management as a practice and discourse (across these areas) is also the object of study in the social sciences.

Aspects

Ethical

Environmental resource management strategies are intrinsically driven by conceptions of human-nature relationships. Ethical aspects involve the cultural and social issues relating to the environment, and dealing with changes to it. "All human activities take place in the context of certain types of relationships between society and the bio-physical world (the rest of nature)," and so, there is a great significance in understanding the ethical values of different groups around the world. Broadly speaking, two schools of thought exist in environmental ethics: Anthropocentrism and Ecocentrism, each influencing a broad spectrum of environmental resource management styles along a continuum. These styles perceive "...different evidence, imperatives, and problems, and prescribe different solutions, strategies, technologies, roles for economic sectors, culture, governments, and ethics, etc."

Anthropocentrism

Anthropocentrism, "an inclination to evaluate reality exclusively in terms of human values," is an ethic reflected in the major interpretations of Western religions and the dominant economic paradigms of the industrialised world. Anthropocentrism looks at nature as existing solely for the benefit of humans, and as a commodity to use for the good of humanity and to improve human quality of life. Anthropocentric environmental resource management is therefore not the conservation of the environment solely for the environment's sake, but rather the conservation of the environment, and ecosystem structure, for humans' sake.

Ecocentrism

Ecocentrists believe in the intrinsic value of nature while maintaining that human beings must use and even exploit nature to survive and live. It is this fine ethical line that ecocentrists navigate between fair use and abuse. At an extreme of the ethical scale, ecocentrism includes philosophies such as ecofeminism and deep ecology, which evolved as a reaction to dominant anthropocentric paradigms. "In its current form, it is an attempt to synthesize many old and some new philosophical attitudes about the relationship between nature and human activity, with particular emphasis on ethical, social, and spiritual aspects that have been downplayed in the dominant economic worldview."

Economics

Main article: Economics

A water harvesting system collects rainwater from the Rock of Gibraltar into pipes that lead to tanks excavated inside the rock.

The economy functions within and is dependent upon goods and services provided by natural ecosystems. The role of the environment is recognized in both classical economics and neoclassical economics theories, yet the environment was a lower priority in economic policies from 1950 to 1980 due to emphasis from policy makers on economic growth. With the prevalence of environmental problems, many economists embraced the notion that, "If environmental sustainability must coexist for economic sustainability, then the overall system must [permit] identification of an equilibrium between the environment and the economy." As such, economic policy makers began to incorporate the functions of the natural environment – or natural capital – particularly as a sink for wastes and for the provision of raw materials and amenities.

Debate continues among economists as to how to account for natural capital, specifically whether resources can be replaced through knowledge and technology, or whether the environment is a closed system that cannot be replenished and is finite. Economic models influence environmental resource management, in that management policies reflect beliefs about natural capital scarcity. For someone who believes natural capital is infinite and easily substituted, environmental management is irrelevant to the economy. For example, economic paradigms based on neoclassical models of closed economic systems are primarily concerned with resource scarcity and thus prescribe legalizing the environment as an economic externality for an environmental resource management strategy. This approach has often been termed 'Command-and-control'. Colby has identified trends in the development of economic paradigms, among them, a shift towards more ecological economics since the 1990s.

Ecology

A diagram showing the juvenile fish bypass system, which allows young salmon and steelhead to safely pass the Rocky Reach Hydro Project in Washington
Fencing separates big game from vehicles along the Quebec Autoroute 73 in Canada.

There are many definitions of the field of science commonly called ecology. A typical one is "the branch of biology dealing with the relations and interactions between organisms and their environment, including other organisms." "The pairing of significant uncertainty about the behaviour and response of ecological systems with urgent calls for near-term action constitutes a difficult reality, and a common lament" for many environmental resource managers. Scientific analysis of the environment deals with several dimensions of ecological uncertainty. These include: structural uncertainty resulting from the misidentification, or lack of information pertaining to the relationships between ecological variables; parameter uncertainty referring to "uncertainty associated with parameter values that are not known precisely but can be assessed and reported in terms of the likelihood…of experiencing a defined range of outcomes"; and stochastic uncertainty stemming from chance or unrelated factors. Adaptive management is considered a useful framework for dealing with situations of high levels of uncertainty though it is not without its detractors.

A common scientific concept and impetus behind environmental resource management is carrying capacity. Simply put, carrying capacity refers to the maximum number of organisms a particular resource can sustain. The concept of carrying capacity, whilst understood by many cultures over history, has its roots in Malthusian theory. An example is visible in the EU Water Framework Directive. However, "it is argued that Western scientific knowledge ... is often insufficient to deal with the full complexity of the interplay of variables in environmental resource management. These concerns have been recently addressed by a shift in environmental resource management approaches to incorporate different knowledge systems including traditional knowledge, reflected in approaches such as adaptive co-managemen community-based natural resource management and transitions management[34] among others.

Sustainability

Sustainability in environmental resource management involves managing economic, social, and ecological systems both within and outside an organizational entity so it can sustain itself and the system it exists in. In context, sustainability implies that rather than competing for endless growth on a finite planet, development improves quality of life without necessarily consuming more resources. Sustainably managing environmental resources requires organizational change that instills sustainability values that portrays these values outwardly from all levels and reinforces them to surrounding stakeholders. The result should be a symbiotic relationship between the sustaining organization, community, and environment.

Many drivers compel environmental resource management to take sustainability issues into account. Today's economic paradigms do not protect the natural environment, yet they deepen human dependency on biodiversity and ecosystem services. Ecologically, massive environmental degradation and climate change threaten the stability of ecological systems that humanity depends on. Socially, an increasing gap between rich and poor and the global North–South divide denies many access to basic human needs, rights, and education, leading to further environmental destruction. The planet's unstable condition is caused by many anthropogenic sources. As an exceptionally powerful contributing factor to social and environmental change, the modern organisation has the potential to apply environmental resource management with sustainability principles to achieve highly effective outcomes. To achieve sustainable development with environmental resource management an organisation should work within sustainability principles, including social and environmental accountability, long-term planning; a strong, shared vision; a holistic focus; devolved and consensus decision making; broad stakeholder engagement and justice; transparency measures; trust; and flexibility.

