Search This Blog

Friday, September 6, 2019

X-ray astronomy

From Wikipedia, the free encyclopedia
 
X-rays start at ~0.008 nm and extend across the electromagnetic spectrum to ~8 nm, over which the Earth's atmosphere is opaque.
 
X-ray astronomy is an observational branch of astronomy which deals with the study of X-ray observation and detection from astronomical objects. X-radiation is absorbed by the Earth's atmosphere, so instruments to detect X-rays must be taken to high altitude by balloons, sounding rockets, and satellites. X-ray astronomy is the space science related to a type of space telescope that can see farther than standard light-absorption telescopes, such as the Mauna Kea Observatories, via x-ray radiation. 

X-ray emission is expected from astronomical objects that contain extremely hot gases at temperatures from about a million kelvin (K) to hundreds of millions of kelvin (MK). Moreover, the maintenance of the E-layer of ionized gas high in the Earth's Thermosphere also suggested a strong extraterrestrial source of X-rays. Although theory predicted that the Sun and the stars would be prominent X-ray sources, there was no way to verify this because Earth's atmosphere blocks most extraterrestrial X-rays. It was not until ways of sending instrument packages to high altitude were developed that these X-ray sources could be studied. 

The existence of solar X-rays was confirmed early in the rocket age by V-2s converted to sounding rocket purpose, and the detection of extraterrestrial X-rays has been the primary or secondary mission of multiple satellites since 1958. The first cosmic (beyond the solar system) X-ray source was discovered by a sounding rocket in 1962. Called Scorpius X-1 (Sco X-1) (the first X-ray source found in the constellation Scorpius), the X-ray emission of Scorpius X-1 is 10,000 times greater than its visual emission, whereas that of the Sun is about a million times less. In addition, the energy output in X-rays is 100,000 times greater than the total emission of the Sun in all wavelengths

Many thousands of X-ray sources have since been discovered. In addition, the space between galaxies in galaxy clusters is filled with a very hot, but very dilute gas at a temperature between 10 and 100 megakelvins (MK). The total amount of hot gas is five to ten times the total mass in the visible galaxies.

Sounding rocket flights

The first sounding rocket flights for X-ray research were accomplished at the White Sands Missile Range in New Mexico with a V-2 rocket on January 28, 1949. A detector was placed in the nose cone section and the rocket was launched in a suborbital flight to an altitude just above the atmosphere. 

X-rays from the Sun were detected by the U.S. Naval Research Laboratory Blossom experiment on board. An Aerobee 150 rocket was launched on June 12, 1962 and it detected the first X-rays from other celestial sources (Scorpius X-1). It is now known that such X-ray sources as Sco X-1 are compact stars, such as neutron stars or black holes. Material falling into a black hole may emit X-rays, but the black hole itself does not. The energy source for the X-ray emission is gravity. Infalling gas and dust is heated by the strong gravitational fields of these and other celestial objects. Based on discoveries in this new field of X-ray astronomy, starting with Scorpius X-1, Riccardo Giacconi received the Nobel Prize in Physics in 2002.

The largest drawback to rocket flights is their very short duration (just a few minutes above the atmosphere before the rocket falls back to Earth) and their limited field of view. A rocket launched from the United States will not be able to see sources in the southern sky; a rocket launched from Australia will not be able to see sources in the northern sky.

X-ray Quantum Calorimeter (XQC) project

A launch of the Black Brant 8 Microcalorimeter (XQC-2) at the turn of the century is a part of the joint undertaking by the University of Wisconsin–Madison and NASA's Goddard Space Flight Center known as the X-ray Quantum Calorimeter (XQC) project.
 
In astronomy, the interstellar medium (or ISM) is the gas and cosmic dust that pervade interstellar space: the matter that exists between the star systems within a galaxy. It fills interstellar space and blends smoothly into the surrounding intergalactic medium. The interstellar medium consists of an extremely dilute (by terrestrial standards) mixture of ions, atoms, molecules, larger dust grains, cosmic rays, and (galactic) magnetic fields. The energy that occupies the same volume, in the form of electromagnetic radiation, is the interstellar radiation field

Of interest is the hot ionized medium (HIM) consisting of a coronal cloud ejection from star surfaces at 106-107 K which emits X-rays. The ISM is turbulent and full of structure on all spatial scales. Stars are born deep inside large complexes of molecular clouds, typically a few parsecs in size. During their lives and deaths, stars interact physically with the ISM. Stellar winds from young clusters of stars (often with giant or supergiant HII regions surrounding them) and shock waves created by supernovae inject enormous amounts of energy into their surroundings, which leads to hypersonic turbulence. The resultant structures are stellar wind bubbles and superbubbles of hot gas. The Sun is currently traveling through the Local Interstellar Cloud, a denser region in the low-density Local Bubble

To measure the spectrum of the diffuse X-ray emission from the interstellar medium over the energy range 0.07 to 1 keV, NASA launched a Black Brant 9 from White Sands Missile Range, New Mexico on May 1, 2008. The Principal Investigator for the mission is Dr. Dan McCammon of the University of Wisconsin–Madison.

