Search This Blog

Tuesday, October 7, 2025

Human body

From Wikipedia, the free encyclopedia
Female (left) and male (right) adult human bodies photographed in ventral (above) and dorsal (below) perspectives. Naturally-occurring pubic, body, and facial hair have been deliberately removed to show anatomy.

The human body is the entire structure of a human being. It is composed of many different types of cells that together create tissues and subsequently organs and then organ systems.

The external human body consists of a head, hair, neck, torso (which includes the thorax and abdomen), genitals, arms, hands, legs, and feet. The internal human body includes organs, teeth, bones, muscle, tendons, ligaments, blood vessels and blood, lymphatic vessels and lymph.

The study of the human body includes anatomy, physiology, histology and embryology. The body varies anatomically in known ways. Physiology focuses on the systems and organs of the human body and their functions. Many systems and mechanisms interact in order to maintain homeostasis, with safe levels of substances such as sugar, iron, and oxygen in the blood.

The body is studied by health professionals, physiologists, anatomists, and artists to assist them in their work.

Composition

Elements of the human body by mass. Trace elements are less than 1% combined (and each less than 0.1%).
Element Symbol Percent mass Percent atoms
Oxygen O 65.0 24.0
Carbon C 18.5 12.0
Hydrogen H 9.5 62.0
Nitrogen N 3.2 1.1
Calcium Ca 1.5 0.22
Phosphorus P 1.0 0.22
Potassium K 0.4 0.03
Sulfur S 0.3 0.038
Sodium Na 0.2 0.037
Chlorine Cl 0.2 0.024
Magnesium Mg 0.1 0.015
Trace elements
< 0.1 < 0.3

The human body is composed of elements including hydrogen, oxygen, carbon, calcium and phosphorus. These elements reside in trillions of cells and non-cellular components of the body.

The adult male body is about 60% total body water content of some 42 litres (9.2 imp gal; 11 US gal). This is made up of about 19 litres (4.2 imp gal; 5.0 US gal) of extracellular fluid including about 3.2 litres (0.70 imp gal; 0.85 US gal) of blood plasma and about 8.4 litres (1.8 imp gal; 2.2 US gal) of interstitial fluid, and about 23 litres (5.1 imp gal; 6.1 US gal) of fluid inside cells. The content, acidity and composition of the water inside and outside cells is carefully maintained. The main electrolytes in body water outside cells are sodium and chloride, whereas within cells it is potassium and other phosphates.

Cells

The body contains trillions of cells, the fundamental unit of life. At maturity, there are roughly 30 trillion cells, and 38 trillion bacteria in the body, an estimate arrived at by totaling the cell numbers of all the organs of the body and cell types. The skin of the body is also host to billions of commensal organisms as well as immune cells. Not all parts of the body are made from cells. Cells sit in an extracellular matrix that consists of proteins such as collagen, surrounded by extracellular fluids.

Each of the cells of the human body experiences, on average, tens of thousands of DNA damages per day. These damages can block genome replication or genome transcription, and if they are not repaired or are repaired incorrectly, they may lead to mutations, or other genome alterations that threaten cell viability.

Genome

Genome

Cells in the body function because of DNA. DNA sits within the nucleus of a cell. Here, parts of DNA are copied and sent to the body of the cell via RNA. The RNA is then used to create proteins, which form the basis for cells, their activity, and their products. Proteins dictate cell function and gene expression, a cell is able to self-regulate by the amount of proteins produced. However, not all cells have DNA; some cells such as mature red blood cells lose their nucleus as they mature.

Tissues

Diagram of the different types of soft tissue in the body

The body consists of many different types of tissue, defined as cells that act with a specialised function. The study of tissues is called histology and is often done with a microscope. The body consists of four main types of tissues. These are lining cells (epithelia), connective tissue, nerve tissue and muscle tissue.

Cells

Cells that line surfaces exposed to the outside world or gastrointestinal tract (epithelia) or internal cavities (endothelium) come in numerous shapes and forms – from single layers of flat cells, to cells with small beating hair-like cilia in the lungs, to column-like cells that line the stomach. Endothelial cells are cells that line internal cavities including blood vessels and glands. Lining cells regulate what can and cannot pass through them, protect internal structures, and function as sensory surfaces.