Current paradigm shifts

To adjust to today's environment of quick social and ecological changes, some organizations have begun to experiment with new tools and concepts. Those that are more traditional and stick to hierarchical decision making have difficulty dealing with the demand for lateral decision making that supports effective participation. Whether it be a matter of ethics or just strategic advantage organizations are internalizing sustainability principles. Some of the world's largest and most profitable corporations are shifting to sustainable environmental resource management: Ford, Toyota, BMW, Honda, Shell, Du Port, Sta toil, Swiss Re, Hewlett-Packard, and Unilever, among others. An extensive study by the Boston Consulting Group reaching 1,560 business leaders from diverse regions, job positions, expertise in sustainability, industries, and sizes of organizations, revealed the many benefits of sustainable practice as well as its viability.

Although the sustainability of environmental resource management has improved, corporate sustainability, for one, has yet to reach the majority of global companies operating in the markets. The three major barriers to preventing organizations from shifting towards sustainable practice with environmental resource management are not understanding what sustainability is; having difficulty modeling an economically viable case for the switch; and having a flawed execution plan, or a lack thereof. Therefore, the most important part of shifting an organization to adopt sustainability in environmental resource management would be to create a shared vision and understanding of what sustainability is for that particular organization and to clarify the business case.

Stakeholders

Public sector

A conservation project in North Carolina involving the search for bog turtles was conducted by United States Fish and Wildlife Service and the North Carolina Wildlife Resources Commission and its volunteers.

The public sector comprises the general government sector plus all public corporations including the central bank. In environmental resource management the public sector is responsible for administering natural resource management and implementing environmental protection legislation. The traditional role of the public sector in environmental resource management is to provide professional judgement through skilled technicians on behalf of the public. With the increase of intractable environmental problems, the public sector has been led to examine alternative paradigms for managing environmental resources. This has resulted in the public sector working collaboratively with other sectors (including other governments, private and civil) to encourage sustainable natural resource management behaviours.

Private sector

The private sector comprises private corporations and non-profit institutions serving households. The private sector's traditional role in environmental resource management is that of the recovery of natural resources. Such private sector recovery groups include mining (minerals and petroleum), forestry and fishery organisations. Environmental resource management undertaken by the private sectors varies dependent upon the resource type, that being renewable or non-renewable and private and common resources (also see Tragedy of the Commons). Environmental managers from the private sector also need skills to manage collaboration within a dynamic social and political environment.

Civil society

Civil society comprises associations in which societies voluntarily organise themselves and which represent a wide range of interests and ties. These can include community-based organisations, indigenous peoples' organisations and non-government organisations (NGOs). Functioning through strong public pressure, civil society can exercise their legal rights against the implementation of resource management plans, particularly land management plans. The aim of civil society in environmental resource management is to be included in the decision-making process by means of public participation. Public participation can be an effective strategy to invoke a sense of social responsibility of natural resources.

Tools

As with all management functions, effective management tools, standards, and systems are required. An environmental management standard or system or protocol attempts to reduce environmental impact as measured by some objective criteria. The ISO 14001 standard is the most widely used standard for environmental risk management and is closely aligned to the European Eco-Management and Audit Scheme (EMAS). As a common auditing standard, the ISO 19011 standard explains how to combine this with quality management.

Other environmental management systems (EMS) tend to be based on the ISO 14001 standard and many extend it in various ways:

  • The Green Dragon Environmental Management Standard is a five-level EMS designed for smaller organisations for whom ISO 14001 may be too onerous and for larger organisations who wish to implement ISO 14001 in a more manageable step-by-step approach,
  • BS 8555 is a phased standard that can help smaller companies move to ISO 14001 in six manageable steps,
  • The Natural Step focuses on basic sustainability criteria and helps focus engineering on reducing use of materials or energy use that is unsustainable in the long term,
  • Natural Capitalism advises using accounting reform and a general biomimicry and industrial ecology approach to do the same thing,
  • US Environmental Protection Agency has many further terms and standards that it defines as appropriate to large-scale EMS,
  • The UN and World Bank has encouraged adopting a "natural capital" measurement and management framework.

Other strategies exist that rely on making simple distinctions rather than building top-down management "systems" using performance audits and full cost accounting. For instance, Ecological Intelligent Design divides products into consumables, service products or durables and unsaleables – toxic products that no one should buy, or in many cases, do not realize they are buying. By eliminating the unsaleables from the comprehensive outcome of any purchase, better environmental resource management is achieved without systems.

Another example that diverges from top-down management is the implementation of community based co-management systems of governance. An example of this is community based subsistence fishing areas, such as is implemented in Ha'ena, Hawaii. Community based systems of governance allow for the communities who most directly interact with the resource and who are most deeply impacted by the overexploitation of said resource to make the decisions regarding its management, thus empowering local communities and more effectively managing resources.

Recent successful cases have put forward the notion of integrated management. It shares a wider approach and stresses out the importance of interdisciplinary assessment. It is an interesting notion that might not be adaptable to all cases.

Case Study: Kissidougou, Guinea (Fairhead, Leach)

Kissidougou, Guinea’s dry season brings about fires in the open grass fires which defoliate the few trees in the savanna. There are villages within this savanna surrounded by “islands” of forests, allowing for forts, hiding, rituals, protection from wind and fire, and shade for crops. According to scholars and researchers in the region during the late-19th and 20th centuries, there was a steady decline in tree cover. This led to colonial Guinea’s implementation of policies, including the switch of upland to swamp farming; bush-fire control; protection of certain species and land; and tree planting in villages. These policies were carried out in the form of permits, fines, and military repression.

