Search This Blog

Thursday, February 21, 2019

Christiaan Huygens

From Wikipedia, the free encyclopedia

Christiaan Huygens
Christiaan Huygens-painting.jpeg
Christiaan Huygens by Caspar Netscher, Museum Boerhaave, Leiden
Born14 April 1629
Died8 July 1695 (aged 66)
ResidenceNetherlands, France
NationalityDutch
Alma materUniversity of Leiden
University of Angers
Known forTitan
Explanation of Saturn's rings
Centrifugal force
Collision formulae
Pendulum clock
Huygens–Fresnel principle
Wave theory
Huygens' engine
Birefringence
Evolute
Huygenian eyepiece
31 equal temperament musical tuning
Huygens–Steiner theorem
Scientific career
FieldsPhysics Mathematics Astronomy Horology
InstitutionsRoyal Society of London
French Academy of Sciences
InfluencesGalileo Galilei
René Descartes
Frans van Schooten
InfluencedGottfried Wilhelm Leibniz
Isaac Newton

Christiaan Huygens was a Dutch physicist, mathematician, astronomer and inventor, who is widely regarded as one of the greatest scientists of all time and a major figure in the scientific revolution. In physics, Huygens made groundbreaking contributions in optics and mechanics, while as an astronomer he is chiefly known for his studies of the rings of Saturn and the discovery of its moon Titan. As an inventor, he improved the design of the telescope with the invention of the Huygenian eyepiece. His most famous invention, however, was the invention of the pendulum clock in 1656, which was a breakthrough in timekeeping and became the most accurate timekeeper for almost 300 years. Because he was the first to use mathematical formulae to describe the laws of physics, Huygens has been called the first theoretical physicist and the founder of mathematical physics.

In 1659, Huygens was the first to derive the now standard formula for the centripetal force in his work De vi centrifuga. The formula played a central role in classical mechanics and became known as the second of Newton's laws of motion. Huygens was also the first to formulate the correct laws of elastic collision in his work De motu corporum ex percussione, but his findings were not published until 1703, after his death. In the field of optics, he is best known for his wave theory of light, which he proposed in 1678 and described in 1690 in his Treatise on Light, which is regarded as the first mathematical theory of light. His theory was initially rejected in favor of Isaac Newton's corpuscular theory of light, until Augustin-Jean Fresnel adopted Huygens' principle in 1818 and showed that it could explain the rectilinear propagation and diffraction effects of light. Today this principle is known as the Huygens–Fresnel principle.

Huygens invented the pendulum clock in 1656, which he patented the following year. In addition to this invention, his research in horology resulted in an extensive analysis of the pendulum in his 1673 book Horologium Oscillatorium, which is regarded as one of the most important 17th-century works in mechanics. While the first part of the book contains descriptions of clock designs, most of the book is an analysis of pendulum motion and a theory of curves. In 1655, Huygens began grinding lenses with his brother Constantijn in order to build telescopes to conduct astronomical research. He designed a 50-power refracting telescope with which he discovered that the ring of Saturn was "a thin, flat ring, nowhere touching, and inclined to the ecliptic." It was with this telescope that he also discovered the first of Saturn's moons, Titan. He eventually developed in 1662 what is now called the Huygenian eyepiece, a telescope with two lenses, which diminished the amount of dispersion.

As a mathematician, Huygens was a pioneer on probability and wrote his first treatise on probability theory in 1657 with the work Van Rekeningh in Spelen van Gluck. Frans van Schooten, who was the private tutor of Huygens, translated the work as De ratiociniis in ludo aleae ("On Reasoning in Games of Chance"). The work is a systematic treatise on probability and deals with games of chance and in particular the problem of points. The modern concept of probability grew out of the use of expectation values by Huygens and Blaise Pascal (who encouraged him to write the work).

The last years of Huygens, who never married, were characterized by loneliness and depression. As a rationalist, he refused to believe in an immanent supreme being, and could not accept the Christian faith of his upbringing. Although Huygens did not believe in such a supernatural being, he did hypothesize on the possibility of extraterrestrial life in his Cosmotheoros, which was published shortly before his death in 1695. He speculated that extraterrestrial life was possible on planets similar to Earth and wrote that the availability of water in liquid form was a necessity for life.

Early life

Portrait of Huygens' father (centre) and his five children (Christiaan at right). Mauritshuis, The Hague.
 
Christiaan Huygens. Cut from the engraving following the painting of Caspar Netscher by G. Edelinck, between 1684 and 1687.
 
Christiaan Huygens was born on 14 April 1629 in The Hague, into a rich and influential Dutch family, the second son of Constantijn Huygens. Christiaan was named after his paternal grandfather. His mother was Suzanna van Baerle. She died in 1637, shortly after the birth of Huygens' sister. The couple had five children: Constantijn (1628), Christiaan (1629), Lodewijk (1631), Philips (1632) and Suzanna (1637).

Constantijn Huygens was a diplomat and advisor to the House of Orange, and also a poet and musician. His friends included Galileo Galilei, Marin Mersenne and René Descartes. Huygens was educated at home until turning sixteen years old. He liked to play with miniatures of mills and other machines. His father gave him a liberal education: he studied languages and music, history and geography, mathematics, logic and rhetoric, but also dancing, fencing and horse riding.

In 1644 Huygens had as his mathematical tutor Jan Jansz de Jonge Stampioen, who set the 15-year-old a demanding reading list on contemporary science. Descartes was impressed by his skills in geometry.

Student years

His father sent Huygens to study law and mathematics at the University of Leiden, where he studied from May 1645 to March 1647. Frans van Schooten was an academic at Leiden from 1646, and also a private tutor to Huygens and his elder brother, replacing Stampioen on the advice of Descartes. Van Schooten brought his mathematical education up to date, in particular introducing him to the work of Fermat on differential geometry.

After two years, from March 1647, Huygens continued his studies at the newly founded Orange College, in Breda, where his father was a curator: the change occurred because of a duel between his brother Lodewijk and another student. Constantijn Huygens was closely involved in the new College, which lasted only to 1669; the rector was André Rivet. Christiaan Huygens lived at the home of the jurist Johann Henryk Dauber, and had mathematics classes with the English lecturer John Pell. He completed his studies in August 1649. He then had a stint as a diplomat on a mission with Henry, Duke of Nassau. It took him to Bentheim, then Flensburg. He took off for Denmark, visited Copenhagen and Helsingør, and hoped to cross the Øresund to visit Descartes in Stockholm. It was not to be.

While his father Constantijn had wished his son Christiaan to be a diplomat, it also was not to be. In political terms, the First Stadtholderless Period that began in 1650 meant that the House of Orange was not in power, removing Constantijn's influence. Further, he realised that his son had no interest in such a career.