Organs

1905 diagram of the internal organs of the human body

Organs, structured collections of cells with a specific function, mostly sit within the body, with the exception of skin. Examples include the heart, lungs and liver. Many organs reside within cavities within the body. These cavities include the abdomen (which contains the stomach, for example) and pleura, which contains the lungs.

Heart

The heart is an organ located in the thoracic cavity between the lungs and slightly to the left. It is surrounded by the pericardium, which holds it in place in the mediastinum and serves to protect it from blunt trauma, infection and help lubricate the movement of the heart via pericardial fluid. The heart works by pumping blood around the body allowing oxygen, nutrients, waste, hormones and white blood cells to be transported.

Diagram of the human heart

The heart is composed of two atria and two ventricles. The primary purpose of the atria is to allow uninterrupted venous blood flow to the heart during ventricular systole. This allows enough blood to get into the ventricles during atrial systole. Consequently, the atria allows a cardiac output roughly 75% greater than would be possible without them. The purpose of the ventricles is to pump blood to the lungs through the right ventricle and to the rest of the body through the left ventricle.

The heart has an electrical conduction system to control the contraction and relaxation of the muscles. It starts in the sinoatrial node traveling through the atria causing them to pump blood into the ventricles. It then travels to the atrioventricular node, which makes the signal slow down slightly allowing the ventricles to fill with blood before pumping it out and starting the cycle over again.

Coronary artery disease is the leading cause of death worldwide, making up 16% of all deaths. It is caused by the buildup of plaque in the coronary arteries supplying the heart, eventually the arteries may become so narrow that not enough blood is able to reach the myocardium, a condition known as myocardial infarction or heart attack, this can cause heart failure or cardiac arrest and eventually death. Risk factors for coronary artery disease include obesity, smoking, high cholesterol, high blood pressure, lack of exercise and diabetesCancer can affect the heart, though it is exceedingly rare and has usually metastasized from another part of the body such as the lungs or breasts. This is because the heart cells quickly stop dividing and all growth occurs through size increase rather than cell division.

Gallbladder

Gallbladder

The gallbladder is a hollow pear-shaped organ located posterior to the inferior middle part of the right lobe of the liver. It is variable in shape and size. It stores bile before it is released into the small intestine via the common bile duct to help with digestion of fats. It receives bile from the liver via the cystic duct, which connects to the common hepatic duct to form the common bile duct.

The gallbladder gets its blood supply from the cystic artery, which in most people, emerges from the right hepatic artery.

Gallstones is a common disease in which one or more stones form in the gallbladder or biliary tract. Most people are asymptomatic but if a stone blocks the biliary tract, it causes a gallbladder attack; symptoms may include sudden pain in the upper right abdomen or center of the abdomen. Nausea and vomiting may also occur. Typical treatment is removal of the gallbladder through a procedure called a cholecystectomy. Having gallstones is a risk factor for gallbladder cancer, which, although quite uncommon, is rapidly fatal if not diagnosed early.

Systems

Circulatory system

Diagram showing the circulatory system of the body

The circulatory system consists of the heart and blood vessels (arteries, veins and capillaries). The heart propels the circulation of the blood, which serves as a "transportation system" to transfer oxygen, fuel, nutrients, waste products, immune cells and signaling molecules (i.e. hormones) from one part of the body to another. Paths of blood circulation within the human body can be divided into two circuits: the pulmonary circuit, which pumps blood to the lungs to receive oxygen and leave carbon dioxide, and the systemic circuit, which carries blood from the heart off to the rest of the body. The blood consists of fluid that carries cells in the circulation, including some that move from tissue to blood vessels and back, as well as the spleen and bone marrow.

Digestive system

Digestive system

The digestive system consists of the mouth including the tongue and teeth, esophagus, stomach, (gastrointestinal tract, small and large intestines, and rectum), as well as the liver, pancreas, gallbladder, and salivary glands. It converts food into small, nutritional, non-toxic molecules for distribution and absorption into the body. These molecules take the form of proteins (which are broken down into amino acids), fats, vitamins and minerals (the last of which are mainly ionic rather than molecular). After being swallowed, food moves through the gastrointestinal tract by means of peristalsis: the systematic expansion and contraction of muscles to push food from one area to the next.