Balloons

Balloon flights can carry instruments to altitudes of up to 40 km above sea level, where they are above as much as 99.997% of the Earth's atmosphere. Unlike a rocket where data are collected during a brief few minutes, balloons are able to stay aloft for much longer. However, even at such altitudes, much of the X-ray spectrum is still absorbed. X-rays with energies less than 35 keV (5,600 aJ) cannot reach balloons. On July 21, 1964, the Crab Nebula supernova remnant was discovered to be a hard X-ray (15–60 keV) source by a scintillation counter flown on a balloon launched from Palestine, Texas, United States. This was likely the first balloon-based detection of X-rays from a discrete cosmic X-ray source.

High-energy focusing telescope

The Crab Nebula is a remnant of an exploded star. This image shows the Crab Nebula in various energy bands, including a hard X-ray image from the HEFT data taken during its 2005 observation run. Each image is 6′ wide.
 
The high-energy focusing telescope (HEFT) is a balloon-borne experiment to image astrophysical sources in the hard X-ray (20–100 keV) band. Its maiden flight took place in May 2005 from Fort Sumner, New Mexico, USA. The angular resolution of HEFT is c. 1.5'. Rather than using a grazing-angle X-ray telescope, HEFT makes use of a novel tungsten-silicon multilayer coatings to extend the reflectivity of nested grazing-incidence mirrors beyond 10 keV. HEFT has an energy resolution of 1.0 keV full width at half maximum at 60 keV. HEFT was launched for a 25-hour balloon flight in May 2005. The instrument performed within specification and observed Tau X-1, the Crab Nebula.

High-resolution gamma-ray and hard X-ray spectrometer (HIREGS)

A balloon-borne experiment called the High-resolution gamma-ray and hard X-ray spectrometer (HIREGS) observed X-ray and gamma-rays emissions from the Sun and other astronomical objects. It was launched from McMurdo Station, Antarctica in December 1991 and 1992. Steady winds carried the balloon on a circumpolar flight lasting about two weeks each time.

Rockoons

Navy Deacon rockoon photographed just after a shipboard launch in July 1956.
 
The rockoon (a portmanteau of rocket and balloon) was a solid fuel rocket that, rather than being immediately lit while on the ground, was first carried into the upper atmosphere by a gas-filled balloon. Then, once separated from the balloon at its maximum height, the rocket was automatically ignited. This achieved a higher altitude, since the rocket did not have to move through the lower thicker air layers that would have required much more chemical fuel. 

The original concept of "rockoons" was developed by Cmdr. Lee Lewis, Cmdr. G. Halvorson, S. F. Singer, and James A. Van Allen during the Aerobee rocket firing cruise of the USS Norton Sound on March 1, 1949.

From July 17 to July 27, 1956, the Naval Research Laboratory (NRL) shipboard launched eight Deacon rockoons for solar ultraviolet and X-ray observations at ~30° N ~121.6° W, southwest of San Clemente Island, apogee: 120 km.

X-ray astronomy satellite

X-ray astronomy satellites study X-ray emissions from celestial objects. Satellites, which can detect and transmit data about the X-ray emissions are deployed as part of branch of space science known as X-ray astronomy. Satellites are needed because X-radiation is absorbed by the Earth's atmosphere, so instruments to detect X-rays must be taken to high altitude by balloons, sounding rockets, and satellites.

X-ray telescopes and mirrors

The Swift Gamma-Ray Burst Mission contains a grazing incidence Wolter I telescope (XRT) to focus X-rays onto a state-of-the-art CCD.
 
X-ray telescopes (XRTs) have varying directionality or imaging ability based on glancing angle reflection rather than refraction or large deviation reflection. This limits them to much narrower fields of view than visible or UV telescopes. The mirrors can be made of ceramic or metal foil.