Early correspondence

Correspondance
 
Huygens generally wrote in French or Latin. While still a college student at Leiden he began a correspondence with the intelligencer Mersenne, who died quite soon afterwards in 1648. Mersenne wrote to Constantijn on his son's talent for mathematics, and flatteringly compared him to Archimedes (3 January 1647). The letters show the early interests of Huygens in mathematics. In October 1646 there is the suspension bridge, and the demonstration that a catenary is not a parabola. In 1647/8 they cover the claim of Grégoire de Saint-Vincent to squaring the circle; rectification of the ellipse; projectiles, and the vibrating string. Some of Mersenne's concerns at the time, such as the cycloid (he sent Evangelista Torricelli's treatise on the curve), the centre of oscillation, and the gravitational constant, were matters Huygens only took seriously towards the end of the 17th century. Mersenne had also written on musical theory. Huygens preferred meantone temperament; he innovated in 31 equal temperament, which was not itself a new idea but known to Francisco de Salinas, using logarithms to investigate it further and show its close relation to the meantone system.

In 1654, Huygens returned to his father's house in The Hague, and was able to devote himself entirely to research. The family had another house, not far away at Hofwijck, and he spent time there during the summer. His scholarly life did not allow him to escape bouts of depression.

The garden plan at Hofwijck, 1653
 
Subsequently, Huygens developed a broad range of correspondents, though picking up the threads after 1648 was hampered by the five-year Fronde in France. Visiting Paris in 1655, Huygens called on Ismael Boulliau to introduce himself. Then Boulliau took him to see Claude Mylon. The Parisian group of savants that had gathered around Mersenne held together into the 1650s, and Mylon, who had assumed the secretarial role, took some trouble from then on to keep Huygens in touch. Through Pierre de Carcavi Huygens corresponded in 1656 with Pierre de Fermat, whom he admired greatly, though this side of idolatry. The experience was bittersweet and even puzzling, since it became clear that Fermat had dropped out of the research mainstream, and his priority claims could probably not be made good in some cases. Besides, Huygens was looking by then to apply mathematics, while Fermat's concerns ran to purer topics.

Scientific debut

Huygens was often slow to publish his results and discoveries. In the early days his mentor Frans van Schooten was cautious for the sake of his reputation.

The first work Huygens put in print was Theoremata de quadratura (1651) in the field of quadrature. It included material discussed with Mersenne some years before, such as the fallacious nature of the squaring of the circle by Grégoire de Saint-Vincent. His preferred methods were those of Archimedes and Fermat. Quadrature was a live issue in the 1650s, and through Mylon, Huygens intervened in the discussion of the mathematics of Thomas Hobbes. Persisting in trying to explain the errors Hobbes had fallen into, he made an international reputation.

The catenary in a manuscript of Huygens.
 
Huygens studied spherical lenses from a theoretical point of view in 1652–3, obtaining results that remained unpublished until Isaac Barrow (1669). His aim was to understand telescopes. He began grinding his own lenses in 1655, collaborating with his brother Constantijn. He designed in 1662 what is now called the Huygenian eyepiece, with two lenses, as a telescope ocular. Lenses were also a common interest through which Huygens could meet socially in the 1660s with Baruch Spinoza, who ground them professionally. They had rather different outlooks on science, Spinoza being the more committed Cartesian, and some of their discussion survives in correspondence. He encountered the work of Antoni van Leeuwenhoek, another lens grinder, in the field of microscopy which interested his father.

Huygens wrote the first treatise on probability theory, De ratiociniis in ludo aleae ("On Reasoning in Games of Chance", 1657). He had been told of recent work in the field by Fermat, Blaise Pascal and Girard Desargues two years earlier, in Paris. Frans van Schooten translated the original Dutch manuscript "Van Rekeningh in Spelen van Geluck" into Latin and published it in his Exercitationum mathematicarum. It deals with games of chance, in particular the problem of points. Huygens took as intuitive his appeals to concepts of a "fair game" and equitable contract, and used them set up a theory of expected values. In 1662 Sir Robert Moray sent Huygens John Graunt's life table, and in time Huygens and his brother Lodewijk worked on life expectancy.

On 3 May 1661, Huygens observed the planet Mercury transit over the Sun, using the telescope of instrument maker Richard Reeve in London, together with astronomer Thomas Streete and Reeve. Streete then debated the published record of the transit of Hevelius, a controversy mediated by Henry Oldenburg. Huygens passed to Hevelius a manuscript of Jeremiah Horrocks on the transit of Venus, 1639, which thereby was printed for the first time in 1662. In that year Huygens, who played the harpsichord, took an interest in music, and Simon Stevin's theories on it; he showed very little concern to publish his theories on consonance, some of which were lost for centuries. The Royal Society of London elected him a Fellow in 1663.

In France

The Montmor Academy was the form the old Mersenne circle took after the mid-1650s. Huygens took part in its debates, and supported its "dissident" faction who favored experimental demonstration to curtail fruitless discussion, and opposed amateurish attitudes. During 1663 he made what was his third visit to Paris; the Montmor Academy closed down, and Huygens took the chance to advocate a more Baconian program in science. In 1666 he moved to Paris and earned a position at Louis XIV's new French Academy of Sciences.

In Paris Huygens had an important patron and correspondent in Jean-Baptiste Colbert. However, his relationship with the Academy was not always easy, and in 1670 Huygens, seriously ill, chose Francis Vernon to carry out a donation of his papers to the Royal Society in London, should he die. Then the Franco-Dutch War took place (1672–8). England's part in it (1672–4) is thought to have damaged his relationship with the Royal Society. Robert Hooke for the Royal Society lacked the urbanity to handle the situation, in 1673.

Christiaan Huygens, relief by Jean-Jacques Clérion, around 1670?
 
Denis Papin was assistant to Huygens from 1671. One of their projects, which did not bear fruit directly, was the gunpowder engine. Papin moved to England in 1678, and continued to work in this area. Using the Paris Observatory (completed in 1672), Huygens made further astronomical observations. In 1678 he introduced Nicolaas Hartsoeker to French scientists such as Nicolas Malebranche and Giovanni Cassini

It was in Paris, also, that Huygens met the young diplomat Gottfried Leibniz, there in 1672 on a vain mission to meet Arnauld de Pomponne, the French Foreign Minister. At this time Leibniz was working on a calculating machine, and he moved on to London in early 1673 with diplomats from Mainz; but from March 1673 Leibniz was tutored in mathematics by Huygens. Huygens taught him analytical geometry; an extensive correspondence ensued, in which Huygens showed reluctance to accept the advantages of infinitesimal calculus.