Digestion begins in the mouth, which chews food into smaller pieces for easier digestion. Then it is swallowed, and moves through the esophagus to the stomach. In the stomach, food is mixed with gastric acids to allow the extraction of nutrients. What is left is called chyme; this then moves into the small intestine, which absorbs the nutrients and water from the chyme. What remains passes on to the large intestine, where it is dried to form feces; these are then stored in the rectum until they are expelled through the anus.

Endocrine system

Endocrine system

The endocrine system consists of the principal endocrine glands: the pituitary, thyroid, adrenals, pancreas, parathyroids, and gonads, but nearly all organs and tissues produce specific endocrine hormones as well. The endocrine hormones serve as signals from one body system to another regarding an enormous array of conditions, resulting in variety of changes of function.

Immune system

Primary immune response

The immune system consists of the white blood cells, the thymus, lymph nodes and lymph channels, which are also part of the lymphatic system. The immune system provides a mechanism for the body to distinguish its own cells and tissues from outside cells and substances and to neutralize or destroy the latter by using specialized proteins such as antibodies, cytokines, and toll-like receptors, among many others.

Skin

Integumentary system

The integumentary system consists of the covering of the body (the skin), including hair and nails as well as other functionally important structures such as the sweat glands and sebaceous glands. The skin provides containment, structure, and protection for other organs, and serves as a major sensory interface with the outside world.

Lymphatic system

Lymphatic system female

The lymphatic system extracts, transports and metabolizes lymph, the fluid found in between cells. The lymphatic system is similar to the circulatory system in terms of both its structure and its most basic function, to carry a body fluid.

Musculoskeletal system

The musculoskeletal system consists of the human skeleton (which includes bones, ligaments, tendons, joints and cartilage) and attached muscles. It gives the body basic structure and the ability for movement. In addition to their structural role, the larger bones in the body contain bone marrow, the site of production of blood cells. Also, all bones are major storage sites for calcium and phosphate. This system can be split up into the muscular system and the skeletal system.

Nervous system

Nervous system

The nervous system consists of the body's neurons and glial cells, which together form the nerves, ganglia and gray matter, which in turn form the brain and related structures. The brain is the organ of thought, emotion, memory, and sensory processing; it serves many aspects of communication and controls various systems and functions. The special senses consist of vision, hearing, taste, and smell. The eyes, ears, tongue, and nose gather information about the body's environment.

From a structural perspective, the nervous system is typically subdivided into two component parts: the central nervous system (CNS), composed of the brain and the spinal cord; and the peripheral nervous system (PNS), composed of the nerves and ganglia outside the brain and spinal cord. The CNS is mostly responsible for organizing motion, processing sensory information, thought, memory, cognition and other such functions. It remains a matter of some debate whether the CNS directly gives rise to consciousness. The peripheral nervous system (PNS) is mostly responsible for gathering information with sensory neurons and directing body movements with motor neurons.

From a functional perspective, the nervous system is again typically divided into two component parts: the somatic nervous system (SNS) and the autonomic nervous system (ANS). The SNS is involved in voluntary functions like speaking and sensory processes. The ANS is involved in involuntary processes, such as digestion and regulating blood pressure.

The nervous system is subject to many different diseases. In epilepsy, abnormal electrical activity in the brain can cause seizures. In multiple sclerosis, the immune system attacks the nerve linings, damaging the nerves' ability to transmit signals. Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a motor neuron disease which gradually reduces movement in patients. There are also many other diseases of the nervous system.

Reproductive system

Male gonad (testes, left) and female gonad (ovaries, right)

The purpose of the reproductive system is to reproduce and nurture the growth of offspring. The functions include the production of germ cells and hormones. The sex organs of the male reproductive system and the female reproductive system develops and mature at puberty. These systems include the internal and external genitalia.

Internal gross anatomy of the female reproductive system

Female puberty generally occurs between the ages of 9 and 13 and is characterized by ovulation and menstruation; the growth of secondary sex characteristics, such as growth of pubic and underarm hair, breast, uterine and vaginal growth, widening hips and increased height and weight, also occur during puberty. Male puberty sees the further development of the penis and testicles.

The female inner sex organs are the two ovaries, their fallopian tubes, the uterus, and the cervix. At birth there are about 70,000 immature egg cells that degenerate until at puberty there are around 40,000. No more egg cells are produced. Hormones stimulate the beginning of menstruation, and the ongoing menstrual cycles. The female external sex organs are the vulva (labia, clitoris, and vestibule).