The first X-ray telescope in astronomy was used to observe the Sun. The first X-ray picture (taken with a grazing incidence telescope) of the Sun was taken in 1963, by a rocket-borne telescope. On April 19, 1960 the very first X-ray image of the sun was taken using a pinhole camera on an Aerobee-Hi rocket.

The utilization of X-ray mirrors for extrasolar X-ray astronomy simultaneously requires:
  • the ability to determine the location at the arrival of an X-ray photon in two dimensions and
  • a reasonable detection efficiency.

X-ray astronomy detectors

Proportional Counter Array on the Rossi X-ray Timing Explorer (RXTE) satellite.
 
X-ray astronomy detectors have been designed and configured primarily for energy and occasionally for wavelength detection using a variety of techniques usually limited to the technology of the time.
X-ray detectors collect individual X-rays (photons of X-ray electromagnetic radiation) and count the number of photons collected (intensity), the energy (0.12 to 120 keV) of the photons collected, wavelength (c. 0.008–8 nm), or how fast the photons are detected (counts per hour), to tell us about the object that is emitting them.

Astrophysical sources of X-rays

Andromeda Galaxy – in high-energy X-ray and ultraviolet light (released 5 January 2016).
 
This light curve of Her X-1 shows long term and medium term variability. Each pair of vertical lines delineate the eclipse of the compact object behind its companion star. In this case, the companion is a two solar-mass star with a radius of nearly four times that of our Sun. This eclipse shows us the orbital period of the system, 1.7 days.
 
Several types of astrophysical objects emit, fluoresce, or reflect X-rays, from galaxy clusters, through black holes in active galactic nuclei (AGN) to galactic objects such as supernova remnants, stars, and binary stars containing a white dwarf (cataclysmic variable stars and super soft X-ray sources), neutron star or black hole (X-ray binaries). Some solar system bodies emit X-rays, the most notable being the Moon, although most of the X-ray brightness of the Moon arises from reflected solar X-rays. A combination of many unresolved X-ray sources is thought to produce the observed X-ray background. The X-ray continuum can arise from bremsstrahlung, black-body radiation, synchrotron radiation, or what is called inverse Compton scattering of lower-energy photons by relativistic electrons, knock-on collisions of fast protons with atomic electrons, and atomic recombination, with or without additional electron transitions.

An intermediate-mass X-ray binary (IMXB) is a binary star system where one of the components is a neutron star or a black hole. The other component is an intermediate mass star.

Hercules X-1 is composed of a neutron star accreting matter from a normal star (HZ Herculis) probably due to Roche lobe overflow. X-1 is the prototype for the massive X-ray binaries although it falls on the borderline, ~2 M, between high- and low-mass X-ray binaries.

Celestial X-ray sources

The celestial sphere has been divided into 88 constellations. The International Astronomical Union (IAU) constellations are areas of the sky. Each of these contains remarkable X-ray sources. Some of them have been identified from astrophysical modeling to be galaxies or black holes at the centers of galaxies. Some are pulsars. As with sources already successfully modeled by X-ray astrophysics, striving to understand the generation of X-rays by the apparent source helps to understand the Sun, the universe as a whole, and how these affect us on Earth. Constellations are an astronomical device for handling observation and precision independent of current physical theory or interpretation. Astronomy has been around for a long time. Physical theory changes with time. With respect to celestial X-ray sources, X-ray astrophysics tends to focus on the physical reason for X-ray brightness, whereas X-ray astronomy tends to focus on their classification, order of discovery, variability, resolvability, and their relationship with nearby sources in other constellations.

This ROSAT PSPC false-color image is of a portion of a nearby stellar wind superbubble (the Orion-Eridanus Superbubble) stretching across Eridanus and Orion.
 
Within the constellations Orion and Eridanus and stretching across them is a soft X-ray "hot spot" known as the Orion-Eridanus Superbubble, the Eridanus Soft X-ray Enhancement, or simply the Eridanus Bubble, a 25° area of interlocking arcs of Hα emitting filaments. Soft X-rays are emitted by hot gas (T ~ 2–3 MK) in the interior of the superbubble. This bright object forms the background for the "shadow" of a filament of gas and dust. The filament is shown by the overlaid contours, which represent 100 micrometre emission from dust at a temperature of about 30 K as measured by IRAS. Here the filament absorbs soft X-rays between 100 and 300 eV, indicating that the hot gas is located behind the filament. This filament may be part of a shell of neutral gas that surrounds the hot bubble. Its interior is energized by ultraviolet (UV) light and stellar winds from hot stars in the Orion OB1 association. These stars energize a superbubble about 1200 lys across which is observed in the visual (Hα) and X-ray portions of the spectrum.