Later life

Huygens moved back to The Hague in 1681 after suffering serious depressive illness. In 1684, he published Astroscopia Compendiaria on his new tubeless aerial telescope. He attempted to return to France in 1685 but the revocation of the Edict of Nantes precluded this move. His father died in 1687, and he inherited Hofwijck, which he made his home the following year.

Hofwijck, home to Christiaan Huygens from 1688
 
On his third visit to England, in 1689, Huygens met Isaac Newton on 12 June. They spoke about Iceland spar, and subsequently corresponded about resisted motion.

Huygens observed the acoustical phenomenon now known as flanging in 1693. He died in The Hague on 8 July 1695, and was buried in the Grote Kerk.  Huygens never married.

Work in natural philosophy

Huygens has been called the leading European natural philosopher between Descartes and Newton. He adhered to the tenets of the mechanical philosophy of his time. In particular he sought explanations of the force of gravity that avoided action at a distance.

In common with Robert Boyle and Jacques Rohault, Huygens adhered to what has been called, more explicitly, "experimentally oriented corpuscular-mechanical" natural philosophy. In the analysis of the Scientific Revolution this appears as a mainstream position, at least from the founding of the Royal Society to the emergence of Newton, and was sometimes labelled "Baconian", while not being inductivist or identifying with the views of Francis Bacon in a simple-minded way. After his first visit to England in 1661, when he attended a meeting of the Gresham College group in April and learned directly about Boyle's air pump experiments, Huygens spent time in late 1661 and early 1662 replicating the work. It proved a long process, brought to the surface an experimental issue ("anomalous suspension") and the theoretical issue of horror vacui, and ended in July 1663 as Huygens became a Fellow of the Royal Society. It has been said that Huygens finally accepted Boyle's view of the void, as against the Cartesian denial of it; and also (in Leviathan and the Air Pump) that the replication of results trailed off messily.

Newton's influence on John Locke was mediated by Huygens, who assured Locke that Newton's mathematics was sound, leading to Locke's acceptance of a "corpuscular-mechanical" physics.

Laws of motion, impact and gravitation

The general approach of the mechanical philosophers was to postulate theories of the kind now called "contact action". Huygens adopted this method, but not without seeing its difficulties and failures. Leibniz, his student in Paris, abandoned the theory. Seeing the universe this way made the theory of collisions central to physics. The requirements of the mechanical philosophy, in the view of Huygens, were stringent. Matter in motion made up the universe, and only explanations in those terms could be truly intelligible. While he was influenced by the Cartesian approach, he was less doctrinaire. He studied elastic collisions in the 1650s but delayed publication for over a decade.

Depiction from Huygens, Oeuvres Complètes: a boating metaphor underlay the way of thinking about relative motion, and so simplifying the theory of colliding bodies
 
Huygens concluded quite early that Descartes's laws for the elastic collision of two bodies must be wrong, and he formulated the correct laws. An important step was his recognition of the Galilean invariance of the problems. His views then took many years to be circulated. He passed them on in person to William Brouncker and Christopher Wren in London, in 1661. What Spinoza wrote to Henry Oldenburg about them, in 1666 which was during the Second Anglo-Dutch War, was guarded. Huygens had actually worked them out in a manuscript De motu corporum ex percussione in the period 1652–6. The war ended in 1667, and Huygens announced his results to the Royal Society in 1668. He published them in the Journal des sçavans in 1669.

Huygens stated what is now known as the second of Newton's laws of motion in a quadratic form. In 1659 he derived the now standard formula for the centripetal force, exerted on an object describing a circular motion, for instance by the string to which it is attached. In modern notation:
with m the mass of the object, v the velocity and r the radius. The publication of the general formula for this force in 1673 was a significant step in studying orbits in astronomy. It enabled the transition from Kepler's third law of planetary motion, to the inverse square law of gravitation. The interpretation of Newton's work on gravitation by Huygens differed, however, from that of Newtonians such as Roger Cotes; he did not insist on the a priori attitude of Descartes, but neither would he accept aspects of gravitational attractions that were not attributable in principle to contact of particles.

The approach used by Huygens also missed some central notions of mathematical physics, which were not lost on others. His work on pendulums came very close to the theory of simple harmonic motion; but the topic was covered fully for the first time by Newton, in Book II of his Principia Mathematica (1687). In 1678 Leibniz picked out of Huygens's work on collisions the idea of conservation law that Huygens had left implicit.

Optics

Huygens is remembered especially for his wave theory of light, which he first communicated in 1678 to the Paris Académie des sciences. It was published in 1690 in his Traité de la lumière (Treatise on light), making it the first mathematical theory of light. He refers to Ignace-Gaston Pardies, whose manuscript on optics helped him on his wave theory.

Huygens assumes that the speed of light is finite, as had been shown in an experiment by Olaus Roemer in 1679, but which Huygens is presumed to have already believed. The challenge for the wave theory of light at that time was to explain geometrical optics, as most physical optics phenomena (such as diffraction) had not been observed or appreciated as issues. It posits light radiating wavefronts with the common notion of light rays depicting propagation normal to those wavefronts. Propagation of the wavefronts is then explained as the result of spherical waves being emitted at every point along the wave front (the Huygens–Fresnel principle). It assumed an omnipresent ether, with transmission through perfectly elastic particles, a revision of the view of Descartes. The nature of light was therefore a longitudinal wave.

Huygens had experimented in 1672 with double refraction (birefringence) in Icelandic spar (calcite), a phenomenon discovered in 1669 by Rasmus Bartholin. At first he could not elucidate what he found. He later explained it with his wave front theory and concept of evolutes. He also developed ideas on caustics. Newton in his Opticks of 1704 proposed instead a corpuscular theory of light. The theory of Huygens was not widely accepted, one strong objection being that longitudinal waves have only a single polarization which cannot explain the observed birefringence. However the 1801 interference experiments of Thomas Young and François Arago 's 1819 detection of the Poisson spot could not be explained through any particle theory, reviving the ideas of Huygens and wave models. In 1821 Fresnel was able to explain birefringence as a result of light being not a longitudinal (as had been assumed) but actually a transverse wave. The thus-named Huygens–Fresnel principle was the basis for the advancement of physical optics, explaining all aspects of light propagation. It was only understanding the detailed interaction of light with atoms that awaited quantum mechanics and the discovery of the photon.

Huygens investigated the use of lenses in projectors. He is credited as the inventor of the magic lantern, described in correspondence of 1659. There are others to whom such a lantern device has been attributed, such as Giambattista della Porta, and Cornelis Drebbel: the point at issue is the use of a lens for better projection. Athanasius Kircher has also been credited for that.