The male external genitalia include the penis and scrotum that contains the testicles. The testicles are gonads that produce the sperm cells which are ejaculated in semen through the penis. Unlike the egg cells in the female, sperm cells are produced throughout life. Other internal sex organs are the epididymides, vasa deferentia, and some accessory glands.

Diseases that affect the reproductive system include polycystic ovary syndrome, a number of disorders of the testicles including testicular torsion, and a number of sexually transmitted infections including syphilis, HIV, chlamydia, HPV and genital wartsCancer can affect most parts of the reproductive system including the penis, testicles, prostate, ovaries, cervix, vagina, fallopian, uterus and vulva.

Respiratory system

The respiratory system consists of the nose, nasopharynx, trachea, and lungs. It brings oxygen from the air and excretes carbon dioxide and water back into the air. First, air is pulled through the trachea into the lungs by the diaphragm pushing down, which creates a vacuum. Air is briefly stored inside small sacs known as alveoli (sing.: alveolus) before being expelled from the lungs when the diaphragm contracts again. Each alveolus is surrounded by capillaries carrying deoxygenated blood, which absorbs oxygen out of the air and into the bloodstream.

For the respiratory system to function properly, there need to be as few impediments as possible to the movement of air within the lungs. Inflammation of the lungs and excess mucus are common sources of breathing difficulties. In asthma, the respiratory system is persistently inflamed, causing wheezing or shortness of breath. Pneumonia occurs through infection of the alveoli, and may be caused by tuberculosis. Emphysema, commonly a result of smoking, is caused by damage to connections between the alveoli.

Urinary system

Female urinary system

The urinary system consists of the two kidneys, two ureters, bladder, and urethra. It removes waste materials from the blood through urine, which carries a variety of waste molecules and excess ions and water out of the body.

First, the kidneys filter the blood through their respective nephrons, removing waste products like urea, creatinine and maintaining the proper balance of electrolytes and turning the waste products into urine by combining them with water from the blood. The kidneys filter about 150 quarts (170 liters) of blood daily, but most of it is returned to the blood stream with only 1-2 quarts (1-2 liters) ending up as urine, which passes from the kidneys through the ureters into the bladder.

The smooth muscles lining the ureter walls continuously tighten and relax through a process called peristalsis, forcing small amounts of urine into the bladder every 10–15 seconds.

The bladder is a hollow balloon shaped organ located in the pelvis. It stores urine until the brain signals it to relax the urinary sphincter and release the urine into the urethra starting urination. A normal bladder can hold up to 16 ounces (half a liter) for 3–5 hours comfortably.

Numerous diseases affect the urinary system including kidney stones, which are formed when materials in the urine concentrate enough to form a solid mass, urinary tract infections, which are infections of the urinary tract and can cause pain when urinating, frequent urination and even death if left untreated. Renal failure occurs when the kidneys fail to adequately filter waste from the blood and can lead to death if not treated with dialysis or kidney transplantationCancer can affect the bladder, kidneys, urethra and ureters, with the latter two being far more rare.

Anatomy

Cavities of human body
FMRI of healthy human brain

Human anatomy is the study of the shape and form of the human body. The human body has four limbs (two arms and two legs), a head and a neck, which connect to the torso. The body's shape is determined by a strong skeleton made of bone and cartilage, surrounded by fat (adipose tissue), muscle, connective tissue, organs, and other structures. The spine at the back of the skeleton contains the flexible vertebral column, which surrounds the spinal cord, which is a collection of nerve fibres connecting the brain to the rest of the body. Nerves connect the spinal cord and brain to the rest of the body. All major bones, muscles, and nerves in the body are named, with the exception of anatomical variations such as sesamoid bones and accessory muscles.

Blood vessels carry blood throughout the body, which moves because of the beating of the heart. Venules and veins collect blood low in oxygen from tissues throughout the body. These collect in progressively larger veins until they reach the body's two largest veins, the superior and inferior vena cava, which drain blood into the right side of the heart. From here, the blood is pumped into the lungs where it receives oxygen and drains back into the left side of the heart. From here, it is pumped into the body's largest artery, the aorta, and then progressively smaller arteries and arterioles until it reaches tissue. Here, blood passes from small arteries into capillaries, then small veins and the process begins again. Blood carries oxygen, waste products, and hormones from one place in the body to another. Blood is filtered at the kidneys and liver.

