Pest control is the regulation or management of a species defined as a pest,
a member of the animal kingdom that impacts adversely on human
activities. The human response depends on the importance of the damage
done, and will range from tolerance, through deterrence and management,
to attempts to completely eradicate the pest. Pest control measures may
be performed as part of an integrated pest management strategy.
In agriculture, pests are kept at bay by cultural, chemical and biological
means. Ploughing and cultivation of the soil before sowing reduces the
pest burden and there is a modern trend to limit the use of pesticides
as far as possible. This can be achieved by monitoring the crop, only
applying insecticides
when necessary, and by growing varieties and crops which are resistant
to pests. Where possible, biological means are used, encouraging the natural enemies of the pests and introducing suitable predators or parasites.
In homes and urban environments, the pests are the rodents,
birds, insects and other organisms that share the habitat with humans,
and that feed on and spoil possessions. Control of these pests is
attempted through exclusion, repulsion, physical removal or chemical
means. Alternatively, various methods of biological control can be used
including sterilisation programmes.
History
Pest control is at least as old as agriculture, as there has always been a need to keep crops free from pests. As long ago as 3000 BC in Egypt, cats were used to control pests of grain stores such as rodents. Ferrets were domesticated by 500 AD in Europe for use as mousers. Mongooses were introduced into homes to control rodents and snakes, probably by the ancient Egyptians.
The conventional approach was probably the first to be employed,
since it is comparatively easy to destroy weeds by burning them or
ploughing them under, and to kill larger competing herbivores.
Techniques such as crop rotation, companion planting (also known as intercropping or mixed cropping), and the selective breeding of pest-resistant cultivars have a long history.
Chemical pesticides were first used around 2500 BC, when the Sumerians used sulphur compounds as insecticides. Modern pest control was stimulated by the spread across the United States of the Colorado potato beetle. After much discussion, arsenical
compounds were used to control the beetle and the predicted poisoning
of the human population did not occur. This led the way to a widespread
acceptance of insecticides across the continent. With the industrialisation and mechanization of agriculture in the 18th and 19th centuries, and the introduction of the insecticides pyrethrum and derris, chemical pest control became widespread. In the 20th century, the discovery of several synthetic insecticides, such as DDT, and herbicides boosted this development.
Biological control is first recorded around 300 AD in China, when colonies of weaver ants, Oecophylla smaragdina, were intentionally placed in citrus plantations to control beetles and caterpillars. Also in China, ducks were used in paddy fields to consume pests, as illustrated in ancient cave art. In 1762, an Indian mynah
was brought to Mauritius to control locusts, and about the same time,
citrus trees in Burma were connected by bamboos to allow ants to pass
between them and help control caterpillars. In the 1880s, ladybirds were used in citrus plantations in California to control scale insects,
and other biological control experiments followed. The introduction of
DDT, a cheap and effective compound, put an effective stop to biological
control experiments. By the 1960s, problems of resistance to chemicals
and damage to the environment began to emerge, and biological control
had a renaissance. Chemical pest control is still the predominant type
of pest control today, although a renewed interest in traditional and
biological pest control developed towards the end of the 20th century
and continues to this day.
In agriculture, horticulture and forestry
Control methods
Biological pest control
Biological pest control is a method of controlling pests such as insects and mites by using other organisms. It relies on predation, parasitism, herbivory
or other natural mechanisms, but typically also involves an active
human management role. Classical biological control involves the
introduction of natural enemies of the pest that are bred in the
laboratory and released into the environment. An alternative approach is
to augment the natural enemies that occur in a particular area by
releasing more, either in small, repeated batches, or in a single
large-scale release. Ideally, the released organism will breed and
survive, and provide long-term control. Biological control can be an important component of an integrated pest management programme.
For example: mosquitoes are often controlled by putting Bt Bacillus thuringiensis ssp. israelensis, a bacterium that infects and kills mosquito larvae, in local water sources.