But, Kissidougou villagers claim their ancestors’ established these islands. Many maps and letters evidence France’s occupation of Guinea, as well as Kissidougou’s past landscape. During the 1780s to 1860s “the whole country [was] prairie.” James Fairhead and Melissa Leach, both environmental anthropologists at the University of Sussex, claim the state’s environmental analyses “casts into question the relationships between society, demography, and environment.” With this, they reformed the state’s narratives: Local land use can be both vegetation enriching and degrading; combined effect on resource management is greater than the sum of their parts; there is evidence of increased population correlating to an increase in forest cover. Fairhead and Leach support the enabling of policy and socioeconomic conditions in which local resource management conglomerates can act effectively. In Kissidougou, there is evidence that local powers and community efforts shaped the island forests that shape the savanna’s landscape.

Ecosystem-based management

From Wikipedia, the free encyclopedia

Ecosystem-based management is an environmental management approach that recognizes the full array of interactions within an ecosystem, including humans, rather than considering single issues, species, or ecosystem services in isolation. It can be applied to studies in the terrestrial and aquatic environments with challenges being attributed to both. In the marine realm, they are highly challenging to quantify due to highly migratory species as well as rapidly changing environmental and anthropogenic factors that can alter the habitat rather quickly. To be able to manage fisheries efficiently and effectively it has become increasingly more pertinent to understand not only the biological aspects of the species being studied, but also the environmental variables they are experiencing. Population abundance and structure, life history traits, competition with other species, where the stock is in the local food web, tidal fluctuations, salinity patterns and anthropogenic influences are among the variables that must be taken into account to fully understand the implementation of a "ecosystem-based management" approach. Interest in ecosystem-based management in the marine realm has developed more recently, in response to increasing recognition of the declining state of fisheries and ocean ecosystems. However, due to a lack of a clear definition and the diversity involved with the environment, the implementation has been lagging. In freshwater lake ecosystems, it has been shown that ecosystem-based habitat management is more effective for enhancing fish populations than management alternatives.

Terrestrial ecosystem-based management (often referred to as ecosystem management) came into its own during the conflicts over endangered species protection (particularly the northern spotted owl), land conservation, and water, grazing and timber rights in the western United States in the 1980s and 1990s.

History

The systemic origins of ecosystem-based management are rooted in the ecosystem management policy applied to the Great Lakes of North America in the late 1970s. The legislation created, the "Great Lakes Basin and the Great Lakes Water Quality Agreement of 1978", was based on the claim that "no park is an island", with the purpose to show how strict protection of the area is not the best method for preservation. This type of management system was however an idea that began long before and evolved through the testing and challenging of common ecosystem management practices.

Before its complete synthesis, the management system's historical development can be traced back to the 1930s. During this time, the scientific communities who studied ecology realized that current approaches to the management of national parks did not provide effective protection of the species within. In 1932, The Ecological Society of America's Committee for the Study of Plant and Animal Communities recognized that US national parks needed to protect all the ecosystems contained within the park in order to create an inclusive and fully functioning sanctuary, and be prepared to handle natural fluctuations in its ecology. Also the committee explained the importance for interagency cooperation and improved public education, as well as challenged the idea that proper park management would "improve" nature. These ideas became the foundation of modern ecosystem-based management.

As the understanding of how to manage ecosystems shifted, new tenets of the management system were produced. Biologists George Wright and Ben Thompson accounted for the size and boundary limitations of parks and contributed to the re-structuring of how park lines were drawn. They explained how large mammals for example could not be supported within the restricted zones of a national park and in order to protect these animals and their ecosystems a new approach would be needed. Other scientists followed suit, but none were successful in establishing a well-defined ecosystem-based management approach.

In 1979, the importance of ecosystem-based management resurfaced in ecology from two biologists: John and Frank Craighead. The Craigheads found that grizzly bears of Yellowstone National Park could not sustain a population if only allowed to live within park boundaries. This reinforced the idea that a broader definition of what defines an ecosystem needed to be created, suggesting that it be based on the biotic requirements of the largest mammal present.

The idea of ecosystem-based management began to catch on and projects throughout American National Parks reflected the idea of protecting an ecosystem in its entirety and not based on legal or ecological restrictions as previously used. Jim Agee and Darryll Johnson published a book-length report on managing ecosystems in 1988 explaining the theoretical framework management. While they did not fully embrace ecosystem-based management by still calling for "ecologically defined boundaries", they stated the importance of "clearly stated management goals, interagency cooperation, monitoring of management results, and leadership at the national policy levels". Most importantly they demanded the recognition of human influence. It was argued that scientists must keep in mind the "complex social context of their work" and always be moving towards "socially desirable conditions". This need to understand the social aspects of scientific management is the fundamental step from ecological management to ecosystem-based management.

Although it continues to become recognized, a debate over ecosystem-based management continues. Grumbine (1994) believes, while the approach has evolved, it has not been fully incorporated into management practices because the most effective forms of it have yet to be seen. He articulates that the current ecological climate calls for the most holistic approach of ecological management. This is in part due to the rapid decline in biodiversity and because of the constant state of flux in societal and political views of nature. Conflicts over public interest and understanding of the natural world have created social and political climates that require interagency cooperation, which stands as a backbone for ecosystem-based management.

Implementation

Because ecosystem-based management is applied to large, diverse areas encompassing an array of interactions between species, ecosystem components, and humans, it is often perceived as a complex process that is difficult to implement. Slocombe (1998b) also noted that in addition, uncertainty is common and predictions are difficult. However, in light of significant ecosystem degradation, there is a need for a holistic approach that combines environmental knowledge and co-ordination with governing agencies to initiate, sustain and enforce habitat and species protection, and include public education and involvement. As a result, ecosystem-based management will likely be increasingly used in the future as a form of environmental management. Some suggestions for implementing ecosystem-based management and what the process may involve are as follows:

Goals and objectives

Defining clear and concise goals for ecosystem-based management is one of the most important steps in effective ecosystem-based management implementation. Goals must move beyond science-based or science-defined objectives to include social, cultural, economic and environmental importance. Of equal importance is to make sure that the community and stake-holders are involved throughout the entire process. Slocombe (1998a) also stated that a single, end-all goal cannot be the solution, but instead a combination of goals and their relationships with each other should be the focus.