The body consists of a number of body cavities, separated areas which house different organ systems. The brain and central nervous system reside in an area protected from the rest of the body by the blood brain barrier. The lungs sit in the pleural cavity. The intestines, liver, and spleen sit in the abdominal cavity.

Height, weight, shape and other body proportions vary individually and with age and sex. Body shape is influenced by the distribution of bones, muscle and fat tissue.

Physiology

Human physiology is the study of how the human body functions. This includes the mechanical, physical, bioelectrical, and biochemical functions of humans in good health, from organs to the cells of which they are composed. The human body consists of many interacting systems of organs. These interact to maintain homeostasis, keeping the body in a stable state with safe levels of substances such as sugar and oxygen in the blood.

Each system contributes to homeostasis, of itself, other systems, and the entire body. Some combined systems are referred to by joint names. For example, the nervous system and the endocrine system operate together as the neuroendocrine system. The nervous system receives information from the body, and transmits this to the brain via nerve impulses and neurotransmitters. At the same time, the endocrine system releases hormones, such as to help regulate blood pressure and volume. Together, these systems regulate the internal environment of the body, maintaining blood flow, posture, energy supply, temperature, and acid balance (pH).

Development

Baby being carried

Development of the human body is the process of growth to maturity. The process begins with fertilisation, where an egg released from the ovary of a female is penetrated by sperm. The egg then lodges in the uterus, where an embryo and later fetus develop until birth. Growth and development occur after birth, and include both physical and psychological development, influenced by genetic, hormonal, environmental and other factors. Development and growth continue throughout life, through childhood, adolescence, and through adulthood to old age, and are referred to as the process of aging.

Society and culture

Professional study

Anatomical study by Leonardo da Vinci

Health professionals learn about the human body from illustrations, models, and demonstrations. Medical and dental students in addition gain practical experience, for example by dissection of cadavers. Human anatomy, physiology, and biochemistry are basic medical sciences, generally taught to medical students in their first year at medical school.

Depiction

Figure drawing by Lovis Corinth (before 1925)

In Western societies, the contexts for depictions of the human body include information, art and pornography. Information includes both science and education, such as anatomical drawings. Any ambiguous image not easily fitting into one of these categories may be misinterpreted, leading to disputes. The most contentious disputes are between fine art and erotic images, which define the legal distinction of which images are permitted or prohibited.

History of anatomy

Two facing pages of text with woodcuts of naked male and female figures, in the Epitome by Andreas Vesalius, 1543

In Ancient Greece, the Hippocratic Corpus described the anatomy of the skeleton and muscles. The 2nd century physician Galen of Pergamum compiled classical knowledge of anatomy into a text that was used throughout the Middle Ages. In the Renaissance, Andreas Vesalius (1514–1564) pioneered the modern study of human anatomy by dissection, writing the influential book De humani corporis fabrica. Anatomy advanced further with the invention of the microscope and the study of the cellular structure of tissues and organs. Modern anatomy uses techniques such as magnetic resonance imaging, computed tomography, fluoroscopy and ultrasound imaging to study the body in unprecedented detail.

History of physiology

The study of human physiology began with Hippocrates in Ancient Greece, around 420 BCE, and with Aristotle (384–322 BCE) who applied critical thinking and emphasis on the relationship between structure and function. Galen (c. 129 – c. 216) was the first to use experiments to probe the body's functions. The term physiology was introduced by the French physician Jean Fernel (1497–1558). In the 17th century, William Harvey (1578–1657) described the circulatory system, pioneering the combination of close observation with careful experiment. In the 19th century, physiological knowledge began to accumulate at a rapid rate with the cell theory of Matthias Schleiden and Theodor Schwann in 1838, that organisms are made up of cells. Claude Bernard (1813–1878) created the concept of the milieu interieur (internal environment), which Walter Cannon (1871–1945) later said was regulated to a steady state in homeostasis. In the 20th century, the physiologists Knut Schmidt-Nielsen and George Bartholomew extended their studies to comparative physiology and ecophysiology. Most recently, evolutionary physiology has become a distinct subdiscipline.

High-throughput screening

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/High-throughput_screening
High-throughput screening robots

High-throughput screening (HTS) is a method for scientific discovery especially used in drug discovery and relevant to the fields of biology, materials science and chemistry. Using robotics, data processing/control software, liquid handling devices, and sensitive detectors, high-throughput screening allows a researcher to quickly conduct millions of chemical, genetic, or pharmacological tests. Through this process one can quickly recognize active compounds, antibodies, or genes that modulate a particular biomolecular pathway. The results of these experiments provide starting points for drug design and for understanding the noninteraction or role of a particular location.