Horology

Horologium oscillatorium sive de motu pendulorum, 1673
 
Huygens designed more accurate clocks than were available at the time. In 1656, inspired by earlier research into pendulums by Galileo Galilei, he invented the pendulum clock, which was a breakthrough in timekeeping and became the most accurate timekeeper for the next 275 years until the 1930s. Huygens contracted the construction of his clock designs to Salomon Coster in The Hague, with a local patent (octroy). He was less successful elsewhere: Pierre Séguier refused him any French rights, Simon Douw of Rotterdam copied the design in 1658, and Ahasuerus Fromanteel also, in London. The oldest known Huygens-style pendulum clock is dated 1657 and can be seen at the Museum Boerhaave in Leiden.

Huygens motivation for inventing the pendulum clock was to create an accurate marine chronometer that could be used to find longitude by celestial navigation during sea voyages. Exploiting the invention at sea proved troublesome, however, because the rocking motion of the ship disturbed the motion of the pendulum. In 1660 Lodewijk Huygens made a trial on a voyage to Spain, and reported that heavy weather made the clock useless. Alexander Bruce elbowed into the field in 1662, and Huygens called in Sir Robert Moray and the Royal Society to mediate and preserve some of his rights. Trials continued into the 1660s, the best news coming from a Royal Navy captain Robert Holmes operating against the Dutch possessions in 1664. Lisa Jardine  doubts that Holmes reported the results of the trial accurately, and Samuel Pepys expressed his doubts at the time: The said master [i.e. the captain of Holmes' ship] affirmed, that the vulgar reckoning proved as near as that of the watches, which [the clocks], added he, had varied from one another unequally, sometimes backward, sometimes forward, to 4, 6, 7, 3, 5 minutes; as also that they had been corrected by the usual account. One for the French Academy on an expedition to Cayenne ended badly. Jean Richer suggested correction for the figure of the Earth. By the time of the Dutch East India Company expedition of 1686 to the Cape of Good Hope, Huygens was able to supply the correction retrospectively.

Pendulums

Spring driven pendulum clock, designed by Huygens, built by instrument maker Salomon Coster (1657), and copy of the Horologium Oscillatorium, Museum Boerhaave, Leiden
 
In 1673 Huygens published Horologium Oscillatorium sive de motu pendulorum, his major work on pendulums and horology. It had been observed by Mersenne and others that pendulums are not quite isochronous: their period depends on their width of swing, with wide swings taking slightly longer than narrow swings.

Huygens analyzed this problem by finding the curve down which a mass will slide under the influence of gravity in the same amount of time, regardless of its starting point; the so-called tautochrone problem. By geometrical methods which were an early use of calculus, he showed it to be a cycloid, rather than the circular arc of a pendulum's bob, and therefore that pendulums are not isochronous. He also solved a problem posed by Mersenne: how to calculate the period of a pendulum made of an arbitrarily shaped swinging rigid body. This involved discovering the center of oscillation and its reciprocal relationship with the pivot point. In the same work, he analyzed the conical pendulum, consisting of a weight on a cord moving in a circle, using the concept of centrifugal force. 

Detail of illustration from Horologium Oscillatorium (1658), by Huygens
 
Huygens clock, Rijksmuseum, Amsterdam
 
Huygens was the first to derive the formula for the period of an ideal mathematical pendulum (with massless rod or cord and length much longer than its swing), in modern notation:
with T the period, l the length of the pendulum and g the gravitational acceleration. By his study of the oscillation period of compound pendulums Huygens made pivotal contributions to the development of the concept of moment of inertia.

Huygens also observed coupled oscillations: two of his pendulum clocks mounted next to each other on the same support often became synchronized, swinging in opposite directions. He reported the results by letter to the Royal Society, and it is referred to as "an odd kind of sympathy" in the Society's minutes. This concept is now known as entrainment

Experimental setup of Huygens synchronization of two clocks

Balance spring watch

Huygens developed a balance spring watch in the same period as, though independently of, Robert Hooke. Controversy over the priority persisted for centuries. A Huygens watch employed a spiral balance spring; but he used this form of spring initially only because the balance in his first watch rotated more than one and a half turns. He later used spiral springs in more conventional watches, made for him by Thuret in Paris from around 1675. 

Huygens' explanation for the aspects of Saturn, Systema Saturnium, 1659.
 
Such springs were essential in modern watches with a detached lever escapement because they can be adjusted for isochronism. Watches in the time of Huygens and Hooke, however, employed the very undetached verge escapement. It interfered with the isochronal properties of any form of balance spring, spiral or otherwise. 

In February 2006, a long-lost copy of Hooke's handwritten notes from several decades of Royal Society meetings was discovered in a cupboard in Hampshire, England. The balance-spring priority controversy appears, by the evidence contained in those notes, to be settled in favor of Hooke's claim.

In 1675, Huygens patented a pocket watch. The watches which were made in Paris from c. 1675 and following the Huygens plan are notable for lacking a fusee for equalizing the mainspring torque. The implication is that Huygens thought that his spiral spring would isochronize the balance, in the same way that he thought that the cycloidally shaped suspension curbs on his clocks would isochronize the pendulum.

Astronomy

Huygens' telescope without tube. Picture from his 1684 Astroscopia Compendiaria tubi optici molimine liberata (compound telescopes without a tube)

Saturn's rings and Titan

In 1655, Huygens proposed that Saturn was surrounded by a solid ring, "a thin, flat ring, nowhere touching, and inclined to the ecliptic." Using a 50 power refracting telescope that he designed himself, Huygens also discovered the first of Saturn's moons, Titan. In the same year he observed and sketched the Orion Nebula. His drawing, the first such known of the Orion nebula, was published in Systema Saturnium in 1659. Using his modern telescope he succeeded in subdividing the nebula into different stars. The brighter interior now bears the name of the Huygenian region in his honor. He also discovered several interstellar nebulae and some double stars.

Mars and Syrtis Major

In 1659, Huygens was the first to observe a surface feature on another planet, Syrtis Major, a volcanic plain on Mars. He used repeated observations of the movement of this feature over the course of a number of days to estimate the length of day on Mars, which he did quite accurately to 24 1/2 hours. This figure is only a few minutes off of the actual length of the Martian day of 24 hours, 37 minutes.

Cosmotheoros

Shortly before his death in 1695, Huygens completed Cosmotheoros, published posthumously in 1698. In it he speculated on the existence of extraterrestrial life, on other planets, which he imagined was similar to that on Earth. Such speculations were not uncommon at the time, justified by Copernicanism or the plenitude principle. But Huygens went into greater detail, though without the benefit of understanding Newton's laws of gravitation, or the fact that the atmospheres on other planets are composed of different gases. The work, translated into English in its year of publication, has been seen as in the fanciful tradition of Francis Godwin, John Wilkins and Cyrano de Bergerac, and fundamentally Utopian; and also to owe in its concept of planet to cosmography in the sense of Peter Heylin.