As discussed by Slocombe (1998a), goals should be broadly applicable, measurable and readily observable, and ideally be collectively supported in order to be achievable. The idea is to provide direction for both thinking and action and should try to minimize managing ecosystems in a static state. Goals should also be flexible enough to incorporate a measure of uncertainty and be able to evolve as conditions and knowledge change. This may involve focusing on specific threatening processes, such as habitat loss or introduced invasive species, occurring within an ecosystem. Overall the goals should be integrative, to include the structure, organization and processes of the management of an area. Correct ecosystem-based management should be based in goals that are both "substantive", to explain the aims and importance of protecting an area, and "procedural", to explain how substantive goals will be met.

As described by Tallis et al. (2010), some steps of ecosystem-based management may include:

Scoping

This step involves the acquisition of data and knowledge from various sources in order to provide a thorough understanding of critical ecosystem components. Sources may include literature, informal sources such as aboriginal residents, resource users, and/or environmental experts. Data may also be gained through statistical analyses, simulation models, or conceptual models.

Defining indicators

Ecological indicators are useful for tracking or monitoring an ecosystem's status and can provide feedback on management progress as stressed by Slocombe (1998a). Examples may include the population size of a species or the levels of toxin present in a body of water. Social indicators may also be used such as the number or types of jobs within the environmental sector or the livelihood of specific social groups such as indigenous peoples.

Setting thresholds

Tallis et al. (2010) suggest setting thresholds for each indicator and setting targets that would represent a desired level of health for the ecosystem. Examples may include species composition within an ecosystem or the state of habitat conditions based on local observations or stakeholder interviews. Thresholds can be used to help guide management, particularly for a species by looking at the conservation status criteria established by either state or federal agencies and using models such as the minimum viable population size.

Risk analysis

A range of threats and disturbances, both natural and human, often can affect indicators. Risk is defined as the sensitivity of an indicator to an ecological disturbance. Several models can be used to assess risk such as population viability analysis.

Monitoring

Evaluating the effectiveness of the implemented management strategies is very important in determining how management actions are affecting the ecosystem indicators. Evaluation: This final step involves monitoring and assessing data to see how well the management strategies chosen are performing relative to the initial objectives stated. The use of simulation models or multi-stakeholder groups can help to assess management.

It is important to note that many of these steps for implementing ecosystem-based management are limited by the governance in place for a region, the data available for assessing ecosystem status and reflecting on the changes occurring, and the time frame in which to operate.

Challenges

Because ecosystems differ greatly and express varying degrees of vulnerability, it is difficult to apply a functional framework that can be universally applied. These outlined steps or components of ecosystem-based management can, for the most part, be applied to multiple situations and are only suggestions for improving or guiding the challenges involved with managing complex issues. Because of the greater amount of influences, impacts, and interactions to account for, problems, obstacles and criticism often arise within ecosystem-based management. There is also a need for more data, spatially and temporally to help management make sound decisions for the sustainability of the stock being studied.

The first commonly defined challenge is the need for meaningful and appropriate management units. Slocombe (1998b) noted that these units must be broad and contain value for people in and outside of the protected area. For example, Aberley (1993) suggests the use of "bioregions" as management units, which can allow peoples involvement with that region to come through. To define management units as inclusive regions rather that exclusive ecological zones would prevent further limitations created by narrow or restricting political and economic policy created from the units. Slocombe (1998b) suggests that better management units should be flexible and build from existing units and that the biggest challenge is creating truly effect units for managers to compare against.

Another issue is in the creation of administrative bodies. They should operate as the essence of ecosystem-based management, working together towards mutually agreed upon goals. Gaps in administration or research, competing objectives or priorities between management agencies and governments due to overlapping jurisdictions, or obscure goals such as sustainability, ecosystem integrity, or biodiversity can often result in fragmented or weak management. In addition, Tallis (2010) stated that limited knowledge of ecosystem components and function and time constraints that can often limit objectives to only those that can be addressed in the short-term.

The most challenging issue facing ecosystem-based management is that there exists little knowledge about the system and its effectiveness. Slocombe (1998b) stated that with limited resources available on how to implement the system it is hard to find support for its use.

Slocombe (1998a) said that criticism of ecosystem-based management include its reliance on analogy and comparisons, too broadly applied frameworks, its overlap with or duplication of other methods such as ecosystem management, environmental management, or integrated ecosystem assessment, its vagueness in concepts and application, and its tendency to ignore historical, evolutionary or individual factors that may heavily influence ecosystem functioning.

Tallis (2010) stated that ecosystem-based management is seen as a critical planning and management framework for conserving or restoring ecosystems though it is still not widely implemented. An ecosystem approach addresses many relationships across spatial, biological, and organizational scales and is a goal-driven approach to restoring and sustaining ecosystems and functions. In addition, ecosystem-based management involves community influence as well as planning and management from local, regional and national government bodies and management agencies. All must be in collaboration in order to develop a desired future of ecosystem conditions, particularly where ecosystems have undergone radical degradation and change. Slocombe (1998b) said that to move forward, ecosystem-based management should be approached through adaptive management, allowing flexibility and inclusiveness to deal with constant environmental, societal, and political change.

Marine systems

Ecosystem-based management of marine environments has begun to move away from the traditional strategies which focus on conservation of single species or single sectors in favor of an integrated approach which considers all key activities, particularly anthropogenic, that affect marine environments. Management must take into account the life history of the fish being studied, its association with the surrounding environment, its place in the food web, where it prefers to reside in the water column, and how it is affected by human pressures. The objective is to ensure sustainable ecosystems, thus protecting the resources and services they provide for future generations.

In recent years there has been increasing recognition of anthropogenic disruption to marine ecosystems resulting from climate change, overfishing, nutrient and chemical pollution from land runoff, coastal development, bycatch, and habitat destruction. The effect of human activity on marine ecosystems has become an important issue because many of the benefits provided to humans by marine ecosystems are declining. These services include the provision of food, fuel, mineral resources, pharmaceuticals, as well as opportunities for recreation, trade, research and education.