Assay plate preparation

A robot arm handles an assay plate

The key labware or testing vessel of HTS is the microtiter plate, which is a small container, usually disposable and made of plastic, that features a grid of small, open divots called wells. In general, microplates for HTS have either 96, 192, 384, 1536, 3456 or 6144 wells. These are all multiples of 96, reflecting the original 96-well microplate with spaced wells of 8 x 12 with 9 mm spacing. Most of the wells contain test items, depending on the nature of the experiment. These could be different chemical compounds dissolved e.g. in an aqueous solution of dimethyl sulfoxide (DMSO). The wells could also contain cells or enzymes of some type. (The other wells may be empty or contain pure solvent or untreated samples, intended for use as experimental controls.)

A screening facility typically holds a library of stock plates, whose contents are carefully catalogued, and each of which may have been created by the lab or obtained from a commercial source. These stock plates themselves are not directly used in experiments; instead, separate assay plates are created as needed. An assay plate is simply a copy of a stock plate, created by pipetting a small amount of liquid (often measured in nanoliters) from the wells of a stock plate to the corresponding wells of a completely empty plate.

Reaction observation

To prepare for an assay, the researcher fills each well of the plate with some biological entity that they wish to conduct the experiment upon, such as a protein, cells, or an animal embryo. After some incubation time has passed to allow the biological matter to absorb, bind to, or otherwise react (or fail to react) with the compounds in the wells, measurements are taken across all the plate's wells, either manually or by a machine. Manual measurements are often necessary when the researcher is using microscopy to (for example) seek changes or defects in embryonic development caused by the wells' compounds, looking for effects that a computer could not easily determine by itself. Otherwise, a specialized automated analysis machine can run a number of experiments on the wells (such as shining polarized light on them and measuring reflectivity, which can be an indication of protein binding). In this case, the machine outputs the result of each experiment as a grid of numeric values, with each number mapping to the value obtained from a single well. A high-capacity analysis machine can measure dozens of plates in the space of a few minutes like this, generating thousands of experimental datapoints very quickly.

Depending on the results of this first assay, the researcher can perform follow up assays within the same screen by "cherrypicking" liquid from the source wells that gave interesting results (known as "hits") into new assay plates, and then re-running the experiment to collect further data on this narrowed set, confirming and refining observations.

Automation systems

A carousel system to store assay plates for high storage capacity and high speed access

Automation is an essential element in HTS's usefulness. Typically, an integrated robot system consisting of one or more robots transports assay-microplates from station to station for sample and reagent addition, mixing, incubation, and finally readout or detection. An HTS system can usually prepare, incubate, and analyze many plates simultaneously, further speeding the data-collection process. HTS robots that can test up to 100,000 compounds per day currently exist. Automatic colony pickers pick thousands of microbial colonies for high throughput genetic screening. The term uHTS or ultra-high-throughput screening refers (circa 2008) to screening in excess of 100,000 compounds per day.

Experimental design and data analysis

With the ability of rapid screening of diverse compounds (such as small molecules or siRNAs) to identify active compounds, HTS has led to an explosion in the rate of data generated in recent years . Consequently, one of the most fundamental challenges in HTS experiments is to glean biochemical significance from mounds of data, which relies on the development and adoption of appropriate experimental designs and analytic methods for both quality control and hit selection . HTS research is one of the fields that have a feature described by John Blume, Chief Science Officer for Applied Proteomics, Inc., as follows: Soon, if a scientist does not understand some statistics or rudimentary data-handling technologies, he or she may not be considered to be a true molecular biologist and, thus, will simply become "a dinosaur."

Quality control

High-quality HTS assays are critical in HTS experiments. The development of high-quality HTS assays requires the integration of both experimental and computational approaches for quality control (QC). Three important means of QC are (i) good plate design, (ii) the selection of effective positive and negative chemical/biological controls, and (iii) the development of effective QC metrics to measure the degree of differentiation so that assays with inferior data quality can be identified.  A good plate design helps to identify systematic errors (especially those linked with well position) and determine what normalization should be used to remove/reduce the impact of systematic errors on both QC and hit selection.