Huygens wrote that availability of water in liquid form was essential for life and that the properties of water must vary from planet to planet to suit the temperature range. He took his observations of dark and bright spots on the surfaces of Mars and Jupiter to be evidence of water and ice on those planets. He argued that extraterrestrial life is neither confirmed nor denied by the Bible, and questioned why God would create the other planets if they were not to serve a greater purpose than that of being admired from Earth. Huygens postulated that the great distance between the planets signified that God had not intended for beings on one to know about the beings on the others, and had not foreseen how much humans would advance in scientific knowledge.

It was also in this book that Huygens published his method for estimating stellar distances. He made a series of smaller holes in a screen facing the sun, until he estimated the light was of the same intensity as that of the star Sirius. He then calculated that the angle of this hole was th the diameter of the Sun, and thus it was about 30,000 times as far away, on the (incorrect) assumption that Sirius is as luminous as our sun. The subject of photometry remained in its infancy until the time of Pierre Bouguer and Johann Heinrich Lambert.

Named after Huygens

Science

Other

Works

Possible depiction of Huygens right of center, detail from L'établissement de l'Académie des Sciences et fondation de l'observatoire, 1666 by Henri Testelin. Colbert presents the members of the newly founded Académie des Sciences to king Louis XIV of France, around 1675.
Tome I: Correspondance 1638–1656 (1888).
Tome II: Correspondance 1657–1659 (1889).
Tome III: Correspondance 1660–1661 (1890).
Tome IV: Correspondance 1662–1663 (1891).
Tome V: Correspondance 1664–1665 (1893).
Tome VI: Correspondance 1666–1669 (1895).
Tome VII: Correspondance 1670–1675 (1897).
Tome VIII: Correspondance 1676–1684 (1899).
Tome IX: Correspondance 1685–1690 (1901).
Tome X: Correspondance 1691–1695 (1905).
Tome XI: Travaux mathématiques 1645–1651 (1908).
Tome XII: Travaux mathématiques pures 1652–1656 (1910).
Tome XIII, Fasc. I: Dioptrique 1653, 1666 (1916).
Tome XIII, Fasc. II: Dioptrique 1685–1692 (1916).
Tome XIV: Calcul des probabilités. Travaux de mathématiques pures 1655–1666 (1920).
Tome XV: Observations astronomiques. Système de Saturne. Travaux astronomiques 1658–1666 (1925).
Tome XVI: Mécanique jusqu’à 1666. Percussion. Question de l'existence et de la perceptibilité du mouvement absolu. Force centrifuge (1929).
Tome XVII: L’horloge à pendule de 1651 à 1666. Travaux divers de physique, de mécanique et de technique de 1650 à 1666. Traité des couronnes et des parhélies (1662 ou 1663) (1932).
Tome XVIII: L'horloge à pendule ou à balancier de 1666 à 1695. Anecdota (1934).
Tome XIX: Mécanique théorique et physique de 1666 à 1695. Huygens à l'Académie royale des sciences (1937).
Tome XX: Musique et mathématique. Musique. Mathématiques de 1666 à 1695 (1940).
Tome XXI: Cosmologie (1944).
Tome XXII: Supplément à la correspondance. Varia. Biographie de Chr. Huygens. Catalogue de la vente des livres de Chr. Huygens (1950).

Light

From Wikipedia, the free encyclopedia

A triangular prism dispersing a beam of white light. The longer wavelengths (red) and the shorter wavelengths (blue) are separated.
 
Light is electromagnetic radiation within a certain portion of the electromagnetic spectrum. The word usually refers to visible light, which is the visible spectrum that is visible to the human eye and is responsible for the sense of sight. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), or 4.00 × 10−7 to 7.00 × 10−7 m, between the infrared (with longer wavelengths) and the ultraviolet (with shorter wavelengths). This wavelength means a frequency range of roughly 430–750 terahertz (THz).

Beam of sun light inside the cavity of Rocca ill'Abissu at Fondachelli Fantina, Sicily
 
The main source of light on Earth is the Sun. Sunlight provides the energy that green plants use to create sugars mostly in the form of starches, which release energy into the living things that digest them. This process of photosynthesis provides virtually all the energy used by living things. Historically, another important source of light for humans has been fire, from ancient campfires to modern kerosene lamps. With the development of electric lights and power systems, electric lighting has effectively replaced firelight. Some species of animals generate their own light, a process called bioluminescence. For example, fireflies use light to locate mates, and vampire squids use it to hide themselves from prey. 

The primary properties of visible light are intensity, propagation direction, frequency or wavelength spectrum, and polarization, while its speed in a vacuum, 299,792,458 metres per second, is one of the fundamental constants of nature. Visible light, as with all types of electromagnetic radiation (EMR), is experimentally found to always move at this speed in a vacuum.

In physics, the term light sometimes refers to electromagnetic radiation of any wavelength, whether visible or not. In this sense, gamma rays, X-rays, microwaves and radio waves are also light. Like all types of EM radiation, visible light propagates as waves. However, the energy imparted by the waves is absorbed at single locations the way particles are absorbed. The absorbed energy of the EM waves is called a photon, and represents the quanta of light. When a wave of light is transformed and absorbed as a photon, the energy of the wave instantly collapses to a single location, and this location is where the photon "arrives." This is what is called the wave function collapse. This dual wave-like and particle-like nature of light is known as the wave–particle duality. The study of light, known as optics, is an important research area in modern physics.

Electromagnetic spectrum and visible light

The electromagnetic spectrum, with the visible portion highlighted
 
Generally, EM radiation (the designation "radiation" excludes static electric, magnetic, and near fields), or EMR, is classified by wavelength into radio waves, microwaves, infrared, the visible spectrum that we perceive as light, ultraviolet, X-rays, and gamma rays

The behavior of EMR depends on its wavelength. Higher frequencies have shorter wavelengths, and lower frequencies have longer wavelengths. When EMR interacts with single atoms and molecules, its behavior depends on the amount of energy per quantum it carries. 

EMR in the visible light region consists of quanta (called photons) that are at the lower end of the energies that are capable of causing electronic excitation within molecules, which leads to changes in the bonding or chemistry of the molecule. At the lower end of the visible light spectrum, EMR becomes invisible to humans (infrared) because its photons no longer have enough individual energy to cause a lasting molecular change (a change in conformation) in the visual molecule retinal in the human retina, which change triggers the sensation of vision. 

There exist animals that are sensitive to various types of infrared, but not by means of quantum-absorption. Infrared sensing in snakes depends on a kind of natural thermal imaging, in which tiny packets of cellular water are raised in temperature by the infrared radiation. EMR in this range causes molecular vibration and heating effects, which is how these animals detect it. 