Guerry (2005) has identified an urgent need to improve the management of these declining ecosystems, particularly in coastal areas, to ensure sustainability. Human communities depend on marine ecosystems for important resources, but without holistic management, these ecosystems are likely to collapse. Olsson et al. (2008) suggest that the degradation of marine ecosystems is largely the result of poor governance and that new approaches to management are required. The Pew Oceans Commission and the United States Commission on Ocean Policy have indicated the importance of moving from current piecemeal management to a more integrated ecosystem-based approach.

Stock assessment

Dead salmon in spawning season

Stock assessment is a critically important aspect of fisheries management, but it is a highly complex, logistically difficult, and expensive process and can thus be a contentious issue, particularly when competing parties disagree on the findings of an assessment. Accurate stock assessments require knowledge of reproductive and morphological patterns, age-at-stage progressions, and movement ecology.

Bottom up or top down

Post-dip pose

All members of an ecosystem are affected by other organisms within that ecosystem, and proper management of wildlife requires knowledge of an organism's trophic level and its effects on other organisms within its food web. Top-down and bottom-up controls represent one method by which the numbers of wild populations of plants and animals are limited. Top-down controls have been seen in the explosion of sea urchins and subsequent decline in kelp beds due to the near-extirpation of sea otters.As otters were hunted nearly to extinction, sea urchins - preyed on by sea otters and which themselves feed on the kelp - boomed, resulting in the near-disappearance of kelp beds. Bottom-up controls are best illustrated when autotrophic primary producers such as plants and phytoplankton, which represent the lowest trophic level of an ecosystem, are limited, impacting all organisms in higher trophic levels, but bottom-up changes can also be seen in higher trophic levels. For example, the decline of North Sea puffins has been attributed to overexploitation of sand eels, an important prey item.

Bycatch

Red snapper is a species of enormous economic importance in the Gulf of Mexico. Management of this species is complicated by the large impact of bycatch associated with the shrimping industry. Rates of red snapper mortality are not explained by fishery landings, but are instead associated with large numbers of juvenile red snapper caught as bycatch in the fine mesh used by trawlers.

Key elements

Connections

At its core, ecosystem-based management is about acknowledging interdependency connections, including the linkages between marine ecosystems and human societies, economies and institutional systems, as well as those among various species within an ecosystem and among ocean places that are linked by the movement of species, materials, and ocean currents. Of particular importance is how these factors all react and involve each other. In the Caribbean, the spiny lobster is managed based on a classic population model that for most fishery species works quite well. However, this species will grow and then halt its growth when it need to molt its shell and thus instead of a continuous growth cycle, it will pause its growth and invest its energy in a new shell. To further complicate matters, it slows this process down as it gets older to invest more energy into reproduction thus further deviating itself from the von Bertalanffy model of growth that was applied to it. The more information we can gather about an ecosystem and all of the interconnected factors which affect it, the more capable we will be of better managing that system.

Cumulative impacts

Ecosystem-based management focuses on how individual actions affect the ecosystem services that flow from coupled socio-ecological systems in an integrated fashion, rather than considering these impacts in a piecemeal manner. Loss of biodiversity in marine ecosystems is an example of how cumulative effects from different sectors can impact on an ecosystem in a compounding way. Overfishing, coastal development, filling and dredging, mining and other human activities all contribute to the loss of biodiversity and therefore degradation of the ecosystem. Work is needed prior to the carrying out of the research to understand the total effects that each species can have on each other and also on the environment. It must be carried out every year as well as species are changing their life history traits and their relationship with the environment as humans are continually modifying the environment.

Interactions between sectors

The only way to deal with the cumulative effects of human influences on marine ecosystems is for various contributing sectors to set common goals for the protection or management of ecosystems. While some policies may only affect a single sector, others may affect multiple sectors. A policy for the protection of endangered marine species, for example, could affect recreational and commercial fisheries, mining, shipping and tourism sectors to name a few. More effective ecosystem management would result from the collective adoption of policies by all sectors, rather than each sector creating their own isolated policies. For example, in the Gulf of Mexico there are oil rigs, recreational fisheries, commercial fisheries and multiple tourist attractions. One of the main fisheries is that of the Red Snapper which inhabits much of the Gulf and employs thousands of people in the commercial and recreational fishery. During the Deepwater oil spill it became abundantly obvious that it negatively affected the population numbers as well as the integrity of the catch that was being made. The species not only suffered higher mortality rates but the market was less trusting of the product. An environmental disaster interacted with the commercial, recreational, and economic sector for a specific species.

Changing public perceptions

Not all members of the public will be properly informed, or be fully aware, of current threats to marine ecosystems and it is therefore important to change public perceptions by informing people about these issues. It is important to consider the interest of the public when making decisions about ocean management and not just those who have a material interest because community support is needed by management agencies in order to make decisions. The Great Barrier Reef Marine Park Authority (GBRMPA) faced the issue of poor public awareness in their proposed management strategy which included no-take fishing zones. Olssen (2008) addressed this problem by starting a 'reef under pressure' information campaign to prove to the public that the Great Barrier Reef is under threat from human disturbances, and in doing so were successful in gaining public support.

Bridging science and policy

To ensure that all key players are on the same page, it is important to have communication between managers, resource users, scientists, government bodies and other stakeholders. Leslie and McLeod (2007) stated that proper engagement between these groups will enable the development of management initiatives that are realistic and enforceable as well as effective for ecosystem management. If certain small-scale players are not involved or informed, it is highly unlikely and equally challenging to get them to cooperate as well as to follow the rules that need to be put in place. It is of the utmost importance to have every stakeholder involved with every step of the process to increase the cohesion of the process.

Embracing change

Coupled social-ecological systems are constantly changing in ways that cannot be fully predicted or controlled. Understanding the resilience of ecosystems, i.e. the extent to which they can maintain structure, function, and identity in the face of disturbance, can enable better prediction of how ecosystems will respond to both natural and anthropogenic perturbations, and to changes in environmental management. With how much modification humans are doing to environments, it is important to understand these changes on a yearly basis as well. Some species are changing their life histories, Flounder, due to the increased pressures that humans are placing on the environment. Thus, when a manager or government does an assessment on the ecosystem for a given year, the relationship that a species has to others can change very quickly and thus negate the model that you use for an ecosystem very quickly if not redefined.