Proposed (future) X-ray observatory satellites

There are several projects that are proposed for X-ray observatory satellites. See main article link above.

Explorational X-ray astronomy

Ulysses' second orbit: it arrived at Jupiter on February 8, 1992, for a swing-by maneuver that increased its inclination to the ecliptic by 80.2 degrees.
 
Usually observational astronomy is considered to occur on Earth's surface (or beneath it in neutrino astronomy). The idea of limiting observation to Earth includes orbiting the Earth. As soon as the observer leaves the cozy confines of Earth, the observer becomes a deep space explorer. Except for Explorer 1 and Explorer 3 and the earlier satellites in the series, usually if a probe is going to be a deep space explorer it leaves the Earth or an orbit around the Earth.

For a satellite or space probe to qualify as a deep space X-ray astronomer/explorer or "astronobot"/explorer, all it needs to carry aboard is an XRT or X-ray detector and leave Earth's orbit.
Ulysses was launched October 6, 1990, and reached Jupiter for its "gravitational slingshot" in February 1992. It passed the south solar pole in June 1994 and crossed the ecliptic equator in February 1995. The solar X-ray and cosmic gamma-ray burst experiment (GRB) had 3 main objectives: study and monitor solar flares, detect and localize cosmic gamma-ray bursts, and in-situ detection of Jovian aurorae. Ulysses was the first satellite carrying a gamma burst detector which went outside the orbit of Mars. The hard X-ray detectors operated in the range 15–150 keV. The detectors consisted of 23-mm thick × 51-mm diameter CsI(Tl) crystals mounted via plastic light tubes to photomultipliers. The hard detector changed its operating mode depending on (1) measured count rate, (2) ground command, or (3) change in spacecraft telemetry mode. The trigger level was generally set for 8-sigma above background and the sensitivity is 10−6 erg/cm2 (1 nJ/m2). When a burst trigger is recorded, the instrument switches to record high resolution data, recording it to a 32-kbit memory for a slow telemetry read out. Burst data consist of either 16 s of 8-ms resolution count rates or 64 s of 32-ms count rates from the sum of the 2 detectors. There were also 16 channel energy spectra from the sum of the 2 detectors (taken either in 1, 2, 4, 16, or 32 second integrations). During 'wait' mode, the data were taken either in 0.25 or 0.5 s integrations and 4 energy channels (with shortest integration time being 8 s). Again, the outputs of the 2 detectors were summed.

The Ulysses soft X-ray detectors consisted of 2.5-mm thick × 0.5 cm2 area Si surface barrier detectors. A 100 mg/cm2 beryllium foil front window rejected the low energy X-rays and defined a conical FOV of 75° (half-angle). These detectors were passively cooled and operate in the temperature range −35 to −55 °C. This detector had 6 energy channels, covering the range 5–20 keV.

X-Rays from Pluto

Theoretical X-ray astronomy

Theoretical X-ray astronomy is a branch of theoretical astronomy that deals with the theoretical astrophysics and theoretical astrochemistry of X-ray generation, emission, and detection as applied to astronomical objects.

Like theoretical astrophysics, theoretical X-ray astronomy uses a wide variety of tools which include analytical models to approximate the behavior of a possible X-ray source and computational numerical simulations to approximate the observational data. Once potential observational consequences are available they can be compared with experimental observations. Observers can look for data that refutes a model or helps in choosing between several alternate or conflicting models. 

Theorists also try to generate or modify models to take into account new data. In the case of an inconsistency, the general tendency is to try to make minimal modifications to the model to fit the data. In some cases, a large amount of inconsistent data over time may lead to total abandonment of a model. 

Most of the topics in astrophysics, astrochemistry, astrometry, and other fields that are branches of astronomy studied by theoreticians involve X-rays and X-ray sources. Many of the beginnings for a theory can be found in an Earth-based laboratory where an X-ray source is built and studied.

Dynamos

Dynamo theory describes the process through which a rotating, convecting, and electrically conducting fluid acts to maintain a magnetic field. This theory is used to explain the presence of anomalously long-lived magnetic fields in astrophysical bodies. If some of the stellar magnetic fields are really induced by dynamos, then field strength might be associated with rotation rate.