Above the range of visible light, ultraviolet light becomes invisible to humans, mostly because it is absorbed by the cornea below 360 nm and the internal lens below 400 nm. Furthermore, the rods and cones located in the retina of the human eye cannot detect the very short (below 360 nm) ultraviolet wavelengths and are in fact damaged by ultraviolet. Many animals with eyes that do not require lenses (such as insects and shrimp) are able to detect ultraviolet, by quantum photon-absorption mechanisms, in much the same chemical way that humans detect visible light. 

Various sources define visible light as narrowly as 420–680 nm to as broadly as 380–800 nm. Under ideal laboratory conditions, people can see infrared up to at least 1050 nm; children and young adults may perceive ultraviolet wavelengths down to about 310–313 nm.

Plant growth is also affected by the color spectrum of light, a process known as photomorphogenesis

Linear visible spectrum.svg

Speed of light

The speed of light in a vacuum is defined to be exactly 299,792,458 m/s (approx. 186,282 miles per second). The fixed value of the speed of light in SI units results from the fact that the metre is now defined in terms of the speed of light. All forms of electromagnetic radiation move at exactly this same speed in vacuum. 

Different physicists have attempted to measure the speed of light throughout history. Galileo attempted to measure the speed of light in the seventeenth century. An early experiment to measure the speed of light was conducted by Ole Rømer, a Danish physicist, in 1676. Using a telescope, Rømer observed the motions of Jupiter and one of its moons, Io. Noting discrepancies in the apparent period of Io's orbit, he calculated that light takes about 22 minutes to traverse the diameter of Earth's orbit. However, its size was not known at that time. If Rømer had known the diameter of the Earth's orbit, he would have calculated a speed of 227,000,000 m/s.

Another, more accurate, measurement of the speed of light was performed in Europe by Hippolyte Fizeau in 1849. Fizeau directed a beam of light at a mirror several kilometers away. A rotating cog wheel was placed in the path of the light beam as it traveled from the source, to the mirror and then returned to its origin. Fizeau found that at a certain rate of rotation, the beam would pass through one gap in the wheel on the way out and the next gap on the way back. Knowing the distance to the mirror, the number of teeth on the wheel, and the rate of rotation, Fizeau was able to calculate the speed of light as 313,000,000 m/s. 

Léon Foucault carried out an experiment which used rotating mirrors to obtain a value of 298,000,000 m/s in 1862. Albert A. Michelson conducted experiments on the speed of light from 1877 until his death in 1931. He refined Foucault's methods in 1926 using improved rotating mirrors to measure the time it took light to make a round trip from Mount Wilson to Mount San Antonio in California. The precise measurements yielded a speed of 299,796,000 m/s.

The effective velocity of light in various transparent substances containing ordinary matter, is less than in vacuum. For example, the speed of light in water is about 3/4 of that in vacuum.

Two independent teams of physicists were said to bring light to a "complete standstill" by passing it through a Bose–Einstein condensate of the element rubidium, one team at Harvard University and the Rowland Institute for Science in Cambridge, Massachusetts, and the other at the Harvard–Smithsonian Center for Astrophysics, also in Cambridge. However, the popular description of light being "stopped" in these experiments refers only to light being stored in the excited states of atoms, then re-emitted at an arbitrary later time, as stimulated by a second laser pulse. During the time it had "stopped" it had ceased to be light.

Optics

The study of light and the interaction of light and matter is termed optics. The observation and study of optical phenomena such as rainbows and the aurora borealis offer many clues as to the nature of light.

Refraction

An example of refraction of light. The straw appears bent, because of refraction of light as it enters liquid from air.
 
A cloud illuminated by sunlight
 
Refraction is the bending of light rays when passing through a surface between one transparent material and another. It is described by Snell's Law:
where θ1 is the angle between the ray and the surface normal in the first medium, θ2 is the angle between the ray and the surface normal in the second medium, and n1 and n2 are the indices of refraction, n = 1 in a vacuum and n > 1 in a transparent substance

When a beam of light crosses the boundary between a vacuum and another medium, or between two different media, the wavelength of the light changes, but the frequency remains constant. If the beam of light is not orthogonal (or rather normal) to the boundary, the change in wavelength results in a change in the direction of the beam. This change of direction is known as refraction

The refractive quality of lenses is frequently used to manipulate light in order to change the apparent size of images. Magnifying glasses, spectacles, contact lenses, microscopes and refracting telescopes are all examples of this manipulation.

Light sources

There are many sources of light. A body at a given temperature emits a characteristic spectrum of black-body radiation. A simple thermal source is sunlight, the radiation emitted by the chromosphere of the Sun at around 6,000 kelvins (5,730 degrees Celsius; 10,340 degrees Fahrenheit) peaks in the visible region of the electromagnetic spectrum when plotted in wavelength units and roughly 44% of sunlight energy that reaches the ground is visible. Another example is incandescent light bulbs, which emit only around 10% of their energy as visible light and the remainder as infrared. A common thermal light source in history is the glowing solid particles in flames, but these also emit most of their radiation in the infrared, and only a fraction in the visible spectrum.

The peak of the blackbody spectrum is in the deep infrared, at about 10 micrometer wavelength, for relatively cool objects like human beings. As the temperature increases, the peak shifts to shorter wavelengths, producing first a red glow, then a white one, and finally a blue-white colour as the peak moves out of the visible part of the spectrum and into the ultraviolet. These colours can be seen when metal is heated to "red hot" or "white hot". Blue-white thermal emission is not often seen, except in stars (the commonly seen pure-blue color in a gas flame or a welder's torch is in fact due to molecular emission, notably by CH radicals (emitting a wavelength band around 425 nm, and is not seen in stars or pure thermal radiation). 

Atoms emit and absorb light at characteristic energies. This produces "emission lines" in the spectrum of each atom. Emission can be spontaneous, as in light-emitting diodes, gas discharge lamps (such as neon lamps and neon signs, mercury-vapor lamps, etc.), and flames (light from the hot gas itself—so, for example, sodium in a gas flame emits characteristic yellow light). Emission can also be stimulated, as in a laser or a microwave maser

Deceleration of a free charged particle, such as an electron, can produce visible radiation: cyclotron radiation, synchrotron radiation, and bremsstrahlung radiation are all examples of this. Particles moving through a medium faster than the speed of light in that medium can produce visible Cherenkov radiation. Certain chemicals produce visible radiation by chemoluminescence. In living things, this process is called bioluminescence. For example, fireflies produce light by this means, and boats moving through water can disturb plankton which produce a glowing wake. 