Multiple objectives

Ecosystem-based management focuses on the diverse benefits provided by marine systems, rather than on single ecosystem services. Such benefits or services include vibrant commercial and recreational fisheries, biodiversity conservation, renewable energy from wind or waves and coastal protection. The goal is to provide a sustainable fisheries while incorporating the impacts of other aspects on that resource. When managed correctly, an ecosystem-based model can greatly improve not only the resource being managed, but those associated with it.

Learning and adaptation

Because of the lack of control and predictability of coupled social-ecological systems, an adaptive management approach is recommended. There can be multiple different factors that must be overcome (fisheries, pollution, borders, multiple agencies, etc.) to create a positive outcome. Managers must be able to react and adapt as to limit the variance associated with the outcome.

Other examples

Great Bear Rainforest - Canada

The Land and Resource Management Planning (LRMP) was implemented by the British Columbia Government (Canada) in the mid-1990s in the Great Bear Rainforest in order to establish a multiparty land-use planning system. The aim was to "maintain the ecological integrity of terrestrial, marine and freshwater ecosystems and achieve high levels of human well-being". The steps described in the programme included: protect old-growth forests, maintain forest structure at the stand level, protect threatened and endangered species and ecosystems, protect wetlands and apply adaptive management. MacKinnon (2008) highlighted that the main limitation of this program was the social and economic aspects related to the lack of orientation to improve human well-being.

The Great Lakes - Canada and United States

A Remedial Action Plan (RAP) was created during the Great Lakes Water Quality Agreement that implemented ecosystem-based management. The transition, according to the authors, from "a narrow to a broader approach " was not easy because it required the cooperation of both the Canadian and American governments. This meant different cultural, political and regulatory perspectives were involved with regards to the lakes. Hartig et al. (1998) described eight principles required to make the implementation of ecosystem-based management efficacious: "broad-based stakeholder involvement; commitment of top leaders; agreement on information needs and interpretation; action planning within a strategic framework; human resource development; results and indicators to measure progress; systematic review and feedback; and stakeholder satisfaction".

Elwha Dam under deconstruction

Dam removal in the Pacific Northwest

The Elwha dam removal in Washington state is the largest dam removal project in the United States. Not only was it blocking several species of salmon from reaching their natural habitat, it also had millions of tons of sediment built up behind it.

Scallop aquaculture in Sechura Bay, Peru

Peruvian Bay Scallop is grown in the benthic environment. Intensity of the fishery has caused concern over recent years and there has been a shift to more of an environmental management scheme. They are now using food web models to assess the current situation and to calibrate the stocking levels that are needed. The impacts of the scallops on the ecosystem and on other species are now being taken into account as to limit phytoplankton blooms, overstocking, diseases and overconsumption in a given year. This study is proposed to help guide both fisherman and managers in their goal of providing long-term success for the fishery as well as the ecosystem they are utilizing.

Enhancing lake fish populations - Germany

Scientists and numerous angling clubs have collaborated in a large-scale set of whole-lake experiments (20 gravel pit lakes monitored over a period of six years) to assess the outcomes of ecosystem-based habitat enhancement compared to alternative management practices in fisheries. In some of the lakes, additional shallow water zones were created. In other lakes, coarse wood bundles were added to enhance structural diversity. Other study lakes were stocked with five fish species of interest to fisheries. Unmanipulated lakes served as controls to allow for a comprehensive before-after-control-impact study design. The study was based on a sample of more than 150,000 fish. Radinger et al. (2023) found that fish stocking was ineffectual, whereas ecosystem-based habitat management through creating shallow zones increased fish abundance, especially that of juvenile fish. The authors argue that restoring ecological processes and key habitats have a larger potential to meet conservation goals than narrow, species-focused actions.

Landscape-scale conservation

Landscape scale conservation attempts to reconcile competing pressures on the designated Areas of Outstanding Natural Beauty across the United Kingdom.

Landscape-scale conservation is a holistic approach to landscape management, aiming to reconcile the competing objectives of nature conservation and economic activities across a given landscape. Landscape-scale conservation may sometimes be attempted because of climate change. It can be seen as an alternative to site based conservation.

Many global problems such as poverty, food security, climate change, water scarcity, deforestation and biodiversity loss are connected. For example, lifting people out of poverty can increase consumption and drive climate change. Expanding agriculture can exacerbate water scarcity and drive habitat loss. Proponents of landscape management argue that as these problems are interconnected, coordinated approaches are needed to address them, by focussing on how landscapes can generate multiple benefits. For example, a river basin can supply water for towns and agriculture, timber and food crops for people and industry, and habitat for biodiversity; and each one of these users can have impacts on the others.

Landscapes in general have been recognised as important units for conservation by intergovernmental bodies, government initiatives, and research institutes.

Problems with this approach include difficulties in monitoring, and the proliferation of definitions and terms relating to it.

Definitions

Bureau of Land Management using fire to maintain a landscape in Western Oregon

There are many overlapping terms and definitions, but many terms have similar meanings. A sustainable landscape, for example, meets "the needs of the present without compromising the ability of future generations to meet their own needs."

Approaching conservation by means of landscapes can be seen as "a conceptual framework whereby stakeholders in a landscape aim to reconcile competing social, economic and environmental objectives". Instead of focussing on a single use of the land it aims to ensure that the interests of different stakeholders are met.

The starting point for all landscape-scale conservation schemes must be an understanding of the character of the landscape. Landscape character goes beyond aesthetic. It involves understanding how the landscape functions to support communities, cultural heritage and development, the economy, as well as the wildlife and natural resources of the area. Landscape character requires careful assessment according to accepted methodologies. Landscape character assessment will contribute to the determination of what scale is appropriate in which landscape. "Landscape scale" does not merely mean acting at a bigger scale: it means conservation is carried out at the correct scale and that it takes into account the human elements of the landscape, both past and present.

