From Wikipedia, the free encyclopedia

Molybdenum,  42Mo
Molybdenum crystaline fragment and 1cm3 cube.jpg
Molybdenum
Pronunciation/məˈlɪbdənəm/ (mə-LIB-dən-əm)
Appearancegray metallic
Standard atomic weight Ar, std(Mo)95.95(1)
Molybdenum in the periodic table
Hydrogen
Helium
Lithium Beryllium
Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium
Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium
Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium

Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Cr

Mo

W
niobiummolybdenumtechnetium
Atomic number (Z)42
Groupgroup 6
Periodperiod 5
Blockd-block
Element category  transition metal
Electron configuration[Kr] 4d5 5s1
Electrons per shell
2, 8, 18, 13, 1
Physical properties
Phase at STPsolid
Melting point2896 K ​(2623 °C, ​4753 °F)
Boiling point4912 K ​(4639 °C, ​8382 °F)
Density (near r.t.)10.28 g/cm3
when liquid (at m.p.)9.33 g/cm3
Heat of fusion37.48 kJ/mol
Heat of vaporization598 kJ/mol
Molar heat capacity24.06 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 2742 2994 3312 3707 4212 4879
Atomic properties
Oxidation states−4, −2, −1, +1, +2, +3, +4, +5, +6 (a strongly acidic oxide)
ElectronegativityPauling scale: 2.16
Ionization energies
  • 1st: 684.3 kJ/mol
  • 2nd: 1560 kJ/mol
  • 3rd: 2618 kJ/mol

Atomic radiusempirical: 139 pm
Covalent radius154±5 pm
Color lines in a spectral range
Spectral lines of molybdenum
Other properties
Natural occurrenceprimordial
Crystal structurebody-centered cubic (bcc)
Body-centered cubic crystal structure for molybdenum
Speed of sound thin rod5400 m/s (at r.t.)
Thermal expansion4.8 µm/(m·K) (at 25 °C)
Thermal conductivity138 W/(m·K)
Thermal diffusivity54.3 mm2/s (at 300 K)
Electrical resistivity53.4 nΩ·m (at 20 °C)
Magnetic orderingparamagnetic
Magnetic susceptibility+89.0·10−6 cm3/mol (298 K)
Young's modulus329 GPa
Shear modulus126 GPa
Bulk modulus230 GPa
Poisson ratio0.31
Mohs hardness5.5
Vickers hardness1400–2740 MPa
Brinell hardness1370–2500 MPa
CAS Number7439-98-7
History
DiscoveryCarl Wilhelm Scheele (1778)
First isolationPeter Jacob Hjelm (1781)
Main isotopes of molybdenum
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
92Mo 14.65% stable
93Mo syn 4×103 y ε 93Nb
94Mo 9.19% stable
95Mo 15.87% stable
96Mo 16.67% stable
97Mo 9.58% stable
98Mo 24.29% stable
99Mo syn 65.94 h β 99mTc
γ
100Mo 9.74% 7.8×1018 y ββ 100Ru

Molybdenum is a chemical element with symbol Mo and atomic number 42. The name is from Neo-Latin molybdaenum, from Ancient Greek Μόλυβδος molybdos, meaning lead, since its ores were confused with lead ores. Molybdenum minerals have been known throughout history, but the element was discovered (in the sense of differentiating it as a new entity from the mineral salts of other metals) in 1778 by Carl Wilhelm Scheele. The metal was first isolated in 1781 by Peter Jacob Hjelm.

Molybdenum does not occur naturally as a free metal on Earth; it is found only in various oxidation states in minerals. The free element, a silvery metal with a gray cast, has the sixth-highest melting point of any element. It readily forms hard, stable carbides in alloys, and for this reason most of world production of the element (about 80%) is used in steel alloys, including high-strength alloys and superalloys.

Most molybdenum compounds have low solubility in water, but when molybdenum-bearing minerals contact oxygen and water, the resulting molybdate ion MoO2−
4
is quite soluble. Industrially, molybdenum compounds (about 14% of world production of the element) are used in high-pressure and high-temperature applications as pigments and catalysts.

Molybdenum-bearing enzymes are by far the most common bacterial catalysts for breaking the chemical bond in atmospheric molecular nitrogen in the process of biological nitrogen fixation. At least 50 molybdenum enzymes are now known in bacteria, plants, and animals, although only bacterial and cyanobacterial enzymes are involved in nitrogen fixation. These nitrogenases contain molybdenum in a form different from other molybdenum enzymes, which all contain fully oxidized molybdenum in a molybdenum cofactor. These various molybdenum cofactor enzymes are vital to the organisms, and molybdenum is an essential element for life in all higher eukaryote organisms, though not in all bacteria.

Characteristics

Physical properties

In its pure form, molybdenum is a silvery-grey metal with a Mohs hardness of 5.5, and a standard atomic weight of 95.95 g/mol. It has a melting point of 2,623 °C (4,753 °F); of the naturally occurring elements, only tantalum, osmium, rhenium, tungsten, and carbon have higher melting points. It has one of the lowest coefficients of thermal expansion among commercially used metals. The tensile strength of molybdenum wires increases about 3 times, from about 10 to 30 GPa, when their diameter decreases from ~50–100 nm to 10 nm.

Chemical properties

Molybdenum is a transition metal with an electronegativity of 2.16 on the Pauling scale. It does not visibly react with oxygen or water at room temperature. Weak oxidation of molybdenum starts at 300 °C (572 °F); bulk oxidation occurs at temperatures above 600 °C, resulting in molybdenum trioxide. Like many heavier transition metals, molybdenum shows little inclination to form a cation in aqueous solution, although the Mo3+ cation is known under carefully controlled conditions.

Isotopes

There are 35 known isotopes of molybdenum, ranging in atomic mass from 83 to 117, as well as four metastable nuclear isomers. Seven isotopes occur naturally, with atomic masses of 92, 94, 95, 96, 97, 98, and 100. Of these naturally occurring isotopes, only molybdenum-100 is unstable.

Molybdenum-98 is the most abundant isotope, comprising 24.14% of all molybdenum. Molybdenum-100 has a half-life of about 1019 y and undergoes double beta decay into ruthenium-100. Molybdenum isotopes with mass numbers from 111 to 117 all have half-lives of approximately 150 ns. All unstable isotopes of molybdenum decay into isotopes of niobium, technetium, and ruthenium.

As also noted below, the most common isotopic molybdenum application involves molybdenum-99, which is a fission product. It is a parent radioisotope to the short-lived gamma-emitting daughter radioisotope technetium-99m, a nuclear isomer used in various imaging applications in medicine. In 2008, the Delft University of Technology applied for a patent on the molybdenum-98-based production of molybdenum-99.

Compounds

Molybdenum forms chemical compounds in oxidation states from -II to +VI. Higher oxidation states are more relevant to its terrestrial occurrence and its biological roles, mid-level oxidation states are often associated with metal clusters, and very low oxidation states are typically associated with organomolybdenum compounds. Mo and W chemistry shows strong similarities. The relative rarity of molybdenum(III), for example, contrasts with the pervasiveness of the chromium(III) compounds. The highest oxidation state is seen in molybdenum(VI) oxide (MoO3), whereas the normal sulfur compound is molybdenum disulfide MoS2.

Oxidation
state
Example
−2 Na
2
[Mo
2
(CO)
10
]
0 Mo(CO)
6
+1 Na[C
6
H
6
Mo]
+2 MoCl
2
+3 Na
3
[Mo(CN)]
6
+4 MoS
2
+5 MoCl
5
+6 MoF
6