Cultural control
Mechanical pest control is the use of hands-on techniques as well as simple equipment and devices, that provides a protective barrier between plants and insects. This is referred to as tillage and is one of the oldest methods of weed control as well as being useful for pest control; wireworms, the larvae of the common click beetle,
are very destructive pests of newly ploughed grassland, and repeated
cultivation exposes them to the birds and other predators that feed on
them.
Crop rotation can help to control pests by depriving them of their host plants. It is a major tactic in the control of corn rootworm, and has reduced early season incidence of Colorado potato beetle by as much as 95%.
Trap cropping
A trap crop is a crop of a plant that attracts pests, diverting them from nearby crops. Pests aggregated on the trap crop can be more easily controlled using pesticides or other methods.
However, trap-cropping, on its own, has often failed to cost
effectively reduce pest densities on large commercial scales, without
the use of pesticides, possibly due to the pests' ability to disperse
back into the main field.
Pesticides
Pesticides are applied to crops by agricultural aircraft, tractor-mounted crop sprayers or as seed dressings
to control pests. However, successful control by pesticides is not
easy; the right formulation must be chosen, the timing is often
critical, the method of application is important, adequate coverage and
retention on the crop are necessary. The killing of natural enemies of
the target pest should be minimised. This is particularly important in
countries where there are natural reservoirs of pests and their enemies
in the countryside surrounding plantation crops, and these co-exist in a
delicate balance. Often in less-developed countries, the crops are well
adapted to the local situation and no pesticides are needed. Where
progressive farmers are using fertilisers to grow improved crop
varieties, these are often more susceptible to pest damage, but the
indiscriminate application of pesticides may be detrimental in the
longer term.
The efficacy of chemical pesticides tends to diminish over time.
This is because any organism that manages to survive the initial
application will pass on its genes to its offspring and a resistant
strain will be developed. In this way, some of the most serious pests
have developed resistance and are no longer killed by pesticides that
used to kill their ancestors. This necessitates higher concentrations of
chemical, more frequent applications and a movement to more expensive
formulations.
Pesticides are formulated to kill pests, but many have
detrimental effects on non-target species; of particular concern is the
damage done to honey-bees, solitary bees and other pollinating insects and in this regard, the time of day when the spray is applied can be important. The widely used neonicotinoids have been banned on flowering crops in some countries because of their effects on bees. Some pesticides may cause cancer and other health problems in humans, as well as being harmful to wildlife. There can be acute effects immediately after exposure or chronic effects after continuous low-level, or occasional exposure. Maximum residue limits for pesticides in foodstuffs and animal feed are set by many nations.
Forestry
Forest pests present a significant problem because it is not easy to
access the canopy and monitor pest populations. In addition, forestry
pests such as bark beetles, kept under control by natural enemies in
their native range, may be transported large distances in cut timber to
places where they have no natural predators, enabling them to cause
extensive economic damage. Pheromone traps
have been used to monitor pest populations in the canopy. These release
volatile chemicals that attract males. Pheromone traps can detect the
arrival of pests or alert foresters to outbreaks. For example, the spruce budworm, a destructive pest of spruce and balsam fir, has been monitored using pheromone traps in Canadian forests for several decades.
In some regions, such as New Brunswick, areas of forest are sprayed
with pesticide to control the budworm population and prevent the damage
caused during outbreaks.
In homes and cities
Many
unwelcome animals visit or make their home in residential buildings,
industrial sites and urban areas. Some contaminate foodstuffs, damage
structural timbers, chew through fabrics or infest stored dry goods.
Some inflict great economic loss, others carry diseases or cause fire
hazards, and some are just a nuisance. Control of these pests has been
attempted by improving sanitation and garbage control, modifying the
habitat, and using repellents, growth regulators, traps, baits and
pesticides.