History

Highland cow helping to maintain the landscape near Hilversum in the Netherlands

The word 'landscape' in English is a loanword from Dutch landschap introduced in the 1660s and originally meant a painting. The meaning a "tract of land with its distinguishing characteristics" was derived from that in 1886. This was then used as a verb as of 1916.

The German geographer Carl Troll coined the German term Landschaftsökologie–thus 'landscape ecology' in 1939. He developed this terminology and many early concepts of landscape ecology as part of this work, which consisted of applying aerial photograph interpretation to studies of interactions between environment, agriculture and vegetation.

In the UK conservation of landscapes can be said to have begun in 1945 with the publication of the Report to the Government on National Parks in England and Wales. The National Parks and Access to the Countryside Act 1949 introduced the legislation for the creation Areas of Outstanding Natural Beauty (AONB). Northern Ireland has the same system after adoption of the Amenity Lands (NI) Act 1965. The first of these AONB were defined in 1956, with the last being created in 1995.

The Permanent European Conference for the Study of the Rural Landscape was established in 1957. The European Landscape Convention was initiated by the Congress of Regional and Local Authorities of the Council of Europe (CLRAE) in 1994, was adopted by the Committee of Ministers of the Council of Europe in 2000, and came into force in 2004.

The conservation community began to take notice of the science of landscape ecology in the 1980s.

Efforts to develop concepts of landscape management that integrate international social and economic development with biodiversity conservation began in 1992.

Landscape management now exists in multiple iterations and alongside other concepts such as watershed management, landscape ecology and cultural landscapes.

International

The UN Environment Programme stated in 2015 that the landscape approach embodies ecosystem management. UNEP uses the approach with the Ecosystem Management of Productive Landscapes project. The scientific committee of the Convention on Biological Diversity also considers the perspective of a landscape the most important scale for improving sustainable use of biodiversity. There are global fora on landscapes. During the Livelihoods and Landscapes Strategies programme the International Union for Conservation of Nature applied this approach to locations worldwide, in 27 landscapes in 23 different countries.

Examples of landscape approaches can be global or continental, for example in Africa, Oceania and Latin America. The European Agricultural Fund for Rural Development plays an important part in funding landscape conservation in Europe.

Relevance to international commitments

Some argue landscape management can address the Sustainable Development Goals. Many of these goals have potential synergies or trade-offs: some therefore argue that addressing these goals individually may not be effective, and landscape approaches provide a potential framework to manage them. For example, increasing areas of irrigated agricultural land to end hunger could have adverse impacts on terrestrial ecosystems or sustainable water management. Landscape approaches intend to include different sectors, and thus achieve the multiple objectives of the Sustainable Development Goals – for example, working within catchment area of a river to enhance agricultural productivity, flood defence, biodiversity and carbon storage.

Climate change and agriculture are intertwined so production of food and climate mitigation can be a part of landscape management. The agricultural sector accounts for around 24% of anthropogenic emissions. Unlike other sectors that emit greenhouse gases, agriculture and forestry have the potential to mitigate climate change by reducing or removing greenhouse gas emissions, for example by reforestation and landscape restoration. Advocates of landscape management argue that 'climate-smart agriculture' and REDD+ can draw on landscape management.

The marketing of products from specific landscapes can assist conservation. This is apple juice from Tukuche village in the Kali Gandaki Gorge, Nepal

Regional

Germany

Because a large proportion of the biodiversity of Germany was able to invade from the south and east after human activities altered the landscape, maintaining such artificial landscapes is an integral part of nature conservation. The full name of the main nature conservation law in Germany, the Bundesnaturschutzgesetzes, is thus titled in its entirety Gesetz über Naturschutz und Landschaftspflege, where Landschaftspflege translates literally to "landscape maintenance" (see reference for more). Related concepts are Landschaftsschutz, "landscape protection/conservation", and Landschaftsschutzgebiet, a "nature preserve", or literally a (legally) "protected landscape area". The Deutscher Verband für Landschaftspflege is the main organisation which protects landscapes in Germany. It is an umbrella organisation which coordinates the regional landscape protection organisations of the different German states. Classically, there are four methods which can be done in order to conserve landscapes: maintenance, improvement, protection and redevelopment. The marketing of products such as meat from alpine meadows or apple juice from traditional Streuobstwiese can also be an important factor in conservation. Landscapes are maintained by three methods: biological - such as grazing by livestock, manually (although this is rare due to the high cost of labour) and commonly mechanically.

The Netherlands

The ladybird spider, Eresus sandaliatus lives on inland shifting dunes, created by forest clearance and overgrazing on poor, sandy soils. Today backhoe loaders can scrape off topsoil, maintaining the low-nutrient soil that such heath and dune species need.

Staatsbosbeheer, the Dutch governmental forest service, considers landscape management an important part of managing their lands. Landschapsbeheer Nederland is an umbrella organisation which promotes and helps fund the interests of the different provincial landscape management organisations, which between them include 75,000 volunteers and 110,000 hectares of protected nature reserves. Sustainable landscape management is being researched in the Netherlands.

Peru

An example of a producer movement managing a multi-functional landscape is the Potato Park in Písac, Peru, where local communities protect the ecological and cultural diversity of the 12,000ha landscape.

A variety of Peruvian potatoes from the Andes

Sweden

In Sweden, the Swedish National Heritage Board, or Riksantikvarieämbetet, is responsible for landscape conservation. Landscape conservation can be studied at the Department of Cultural Conservation (at Dacapo Mariestad) of the University of Gothenburg, in both Swedish and English.

Thailand

An example of cooperation between very different actors is from the Doi Mae Salong watershed in northwest Thailand, a Military Reserved Area under the control of the Royal Thai Armed Forces. Reforestation activities led to tension with local hill tribes. In response, an agreement was reached with them on land rights and use of different parts of the reserve.

Doi Mae Salong landscape in Thailand is managed by agreement between the army and local hill tribes.

United Kingdom

Among the leading exponents of UK landscape scale conservation are the Areas of Outstanding Natural Beauty (AONB). There are 49 AONB in the UK. The International Union for Conservation of Nature has categorised these regions as "category 5 protected areas" and in 2005 claimed the AONB are administered using what the IUCN coined the "protected landscape approach". In Scotland there is a similar system of national scenic areas.