Certain substances produce light when they are illuminated by more energetic radiation, a process known as fluorescence. Some substances emit light slowly after excitation by more energetic radiation. This is known as phosphorescence. Phosphorescent materials can also be excited by bombarding them with subatomic particles. Cathodoluminescence is one example. This mechanism is used in cathode ray tube television sets and computer monitors

Hong Kong illuminated by colorful artificial lighting.
Certain other mechanisms can produce light:
When the concept of light is intended to include very-high-energy photons (gamma rays), additional generation mechanisms include:

Units and measures

Light is measured with two main alternative sets of units: radiometry consists of measurements of light power at all wavelengths, while photometry measures light with wavelength weighted with respect to a standardised model of human brightness perception. Photometry is useful, for example, to quantify Illumination (lighting) intended for human use.

The photometry units are different from most systems of physical units in that they take into account how the human eye responds to light. The cone cells in the human eye are of three types which respond differently across the visible spectrum, and the cumulative response peaks at a wavelength of around 555 nm. Therefore, two sources of light which produce the same intensity (W/m2) of visible light do not necessarily appear equally bright. The photometry units are designed to take this into account, and therefore are a better representation of how "bright" a light appears to be than raw intensity. They relate to raw power by a quantity called luminous efficacy, and are used for purposes like determining how to best achieve sufficient illumination for various tasks in indoor and outdoor settings. The illumination measured by a photocell sensor does not necessarily correspond to what is perceived by the human eye, and without filters which may be costly, photocells and charge-coupled devices (CCD) tend to respond to some infrared, ultraviolet or both.

Light pressure

Light exerts physical pressure on objects in its path, a phenomenon which can be deduced by Maxwell's equations, but can be more easily explained by the particle nature of light: photons strike and transfer their momentum. Light pressure is equal to the power of the light beam divided by c, the speed of light.  Due to the magnitude of c, the effect of light pressure is negligible for everyday objects.  For example, a one milliwatt laser pointer exerts a force of about 3.3 piconewtons on the object being illuminated; thus, one could lift a U.S. penny with laser pointers, but doing so would require about 30 billion 1-mW laser pointers.  However, in nanometer scale applications such as nanoelectromechanical systems (|NEMS), the effect of light pressure is more significant, and exploiting light pressure to drive NEMS mechanisms and to flip nanometer scale physical switches in integrated circuits is an active area of research. At larger scales, light pressure can cause asteroids to spin faster, acting on their irregular shapes as on the vanes of a windmill.  The possibility of making solar sails that would accelerate spaceships in space is also under investigation.

Although the motion of the Crookes radiometer was originally attributed to light pressure, this interpretation is incorrect; the characteristic Crookes rotation is the result of a partial vacuum. This should not be confused with the Nichols radiometer, in which the (slight) motion caused by torque (though not enough for full rotation against friction) is directly caused by light pressure. As a consequence of light pressure, Einstein in 1909 predicted the existence of "radiation friction" which would oppose the movement of matter. He wrote, “radiation will exert pressure on both sides of the plate. The forces of pressure exerted on the two sides are equal if the plate is at rest. However, if it is in motion, more radiation will be reflected on the surface that is ahead during the motion (front surface) than on the back surface. The backward acting force of pressure exerted on the front surface is thus larger than the force of pressure acting on the back. Hence, as the resultant of the two forces, there remains a force that counteracts the motion of the plate and that increases with the velocity of the plate. We will call this resultant 'radiation friction' in brief.”

Historical theories about light, in chronological order

Classical Greece and Hellenism

In the fifth century BC, Empedocles postulated that everything was composed of four elements; fire, air, earth and water. He believed that Aphrodite made the human eye out of the four elements and that she lit the fire in the eye which shone out from the eye making sight possible. If this were true, then one could see during the night just as well as during the day, so Empedocles postulated an interaction between rays from the eyes and rays from a source such as the sun.

In about 300 BC, Euclid wrote Optica, in which he studied the properties of light. Euclid postulated that light travelled in straight lines and he described the laws of reflection and studied them mathematically. He questioned that sight is the result of a beam from the eye, for he asks how one sees the stars immediately, if one closes one's eyes, then opens them at night. If the beam from the eye travels infinitely fast this is not a problem.

In 55 BC, Lucretius, a Roman who carried on the ideas of earlier Greek atomists, wrote that "The light & heat of the sun; these are composed of minute atoms which, when they are shoved off, lose no time in shooting right across the interspace of air in the direction imparted by the shove." (from On the nature of the Universe). Despite being similar to later particle theories, Lucretius's views were not generally accepted. Ptolemy (c. 2nd century) wrote about the refraction of light in his book Optics.

Classical India

In ancient India, the Hindu schools of Samkhya and Vaisheshika, from around the early centuries AD developed theories on light. According to the Samkhya school, light is one of the five fundamental "subtle" elements (tanmatra) out of which emerge the gross elements. The atomicity of these elements is not specifically mentioned and it appears that they were actually taken to be continuous. On the other hand, the Vaisheshika school gives an atomic theory of the physical world on the non-atomic ground of ether, space and time. The basic atoms are those of earth (prthivi), water (pani), fire (agni), and air (vayu) Light rays are taken to be a stream of high velocity of tejas (fire) atoms. The particles of light can exhibit different characteristics depending on the speed and the arrangements of the tejas atoms. The Vishnu Purana refers to sunlight as "the seven rays of the sun".

The Indian Buddhists, such as Dignāga in the 5th century and Dharmakirti in the 7th century, developed a type of atomism that is a philosophy about reality being composed of atomic entities that are momentary flashes of light or energy. They viewed light as being an atomic entity equivalent to energy.

Descartes

René Descartes (1596–1650) held that light was a mechanical property of the luminous body, rejecting the "forms" of Ibn al-Haytham and Witelo as well as the "species" of Bacon, Grosseteste, and Kepler. In 1637 he published a theory of the refraction of light that assumed, incorrectly, that light travelled faster in a denser medium than in a less dense medium. Descartes arrived at this conclusion by analogy with the behavior of sound waves. Although Descartes was incorrect about the relative speeds, he was correct in assuming that light behaved like a wave and in concluding that refraction could be explained by the speed of light in different media. 

Descartes is not the first to use the mechanical analogies but because he clearly asserts that light is only a mechanical property of the luminous body and the transmitting medium, Descartes' theory of light is regarded as the start of modern physical optics.