Effective analytic QC methods serve as a gatekeeper for excellent quality assays. In a typical HTS experiment, a clear distinction between a positive control and a negative reference such as a negative control is an index for good quality. Many quality-assessment measures have been proposed to measure the degree of differentiation between a positive control and a negative reference. Signal-to-background ratio, signal-to-noise ratio, signal window, assay variability ratio, and Z-factor have been adopted to evaluate data quality. Strictly standardized mean difference (SSMD) has recently been proposed for assessing data quality in HTS assays.

Hit selection

A compound with a desired size of effects in an HTS is called a hit. The process of selecting hits is called hit selection. The analytic methods for hit selection in screens without replicates (usually in primary screens) differ from those with replicates (usually in confirmatory screens). For example, the z-score method is suitable for screens without replicates whereas the t-statistic is suitable for screens with replicates. The calculation of SSMD for screens without replicates also differs from that for screens with replicates .

For hit selection in primary screens without replicates, the easily interpretable ones are average fold change, mean difference, percent inhibition, and percent activity. However, they do not capture data variability effectively. The z-score method or SSMD, which can capture data variability based on an assumption that every compound has the same variability as a negative reference in the screens. However, outliers are common in HTS experiments, and methods such as z-score are sensitive to outliers and can be problematic. As a consequence, robust methods such as the z*-score method, SSMD*, B-score method, and quantile-based method have been proposed and adopted for hit selection.

In a screen with replicates, we can directly estimate variability for each compound; as a consequence, we should use SSMD or t-statistic that does not rely on the strong assumption that the z-score and z*-score rely on. One issue with the use of t-statistic and associated p-values is that they are affected by both sample size and effect size. They come from testing for no mean difference, and thus are not designed to measure the size of compound effects. For hit selection, the major interest is the size of effect in a tested compound. SSMD directly assesses the size of effects. SSMD has also been shown to be better than other commonly used effect sizes. The population value of SSMD is comparable across experiments and, thus, we can use the same cutoff for the population value of SSMD to measure the size of compound effects .

Techniques for increased throughput and efficiency

Unique distributions of compounds across one or many plates can be employed either to increase the number of assays per plate or to reduce the variance of assay results, or both. The simplifying assumption made in this approach is that any N compounds in the same well will not typically interact with each other, or the assay target, in a manner that fundamentally changes the ability of the assay to detect true hits.

For example, imagine a plate wherein compound A is in wells 1–2–3, compound B is in wells 2–3–4, and compound C is in wells 3–4–5. In an assay of this plate against a given target, a hit in wells 2, 3, and 4 would indicate that compound B is the most likely agent, while also providing three measurements of compound B's efficacy against the specified target. Commercial applications of this approach involve combinations in which no two compounds ever share more than one well, to reduce the (second-order) possibility of interference between pairs of compounds being screened.

Recent advances

Automation and low volume assay formats were leveraged by scientists at the NIH Chemical Genomics Center (NCGC) to develop quantitative HTS (qHTS), a paradigm to pharmacologically profile large chemical libraries through the generation of full concentration-response relationships for each compound. With accompanying curve fitting and cheminformatics software qHTS data yields half maximal effective concentration (EC50), maximal response, Hill coefficient (nH) for the entire library enabling the assessment of nascent structure activity relationships (SAR).

In March 2010, research was published demonstrating an HTS process allowing 1,000 times faster screening (100 million reactions in 10 hours) at 1-millionth the cost (using 10−7 times the reagent volume) than conventional techniques using drop-based microfluidics. Drops of fluid separated by oil replace microplate wells and allow analysis and hit sorting while reagents are flowing through channels.

In 2010, researchers developed a silicon sheet of lenses that can be placed over microfluidic arrays to allow the fluorescence measurement of 64 different output channels simultaneously with a single camera. This process can analyze 200,000 drops per second.

In 2013, researchers have disclosed an approach with small molecules from plants. In general, it is essential to provide high-quality proof-of-concept validations early in the drug discovery process. Here technologies that enable the identification of potent, selective, and bioavailable chemical probes are of crucial interest, even if the resulting compounds require further optimization for development into a pharmaceutical product. Nuclear receptor RORα, a protein that has been targeted for more than a decade to identify potent and bioavailable agonists, was used as an example of a very challenging drug target. Hits are confirmed at the screening step due to the bell-shaped curve. This method is very similar to the quantitative HTS method (screening and hit confirmation at the same time), except that using this approach greatly decreases the data point number and can screen easily more than 100.000 biological relevant compounds.