General methods
Physical pest control
Physical pest control involves trapping or killing pests such as insects and rodents. Historically, local people or paid rat-catchers caught and killed rodents using dogs and traps. On a domestic scale, sticky flypapers are used to trap flies. In larger buildings, insects may be trapped using such means as pheromones,
synthetic volatile chemicals or ultraviolet light to attract the
insects; some have a sticky base or an electrically charged grid to kill
them. Glueboards are sometimes used for monitoring cockroaches and to
catch rodents. Rodents can be killed by suitably baited spring traps
and can be caught in cage traps for relocation. Talcum powder or
"tracking powder" can be used to establish routes used by rodents inside
buildings and acoustic devices can be used for detecting beetles in
structural timbers.
Historically, firearms have been one of the primary methods used for pest control. "Garden Guns" are smooth bore shotguns specifically made to fire .22 caliber snake shot
or 9mm Flobert, and are commonly used by gardeners and farmers for
snakes, rodents, birds, and other pest. Garden Guns are short range
weapons that can do little harm past 15 to 20 yards, and they're
relatively quiet when fired with snake shot, compared to a standard
ammunition. These guns are especially effective inside of barns and
sheds, as the snake shot will not shoot holes in the roof or walls, or
more importantly injure livestock with a ricochet. They are also used for pest control at airports, warehouses, stockyards, etc.
The most common shot cartridge is .22 Long Rifle loaded with #12
shot. At a distance of about 10 feet (3 m), which is about the maximum
effective range, the pattern is about 8 inches (20 cm) in diameter from a
standard rifle. Special smoothbore shotguns, such as the Marlin Model 25MG
can produce effective patterns out to 15 or 20 yards using .22 WMR
shotshells, which hold 1/8 oz. of #12 shot contained in a plastic
capsule.
Poisoned bait
Poisoned bait
is a common method for controlling rats, mice, birds, slugs, snails,
ants, cockroaches and other pests. The basic granules, or other
formulation, contains a food attractant for the target species and a
suitable poison. For ants, a slow-acting toxin is needed so that the
workers have time to carry the substance back to the colony, and for
flies, a quick-acting substance to prevent further egg-laying and
nuisance. Baits for slugs and snails often contain the molluscide metaldehyde, dangerous to children and household pets.
Warfarin has traditionally been used to kill rodents, but many populations have developed resistance to this anticoagulant, and difenacoum is often substituted. These are cumulative poisons, requiring bait stations to be topped up regularly. Poisoned meat has been used for centuries to kill animals such as wolves and birds of prey. Poisoned carcasses however kill a wide range of carrion feeders, not only the targeted species. Raptors in Israel were nearly wiped out following a period of intense poisoning of rats and other crop pests.
Fumigation
Fumigation
is the treatment of a structure to kill pests such as wood-boring
beetles by sealing it or surrounding it with an airtight cover such as a
tent, and fogging with liquid insecticide for an extended period,
typically of 24–72 hours. This is costly and inconvenient as the
structure cannot be used during the treatment, but it targets all life
stages of pests.
An alternative, space treatment, is fogging or misting to
disperse a liquid insecticide in the atmosphere within a building
without evacuation or airtight sealing, allowing most work within the
building to continue, at the cost of reduced penetration. Contact
insecticides are generally used to minimise long lasting residual
effects.
Sterilization
Populations
of pest insects can sometimes be dramatically reduced by the release of
sterile individuals. This involves the mass rearing of a pest,
sterilising it by means of X-rays or some other means, and releasing it
into a wild population. It is particularly useful where a female only
mates once and where the insect does not disperse widely. This technique has been successfully used against the New World screw-worm fly, some species of tsetse fly, tropical fruit flies, the pink bollworm and the codling moth, among others.
Laboratory studies conducted with U-5897
(3-chloro-1,2-propanediol) were attempted in the early 1970s for rat
control, although these proved unsuccessful. In 2013, New York City tested sterilization traps, demonstrating a 43% reduction in rat populations. The product ContraPest was approved for the sterilization of rodents by the United States Environmental Protection Agency in August 2016.