Particle theory

Pierre Gassendi (1592–1655), an atomist, proposed a particle theory of light which was published posthumously in the 1660s. Isaac Newton studied Gassendi's work at an early age, and preferred his view to Descartes' theory of the plenum. He stated in his Hypothesis of Light of 1675 that light was composed of corpuscles (particles of matter) which were emitted in all directions from a source. One of Newton's arguments against the wave nature of light was that waves were known to bend around obstacles, while light traveled only in straight lines. He did, however, explain the phenomenon of the diffraction of light (which had been observed by Francesco Grimaldi) by allowing that a light particle could create a localized wave in the aether

Newton's theory could be used to predict the reflection of light, but could only explain refraction by incorrectly assuming that light accelerated upon entering a denser medium because the gravitational pull was greater. Newton published the final version of his theory in his Opticks of 1704. His reputation helped the particle theory of light to hold sway during the 18th century. The particle theory of light led Laplace to argue that a body could be so massive that light could not escape from it. In other words, it would become what is now called a black hole. Laplace withdrew his suggestion later, after a wave theory of light became firmly established as the model for light (as has been explained, neither a particle or wave theory is fully correct). A translation of Newton's essay on light appears in The large scale structure of space-time, by Stephen Hawking and George F. R. Ellis

The fact that light could be polarized was for the first time qualitatively explained by Newton using the particle theory. Étienne-Louis Malus in 1810 created a mathematical particle theory of polarization. Jean-Baptiste Biot in 1812 showed that this theory explained all known phenomena of light polarization. At that time the polarization was considered as the proof of the particle theory.

Wave theory

To explain the origin of colors, Robert Hooke (1635-1703) developed a "pulse theory" and compared the spreading of light to that of waves in water in his 1665 work Micrographia ("Observation IX"). In 1672 Hooke suggested that light's vibrations could be perpendicular to the direction of propagation. Christiaan Huygens (1629-1695) worked out a mathematical wave theory of light in 1678, and published it in his Treatise on light in 1690. He proposed that light was emitted in all directions as a series of waves in a medium called the Luminiferous ether. As waves are not affected by gravity, it was assumed that they slowed down upon entering a denser medium.

Thomas Young's sketch of a double-slit experiment showing diffraction. Young's experiments supported the theory that light consists of waves.
 
The wave theory predicted that light waves could interfere with each other like sound waves (as noted around 1800 by Thomas Young). Young showed by means of a diffraction experiment that light behaved as waves. He also proposed that different colors were caused by different wavelengths of light, and explained color vision in terms of three-colored receptors in the eye. Another supporter of the wave theory was Leonhard Euler. He argued in Nova theoria lucis et colorum (1746) that diffraction could more easily be explained by a wave theory. In 1816 André-Marie Ampère gave Augustin-Jean Fresnel an idea that the polarization of light can be explained by the wave theory if light were a transverse wave.

Later, Fresnel independently worked out his own wave theory of light, and presented it to the Académie des Sciences in 1817. Siméon Denis Poisson added to Fresnel's mathematical work to produce a convincing argument in favor of the wave theory, helping to overturn Newton's corpuscular theory. By the year 1821, Fresnel was able to show via mathematical methods that polarisation could be explained by the wave theory of light and only if light was entirely transverse, with no longitudinal vibration whatsoever.

The weakness of the wave theory was that light waves, like sound waves, would need a medium for transmission. The existence of the hypothetical substance luminiferous aether proposed by Huygens in 1678 was cast into strong doubt in the late nineteenth century by the Michelson–Morley experiment

Newton's corpuscular theory implied that light would travel faster in a denser medium, while the wave theory of Huygens and others implied the opposite. At that time, the speed of light could not be measured accurately enough to decide which theory was correct. The first to make a sufficiently accurate measurement was Léon Foucault, in 1850. His result supported the wave theory, and the classical particle theory was finally abandoned, only to partly re-emerge in the 20th century.

Electromagnetic theory

A 3–dimensional rendering of linearly polarised light wave frozen in time and showing the two oscillating components of light; an electric field and a magnetic field perpendicular to each other and to the direction of motion (a transverse wave).
 
In 1845, Michael Faraday discovered that the plane of polarization of linearly polarized light is rotated when the light rays travel along the magnetic field direction in the presence of a transparent dielectric, an effect now known as Faraday rotation. This was the first evidence that light was related to electromagnetism. In 1846 he speculated that light might be some form of disturbance propagating along magnetic field lines. Faraday proposed in 1847 that light was a high-frequency electromagnetic vibration, which could propagate even in the absence of a medium such as the ether.

Faraday's work inspired James Clerk Maxwell to study electromagnetic radiation and light. Maxwell discovered that self-propagating electromagnetic waves would travel through space at a constant speed, which happened to be equal to the previously measured speed of light. From this, Maxwell concluded that light was a form of electromagnetic radiation: he first stated this result in 1862 in On Physical Lines of Force. In 1873, he published A Treatise on Electricity and Magnetism, which contained a full mathematical description of the behavior of electric and magnetic fields, still known as Maxwell's equations. Soon after, Heinrich Hertz confirmed Maxwell's theory experimentally by generating and detecting radio waves in the laboratory, and demonstrating that these waves behaved exactly like visible light, exhibiting properties such as reflection, refraction, diffraction, and interference. Maxwell's theory and Hertz's experiments led directly to the development of modern radio, radar, television, electromagnetic imaging, and wireless communications.

In the quantum theory, photons are seen as wave packets of the waves described in the classical theory of Maxwell. The quantum theory was needed to explain effects even with visual light that Maxwell's classical theory could not (such as spectral lines).

Quantum theory

In 1900 Max Planck, attempting to explain black body radiation suggested that although light was a wave, these waves could gain or lose energy only in finite amounts related to their frequency. Planck called these "lumps" of light energy "quanta" (from a Latin word for "how much"). In 1905, Albert Einstein used the idea of light quanta to explain the photoelectric effect, and suggested that these light quanta had a "real" existence. In 1923 Arthur Holly Compton showed that the wavelength shift seen when low intensity X-rays scattered from electrons (so called Compton scattering) could be explained by a particle-theory of X-rays, but not a wave theory. In 1926 Gilbert N. Lewis named these light quanta particles photons.

Eventually the modern theory of quantum mechanics came to picture light as (in some sense) both a particle and a wave, and (in another sense), as a phenomenon which is neither a particle nor a wave (which actually are macroscopic phenomena, such as baseballs or ocean waves). Instead, modern physics sees light as something that can be described sometimes with mathematics appropriate to one type of macroscopic metaphor (particles), and sometimes another macroscopic metaphor (water waves), but is actually something that cannot be fully imagined. As in the case for radio waves and the X-rays involved in Compton scattering, physicists have noted that electromagnetic radiation tends to behave more like a classical wave at lower frequencies, but more like a classical particle at higher frequencies, but never completely loses all qualities of one or the other. Visible light, which occupies a middle ground in frequency, can easily be shown in experiments to be describable using either a wave or particle model, or sometimes both. 

In February 2018, scientists reported, for the first time, the discovery of a new form of light, which may involve polaritons, that could be useful in the development of quantum computers.

Lie point symmetry

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Lie_point_symmetry     ...