Astronomical models

 
From the observed X-ray spectrum, combined with spectral emission results for other wavelength ranges, an astronomical model addressing the likely source of X-ray emission can be constructed. For example, with Scorpius X-1 the X-ray spectrum steeply drops off as X-ray energy increases up to 20 keV, which is likely for a thermal-plasma mechanism. In addition, there is no radio emission, and the visible continuum is roughly what would be expected from a hot plasma fitting the observed X-ray flux. The plasma could be a coronal cloud of a central object or a transient plasma, where the energy source is unknown, but could be related to the idea of a close binary.

In the Crab Nebula X-ray spectrum there are three features that differ greatly from Scorpius X-1: its spectrum is much harder, its source diameter is in light-years (ly)s, not astronomical units (AU), and its radio and optical synchrotron emission are strong. Its overall X-ray luminosity rivals the optical emission and could be that of a nonthermal plasma. However, the Crab Nebula appears as an X-ray source that is a central freely expanding ball of dilute plasma, where the energy content is 100 times the total energy content of the large visible and radio portion, obtained from the unknown source.

The "Dividing Line" as giant stars evolve to become red giants also coincides with the Wind and Coronal Dividing Lines. To explain the drop in X-ray emission across these dividing lines, a number of models have been proposed:
  1. low transition region densities, leading to low emission in coronae,
  2. high-density wind extinction of coronal emission,
  3. only cool coronal loops become stable,
  4. changes in a magnetic field structure to that an open topology, leading to a decrease of magnetically confined plasma, or
  5. changes in the magnetic dynamo character, leading to the disappearance of stellar fields leaving only small-scale, turbulence-generated fields among red giants.

Analytical X-ray astronomy

High-mass X-ray binaries (HMXBs) are composed of OB supergiant companion stars and compact objects, usually neutron stars (NS) or black holes (BH). Supergiant X-ray binaries (SGXBs) are HMXBs in which the compact objects orbit massive companions with orbital periods of a few days (3–15 d), and in circular (or slightly eccentric) orbits. SGXBs show typical the hard X-ray spectra of accreting pulsars and most show strong absorption as obscured HMXBs. X-ray luminosity (Lx) increases up to 1036 erg·s−1 (1029 watts).

The mechanism triggering the different temporal behavior observed between the classical SGXBs and the recently discovered supergiant fast X-ray transients (SFXT)s is still debated.

Stellar X-ray astronomy

Stellar X-ray astronomy is said to have started on April 5, 1974, with the detection of X-rays from Capella. A rocket flight on that date briefly calibrated its attitude control system when a star sensor pointed the payload axis at Capella (α Aur). During this period, X-rays in the range 0.2–1.6 keV were detected by an X-ray reflector system co-aligned with the star sensor. The X-ray luminosity of Lx = 1031 erg·s−1 (1024 W) is four orders of magnitude above the Sun's X-ray luminosity.

Stellar coronae

Coronal stars, or stars within a coronal cloud, are ubiquitous among the stars in the cool half of the Hertzsprung-Russell diagram. Experiments with instruments aboard Skylab and Copernicus have been used to search for soft X-ray emission in the energy range ~0.14–0.284 keV from stellar coronae. The experiments aboard ANS succeeded in finding X-ray signals from Capella and Sirius (α CMa). X-ray emission from an enhanced solar-like corona was proposed for the first time. The high temperature of Capella's corona as obtained from the first coronal X-ray spectrum of Capella using HEAO 1 required magnetic confinement unless it was a free-flowing coronal wind.

In 1977 Proxima Centauri is discovered to be emitting high-energy radiation in the XUV. In 1978, α Cen was identified as a low-activity coronal source. With the operation of the Einstein observatory, X-ray emission was recognized as a characteristic feature common to a wide range of stars covering essentially the whole Hertzsprung-Russell diagram. The Einstein initial survey led to significant insights:
  • X-ray sources abound among all types of stars, across the Hertzsprung-Russell diagram and across most stages of evolution,
  • the X-ray luminosities and their distribution along the main sequence were not in agreement with the long-favored acoustic heating theories, but were now interpreted as the effect of magnetic coronal heating, and
  • stars that are otherwise similar reveal large differences in their X-ray output if their rotation period is different.
To fit the medium-resolution spectrum of UX Ari, subsolar abundances were required.