Methods for specific pests
Natural rodent control
Several wildlife rehabilitation
organizations encourage natural form of rodent control through
exclusion and predator support and preventing secondary poisoning
altogether. The United States Environmental Protection Agency
notes in its Proposed Risk Mitigation Decision for Nine Rodenticides
that "without habitat modification to make areas less attractive to
commensal rodents, even eradication will not prevent new populations
from recolonizing the habitat." The United States Environmental Protection Agency has prescribed guidelines for natural rodent control and for safe trapping in residential areas with subsequent release to the wild. People sometimes attempt to limit rodent damage using repellents. Balsam fir oil from the tree Abies balsamea is an EPA approved non-toxic rodent repellent. Acacia polyacantha subsp. campylacantha root emits chemical compounds that repel animals including rats.
Pantry pests
Insect pests including the Mediterranean flour moth, the Indian mealmoth, the cigarette beetle, the drugstore beetle, the confused flour beetle, the red flour beetle, the merchant grain beetle, the sawtoothed grain beetle, the wheat weevil, the maize weevil and the rice weevil infest stored dry foods such as flour, cereals and pasta.
In the home, foodstuffs found to be infested are usually
discarded, and storing such products in sealed containers should prevent
the problem from reoccurring. The eggs of these insects are likely to
go unnoticed, with the larvae being the destructive life stage, and the
adult the most noticeable stage.
Since pesticides are not safe to use near food, alternative treatments
such as freezing for four days at 0 °F (−18 °C) or baking for half an
hour at 130 °F (54 °C) should kill any insects present.
Clothes moths
The larvae of clothes moths (mainly Tineola bisselliella and Tinea pellionella)
feed on fabrics and carpets, particularly those that are stored or
soiled. The adult females lay batches of eggs on natural fibres,
including wool, silk and fur, as well as cotton and linen in blends. The
developing larvae spin protective webbing and chew into the fabric,
creating holes and specks of excrement. Damage is often concentrated in
concealed locations, under collars and near seams of clothing, in folds
and crevices in upholstery and round the edges of carpets as well as
under furniture.
Methods of control include using airtight containers for storage,
periodic laundering of garments, trapping, freezing, heating and the use
of chemicals; mothballs contain volatile insect repellents such as 1,4-Dichlorobenzene which deter adults, but to kill the larvae, permethrin, pyrethroids or other insecticides may need to be used.
Carpet beetles
Carpet beetles are members of the family Dermestidae, and while the adult beetles feed on nectar and pollen,
the larvae are destructive pests in homes, warehouses and museums. They
feed on animal products including wool, silk, leather, fur, the
bristles of hair brushes, pet hair, feathers and museum specimens. They
tend to infest hidden locations and may feed on larger areas of fabrics
than do clothes moths, leaving behind specks of excrement and brown,
hollow, bristly-looking cast skins.
Management of infestations is difficult and is based on exclusion and
sanitation where possible, resorting to pesticides when necessary. The
beetles can fly in from outdoors and the larvae can survive on lint
fragments, dust and inside the bags of vacuum cleaners. In warehouses and museums, sticky traps baited with suitable pheromones
can be used to identify problems, and heating, freezing, spraying the
surface with insecticide and fumigation will kill the insects when
suitably applied. Susceptible items can be protected from attack by
keeping them in clean airtight containers.
Bookworms
Books are sometimes attacked by cockroaches, silverfish, book mites, booklice,
and various beetles which feed on the covers, paper, bindings and glue.
They leave behind physical damage in the form of tiny holes as well as
staining from their faeces. Book pests include the larder beetle, and the larvae of the black carpet beetle and the drugstore beetle which attack leather-bound books, while the common clothes moth and the brown house moth
attack cloth bindings. These attacks are largely a problem with
historic books, because modern bookbinding materials are less
susceptible to this type of damage.
Evidence of attack may be found in the form of tiny piles of book-dust and specks of frass.