Switching from an orbital shaker, which required milling times of 24 hours and at least 10 mg of drug compound to a ResonantAcoustic mixer, Merck reported reduced processing time to less than 2 hours on only 1-2 mg of drug compound per well. Merck also indicated the acoustic milling approach allows for the preparation of high dose nanosuspension formulations that could not be obtained using conventional milling equipment.

Whereby traditional HTS drug discovery uses purified proteins or intact cells, recent development of the technology is associated with the use of intact living organisms, like the nematode Caenorhabditis elegans and zebrafish (Danio rerio).

In 2016-2018 plate manufacturers began producing specialized chemistry to allow for mass production of ultra-low adherent cell repellent surfaces which facilitated the rapid development of HTS amenable assays to address cancer drug discovery in 3D tissues such as organoids and spheroids; a more physiologically relevant format.

Increasing use of HTS in academia for biomedical research

HTS is a relatively recent innovation, made feasible largely through modern advances in robotics and high-speed computer technology. It still takes a highly specialized and expensive screening lab to run an HTS operation, so in many cases a small- to moderate-size research institution will use the services of an existing HTS facility rather than set up one for itself.

There is a trend in academia for universities to be their own drug discovery enterprise. These facilities, which normally are found only in industry, are now increasingly found at universities as well. UCLA, for example, features an open access HTS laboratory Molecular Screening Shared Resources (MSSR, UCLA), which can screen more than 100,000 compounds a day on a routine basis. The open access policy ensures that researchers from all over the world can take advantage of this facility without lengthy intellectual property negotiations. With a compound library of over 200,000 small molecules, the MSSR has one of the largest compound deck of all universities on the west coast. Also, the MSSR features full functional genomics capabilities (genome wide siRNA, shRNA, cDNA and CRISPR) which are complementary to small molecule efforts: Functional genomics leverages HTS capabilities to execute genome wide screens which examine the function of each gene in the context of interest by either knocking each gene out or overexpressing it. Parallel access to high-throughput small molecule screen and a genome wide screen enables researchers to perform target identification and validation for given disease or the mode of action determination on a small molecule. The most accurate results can be obtained by use of "arrayed" functional genomics libraries, i.e. each library contains a single construct such as a single siRNA or cDNA. Functional genomics is typically paired with high content screening using e.g. epifluorescent microscopy or laser scanning cytometry.

The University of Illinois also has a facility for HTS, as does the University of Minnesota. The Life Sciences Institute at the University of Michigan houses the HTS facility in the Center for Chemical Genomics. Columbia University has an HTS shared resource facility with ~300,000 diverse small molecules and ~10,000 known bioactive compounds available for biochemical, cell-based and NGS-based screening. The Rockefeller University has an open-access HTS Resource Center HTSRC (The Rockefeller University, HTSRC), which offers a library of over 380,000 compounds. Northwestern University's High Throughput Analysis Laboratory supports target identification, validation, assay development, and compound screening. The non-profit Sanford Burnham Prebys Medical Discovery Institute also has a long-standing HTS facility in the Conrad Prebys Center for Chemical Genomics which was part of the MLPCN. The non-profit Scripps Research Molecular Screening Center (SRMSC) continues to serve academia across institutes post-MLPCN era. The SRMSC uHTS facility maintains one of the largest library collections in academia, presently at well-over 665,000 small molecule entities, and routinely screens the full collection or sub-libraries in support of multi-PI grant initiatives.

In the United States, the National Institutes of Health or NIH has created a nationwide consortium of small-molecule screening centers to produce innovative chemical tools for use in biological research. The Molecular Libraries Probe Production Centers Network, or MLPCN, performs HTS on assays provided by the research community, against a large library of small molecules maintained in a central molecule repository. In addition, the NIH created the National Center for Advancing Translational Sciences or NCATS, housed in Shady Grove Maryland, that carries out small molecule and RNAi screens in collaboration with academic laboratories. Of note, the small molecule screening uses 1536 well plates, a capability rarely seen in academic screening laboratories that allows one to carry out quantitative HTS in which each compound is tested across four- to five-orders of magnitude of concentrations.

Human body

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Human_bod...