Stellar X-ray astronomy is contributing toward a deeper understanding of
  • magnetic fields in magnetohydrodynamic dynamos,
  • the release of energy in tenuous astrophysical plasmas through various plasma-physical processes, and
  • the interactions of high-energy radiation with the stellar environment.
Current wisdom has it that the massive coronal main sequence stars are late-A or early F stars, a conjecture that is supported both by observation and by theory.

Young, low-mass stars

A Chandra X-ray image of the Cluster of newly formed stars in the Orion Nebula.
 
Newly formed stars are known as pre-main-sequence stars during the stage of stellar evolution before they reach the main-sequence. Stars in this stage (ages <10 10="" coronae.="" emission="" however="" in="" is="" million="" produce="" stellar="" sup="" their="" x-ray="" x-rays="" years="">3
to 105 times stronger than for main-sequence stars of similar masses.

X-ray emission for pre–main-sequence stars was discovered by the Einstein Observatory. This X-ray emission is primarily produced by magnetic reconnection flares in the stellar coronae, with many small flares contributing to the "quiescent" X-ray emission from these stars. Pre–main sequence stars have large convection zones, which in turn drive strong dynamos, producing strong surface magnetic fields. This leads to the high X-ray emission from these stars, which lie in the saturated X-ray regime, unlike main-sequence stars that show rotational modulation of X-ray emission. Other sources of X-ray emission include accretion hotspots and collimated outflows.

X-ray emission as an indicator of stellar youth is important for studies of star-forming regions. Most star-forming regions in the Milky Way Galaxy are projected on Galactic-Plane fields with numerous unrelated field stars. It is often impossible to distinguish members of a young stellar cluster from field-star contaminants using optical and infrared images alone. X-ray emission can easily penetrate moderate absorption from molecular clouds, and can be used to identify candidate cluster members.

Unstable winds

Given the lack of a significant outer convection zone, theory predicts the absence of a magnetic dynamo in earlier A stars. In early stars of spectral type O and B, shocks developing in unstable winds are the likely source of X-rays.

Coolest M dwarfs

Beyond spectral type M5, the classical αω dynamo can no longer operate as the internal structure of dwarf stars changes significantly: they become fully convective. As a distributed (or α2) dynamo may become relevant, both the magnetic flux on the surface and the topology of the magnetic fields in the corona should systematically change across this transition, perhaps resulting in some discontinuities in the X-ray characteristics around spectral class dM5. However, observations do not seem to support this picture: long-time lowest-mass X-ray detection, VB 8 (M7e V), has shown steady emission at levels of X-ray luminosity (LX) ≈ 1026 erg·s−1 (1019 W) and flares up to an order of magnitude higher. Comparison with other late M dwarfs shows a rather continuous trend.

Strong X-ray emission from Herbig Ae/Be stars

Herbig Ae/Be stars are pre-main sequence stars. As to their X-ray emission properties, some are
  • reminiscent of hot stars,
  • others point to coronal activity as in cool stars, in particular the presence of flares and very high temperatures.
The nature of these strong emissions has remained controversial with models including
  • unstable stellar winds,
  • colliding winds,
  • magnetic coronae,
  • disk coronae,
  • wind-fed magnetospheres,
  • accretion shocks,
  • the operation of a shear dynamo,
  • the presence of unknown late-type companions.

K giants

The FK Com stars are giants of spectral type K with an unusually rapid rotation and signs of extreme activity. Their X-ray coronae are among the most luminous (LX ≥ 1032 erg·s−1 or 1025 W) and the hottest known with dominant temperatures up to 40 MK. However, the current popular hypothesis involves a merger of a close binary system in which the orbital angular momentum of the companion is transferred to the primary.

Pollux is the brightest star in the constellation Gemini, despite its Beta designation, and the 17th brightest in the sky. Pollux is a giant orange K star that makes an interesting color contrast with its white "twin", Castor. Evidence has been found for a hot, outer, magnetically supported corona around Pollux, and the star is known to be an X-ray emitter.

Eta Carinae

Classified as a Peculiar star, Eta Carinae exhibits a superstar at its center as seen in this image from Chandra X-ray Observatory. Credit: Chandra Science Center and NASA.
 