The UK Biodiversity Action Plan protects semi-natural grasslands, among other habitats, which constitute landscapes maintained by low-intensity grazing. Agricultural environment schemes reward farmers and land managers financially for maintaining these habitats on registered agricultural land. Each of the four countries in the UK has its own individual scheme.

Studies have been carried out across the UK looking at much wider range of habitats. In Wales the Pumlumon Large Area Conservation Project focusses on upland conservation in areas of marginal agriculture and forestry. The North Somerset Levels and Moors Project addresses wetlands.

Other

The landscape to the left is known as satoyama; a traditional human-influenced secondary forest bordering agricultural fields in Japan. The satoyama conservation movement spread in the 1980s in Japan and by 2001 there were more than 500 environmental groups involved.

Landscape approaches have been taken up by governments in for example the Greater Mekong Subregion project and in Indonesia's climate change commitments, and by international research bodies such as the Center for International Forestry Research, which convenes the Global Landscapes Forum.

The Mount Kailash region is where the Indus River, the Karnali River (a major tributary of the Ganges River), the Brahmaputra River and the Sutlej river systems originate. With assistance from the International Centre for Integrated Mountain Development, the three surrounding countries (China, India and Nepal) developed an integrated management approach to the different conservation and development issues within this landscape.

Six countries in West Africa in the Volta River basin using the 'Mapping Ecosystems Services to Human well-being' toolkit, use landscape modelling of alternative scenarios for the riparian buffer to make land-use decisions such as conserving hydrological ecosystem services and meeting national SDG commitments.

Variations

Ecoagriculture

In a 2001 article published by Sara J. Scherr and Jeffrey McNeely, soon expanded into a book, Scherr and McNeely introduced the term "ecoagriculture" to describe their vision of rural development while advancing the environment, claim that agriculture is the dominant influence on wild species and habitats, and point to a number of recent and potential future developments they identified as beneficial examples of land use. They incorporated the non-profit EcoAgriculture Partners. in 2004 to promote this vision, with Scherr as President and CEO, and McNeely as an independent governing board member. Scherr and McNeely edited a second book in 2007. Ecoagriculture had three elements in 2003.

Integrated landscape management

In 2012 Scherr invented a new term, integrated landscape management(ILM), to describe her ideas for developing entire regions, not at just a farm or plot level. Integrated landscape management is a way of managing sustainable landscapes by bringing together multiple stakeholders with different land use objectives. The integrated approach claims to go beyond other approaches which focus on users of the land independently of each other, despite needing some of the same resources. It is promoted by the conservation NGOs Worldwide Fund for Nature, Global Canopy Programme, The Nature Conservancy, The Sustainable Trade Initiative, and EcoAgriculture Partners. Promoters claim that integrated landscape management will maximise collaboration in planning, policy development and action regarding the interdependent Sustainable Development Goals. It was defined by four elements in 2013:

  1. Large scale: It plans land uses at the landscape scale. Wildlife population dynamics and watershed functions can only be understood at the landscape scale. Assuming short-term trade-offs may lead to long-term synergies, conducting analyses over long time periods is advocated.
  2. Emphasis on synergies: It tries to exploit "synergies" among conservation, agricultural production, and rural livelihoods.
  3. Emphasis on collaboration: It can not be achieved by individuals. The management of landscapes require different land managers with different environmental and socio-economic goals to achieve conservation, production, and livelihood goals at a landscape scale.
  4. Importance of both conservation and agricultural production: bringing conservation into the agricultural and rural development discourse by highlighting the importance of ecosystem services in supporting agricultural production. It supports conservationists to more effectively conserve nature within and outside protected areas by working with the agricultural community by developing conservation-friendly livelihoods for rural land users.

By 2016 it had five elements, namely:

  1. stakeholders come together for cooperative dialogue and action;
  2. they exchange information systematically and discuss perspectives to achieve a shared understanding of the landscape conditions, challenges and opportunities;
  3. collaborative planning to develop an agreed action plan;
  4. implementation of the plan;
  5. monitoring and dialogue to adapt management.

Ecosystem approach

The ecosystem approach, promoted by the Convention on Biological Diversity, is a strategy for the integrated ecosystem management of land, water, and living resources for conservation and sustainability.

Ten Principles

This approach includes continual learning and adaptive management: including monitoring, the expectation that actions take place at multiple scales and that landscapes are multifunctional (e.g. supplying both goods, such as timber and food, and services, such as water and biodiversity protection). There are multiple stakeholders, and it assumes they have a common concern about the landscape, negotiate change with each other, and their rights and responsibilities are clear or will become clear.

Criticisms

A literature review identified five main barriers, as follows:

  1. Terminology confusion: the variety of definitions creates confusion and resistance to engage. This resistance has emerged, often independently, from different fields. As stated by Scherr et al.: "People are talking about the same thing ... This can lead to fragmentation of knowledge, unnecessary re-invention of ideas and practices, and inability to mobilize action at scale. ... this rich diversity is often simply overwhelming: they receive confusing messages" This problem is not unique to landscape approaches: since the 1970s it has been recognised that the constant emergence of new terminology can be harmful if they promote rhetoric at the expense of action. Because landscapes approaches develop from, and aim to integrate, a wide variety of sectors, makes it vulnerable to overlapping definitions and parallel concepts. Like other approaches to conservation, it may be a fad.
  2. Time lags: substantial time and resources are invested in developing and planning, while resources are inadequate for implementation.
  3. Operating silos: Each sector pursues its goals without giving consideration to the others. This may arise because of a lack in established objectives, operating norms and funding that effectively bridge different sectors. Working across sectors at the landscape scale requires a range of skills, different from those traditionally used by conservation organisations.
  4. Engagement: Stakeholders may not desire to be engaged in the process, engagement may be trivial or inaccessible, and the discussions may hinder efficient decision-making.
  5. Monitoring: There is lack of monitoring to check whether the objectives have been achieved.

Clinical trial

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Clinical_...