Damage may be concentrated in the spine, the projecting edges of pages
and the cover. Prevention of attack relies on keeping books in cool,
clean, dry positions with low humidity, and occasional inspections
should be made. Treatment can be by freezing for lengthy periods, but
some insect eggs are very resistant and can survive for long periods at
low temperatures.
Beetles
Various beetles in the Bostrichoidea
superfamily attack the dry, seasoned wood used as structural timber in
houses and to make furniture. In most cases, it is the larvae that do
the damage; these are invisible from the outside of the timber, but are
chewing away at the wood in the interior of the item. Examples of these
are the powderpost beetles, which attack the sapwood of hardwoods, and the furniture beetles,
which attacks softwoods, including plywood. The damage has already been
done by the time the adult beetles bore their way out, leaving neat
round holes behind them. The first that a householder knows about the
beetle damage is often when a chair leg breaks off or a piece of
structural timber caves in. Prevention is through chemical treatment of
the timber prior to its use in construction or in furniture manufacture.
Termites
Termites with colonies
in close proximity to houses can extend their galleries underground and
make mud tubes to enter homes. The insects keep out of sight and chew
their way through structural and decorative timbers, leaving the surface
layers intact, as well as through cardboard, plastic and insulation
materials. Their presence may become apparent when winged insects appear
and swarm in the home in spring. Regular inspection of structures by a
trained professional may help detect termite activity before damage
becomes substantial.
Inspection and monitoring of termites is important because termite
alates (winged reproductives) may not always swarm inside a structure.
Control and extermination is a professional job involving trying to
exclude the insects from the building and trying to kill those already
present. Soil-applied liquid termiticides
provide a chemical barrier that prevents termites from entering
buildings, and lethal baits can be used; these are eaten by foraging
insects, and carried back to the nest and shared with other members of
the colony, which goes into slow decline.
Mosquitoes
Mosquitoes are midge-like flies in the family Culicidae. Females of most species feed on blood and some act as vectors for malaria and other diseases. Historically they have been controlled by use of DDT
and other chemical means, but since the adverse environmental effects
of these insecticides has been realised, other means of control have
been attempted. The insects rely on water in which to breed and the
first line of control is to reduce possible breeding locations by
draining marshes and reducing accumulations of standing water. Other
approaches include biological control of larvae by the use of fish or
other predators, genetic control, the introduction of pathogens, growth-regulating hormones, the release of pheromones and mosquito trapping.
On airfields
Birds are a significant hazard to aircraft, but it is difficult to
keep them away from airfields. Several methods have been explored.
Stunning birds by feeding them a bait containing stupefying substances
has been tried,
and it may be possible to reduce their numbers on airfields by reducing
the number of earthworms and other invertebrates by soil treatment. Leaving the grass long on airfields rather than mowing it is also a deterrent to birds.
Sonic nets are being trialled; these produce sounds that birds find
distracting and seem effective at keeping birds away from affected
areas.
Guidelines & Legislation
Guidelines
and legislation regarding the usage, permitted methods of application
and the storage conditions of pesticides and chemicals vary from country
to country, often being legislated by each state of territory.
Australia
Australian Capital Territory (ACT)
Environment Protection Act 1997 ACT
New South Wales
"Occupational Heath and Safety Regulation 2001 NSW pursuant to the Occupational Health & Safety Act 2000. Part 9.1" . 17 July 2005.
South Australia
Pesticides Regulations 2003 SA Pursuant to Controlled Substances Act 1984 SA
Victoria
Health (Pest Control) Regulations 2002 Vic pursuant to the Health Act 1958 Vic
Western Australia
Health (Pesticide) Regulations 1956 WA pursuant to Health Act 1911 WA
India
The Insecticides Act 1968
Malaysia
Pesticide Act 1974
Singapore
Control of Vectors and Pesticides Act
United Kingdom
Prevention of Damage by Pests Act 1949