New X-ray observations by the Chandra X-ray Observatory show three distinct structures: an outer, horseshoe-shaped ring about 2 light years in diameter, a hot inner core about 3 light-months in diameter, and a hot central source less than 1 light-month in diameter which may contain the superstar that drives the whole show. The outer ring provides evidence of another large explosion that occurred over 1,000 years ago. These three structures around Eta Carinae are thought to represent shock waves produced by matter rushing away from the superstar at supersonic speeds. The temperature of the shock-heated gas ranges from 60 MK in the central regions to 3 MK on the horseshoe-shaped outer structure. "The Chandra image contains some puzzles for existing ideas of how a star can produce such hot and intense X-rays," says Prof. Kris Davidson of the University of Minnesota. Davidson is principal investigator for the Eta Carina observations by the Hubble Space telescope. "In the most popular theory, X-rays are made by colliding gas streams from two stars so close together that they'd look like a point source to us. But what happens to gas streams that escape to farther distances? The extended hot stuff in the middle of the new image gives demanding new conditions for any theory to meet."

Amateur X-ray astronomy

Collectively, amateur astronomers observe a variety of celestial objects and phenomena sometimes with equipment that they build themselves. The United States Air Force Academy (USAFA) is the home of the US's only undergraduate satellite program, and has and continues to develop the FalconLaunch sounding rockets. In addition to any direct amateur efforts to put X-ray astronomy payloads into space, there are opportunities that allow student-developed experimental payloads to be put on board commercial sounding rockets as a free-of-charge ride.

There are major limitations to amateurs observing and reporting experiments in X-ray astronomy: the cost of building an amateur rocket or balloon to place a detector high enough and the cost of appropriate parts to build a suitable X-ray detector.

History of X-ray astronomy

NRL scientists J. D. Purcell, C. Y. Johnson, and Dr. F. S. Johnson are among those recovering instruments from a V-2 used for upper atmospheric research above the New Mexico desert. This is V-2 number 54, launched January 18, 1951, (photo by Dr. Richard Tousey, NRL).
 
In 1927, E.O. Hulburt of the US Naval Research Laboratory and associates Gregory Breit and Merle A. Tuve of the Carnegie Institution of Washington explored the possibility of equipping Robert H. Goddard's rockets to explore the upper atmosphere. "Two years later, he proposed an experimental program in which a rocket might be instrumented to explore the upper atmosphere, including detection of ultraviolet radiation and X-rays at high altitudes".

In the late 1930s, the presence of a very hot, tenuous gas surrounding the Sun was inferred indirectly from optical coronal lines of highly ionized species. The Sun has been known to be surrounded by a hot tenuous corona. In the mid-1940s radio observations revealed a radio corona around the Sun.

The beginning of the search for X-ray sources from above the Earth's atmosphere was on August 5, 1948 12:07 GMT. A US Army (formerly German) V-2 rocket as part of Project Hermes was launched from White Sands Proving Grounds. The first solar X-rays were recorded by T. Burnight.

Through the 1960s, 70s, 80s, and 90s, the sensitivity of detectors increased greatly during the 60 years of X-ray astronomy. In addition, the ability to focus X-rays has developed enormously—allowing the production of high-quality images of many fascinating celestial objects.

Major questions in X-ray astronomy

As X-ray astronomy uses a major spectral probe to peer into source, it is a valuable tool in efforts to understand many puzzles.

Stellar magnetic fields

Magnetic fields are ubiquitous among stars, yet we do not understand precisely why, nor have we fully understood the bewildering variety of plasma physical mechanisms that act in stellar environments. Some stars, for example, seem to have magnetic fields, fossil stellar magnetic fields left over from their period of formation, while others seem to generate the field anew frequently.

Extrasolar X-ray source astrometry

With the initial detection of an extrasolar X-ray source, the first question usually asked is "What is the source?" An extensive search is often made in other wavelengths such as visible or radio for possible coincident objects. Many of the verified X-ray locations still do not have readily discernible sources. X-ray astrometry becomes a serious concern that results in ever greater demands for finer angular resolution and spectral radiance

There are inherent difficulties in making X-ray/optical, X-ray/radio, and X-ray/X-ray identifications based solely on positional coincidents, especially with handicaps in making identifications, such as the large uncertainties in positional determinants made from balloons and rockets, poor source separation in the crowded region toward the galactic center, source variability, and the multiplicity of source nomenclature.

X‐ray source counterparts to stars can be identified by calculating the angular separation between source centroids and position of the star. The maximum allowable separation is a compromise between a larger value to identify as many real matches as possible and a smaller value to minimize the probability of spurious matches. "An adopted matching criterion of 40" finds nearly all possible X‐ray source matches while keeping the probability of any spurious matches in the sample to 3%."

Solar X-ray astronomy

All of the detected X-ray sources at, around, or near the Sun appear to be associated with processes in the corona, which is its outer atmosphere.

Coronal heating problem

In the area of solar X-ray astronomy, there is the coronal heating problem. The photosphere of the Sun has an effective temperature of 5,570 K yet its corona has an average temperature of 1–2 × 106 K. However, the hottest regions are 8–20 × 106 K. The high temperature of the corona shows that it is heated by something other than direct heat conduction from the photosphere.

It is thought that the energy necessary to heat the corona is provided by turbulent motion in the convection zone below the photosphere, and two main mechanisms have been proposed to explain coronal heating. The first is wave heating, in which sound, gravitational or magnetohydrodynamic waves are produced by turbulence in the convection zone. These waves travel upward and dissipate in the corona, depositing their energy in the ambient gas in the form of heat. The other is magnetic heating, in which magnetic energy is continuously built up by photospheric motion and released through magnetic reconnection in the form of large solar flares and myriad similar but smaller events—nanoflares.

Currently, it is unclear whether waves are an efficient heating mechanism. All waves except Alfvén waves have been found to dissipate or refract before reaching the corona. In addition, Alfvén waves do not easily dissipate in the corona. Current research focus has therefore shifted towards flare heating mechanisms.

Coronal mass ejection

A coronal mass ejection (CME) is an ejected plasma consisting primarily of electrons and protons (in addition to small quantities of heavier elements such as helium, oxygen, and iron), plus the entraining coronal closed magnetic field regions. Evolution of these closed magnetic structures in response to various photospheric motions over different time scales (convection, differential rotation, meridional circulation) somehow leads to the CME. Small-scale energetic signatures such as plasma heating (observed as compact soft X-ray brightening) may be indicative of impending CMEs. 

The soft X-ray sigmoid (an S-shaped intensity of soft X-rays) is an observational manifestation of the connection between coronal structure and CME production. "Relating the sigmoids at X-ray (and other) wavelengths to magnetic structures and current systems in the solar atmosphere is the key to understanding their relationship to CMEs."

The first detection of a Coronal mass ejection (CME) as such was made on December 1, 1971 by R. Tousey of the US Naval Research Laboratory using OSO 7. Earlier observations of coronal transients or even phenomena observed visually during solar eclipses are now understood as essentially the same thing. 

The largest geomagnetic perturbation, resulting presumably from a "prehistoric" CME, coincided with the first-observed solar flare, in 1859. The flare was observed visually by Richard Christopher Carrington and the geomagnetic storm was observed with the recording magnetograph at Kew Gardens. The same instrument recorded a crotchet, an instantaneous perturbation of the Earth's ionosphere by ionizing soft X-rays. This could not easily be understood at the time because it predated the discovery of X-rays (by Roentgen) and the recognition of the ionosphere (by Kennelly and Heaviside).

Exotic X-ray sources

A microquasar is a smaller cousin of a quasar that is a radio emitting X-ray binary, with an often resolvable pair of radio jets. LSI+61°303 is a periodic, radio-emitting binary system that is also the gamma-ray source, CG135+01. Observations are revealing a growing number of recurrent X-ray transients, characterized by short outbursts with very fast rise times (tens of minutes) and typical durations of a few hours that are associated with OB supergiants and hence define a new class of massive X-ray binaries: Supergiant Fast X-ray Transients (SFXTs). Observations made by Chandra indicate the presence of loops and rings in the hot X-ray emitting gas that surrounds Messier 87. A magnetar is a type of neutron star with an extremely powerful magnetic field, the decay of which powers the emission of copious amounts of high-energy electromagnetic radiation, particularly X-rays and gamma rays.

X-ray dark stars

A solar cycle: a montage of ten years' worth of Yohkoh SXT images, demonstrating the variation in solar activity during a sunspot cycle, from after August 30, 1991, at the peak of cycle 22, to September 6, 2001, at the peak of cycle 23. Credit: the Yohkoh mission of Institute of Space and Astronautical Science (ISAS, Japan) and NASA (US).

During the solar cycle, as shown in the sequence of images at right, at times the Sun is almost X-ray dark, almost an X-ray variable. Betelgeuse, on the other hand, appears to be always X-ray dark. Hardly any X-rays are emitted by red giants. There is a rather abrupt onset of X-ray emission around spectral type A7-F0, with a large range of luminosities developing across spectral class F. Altair is spectral type A7V and Vega is A0V. Altair's total X-ray luminosity is at least an order of magnitude larger than the X-ray luminosity for Vega. The outer convection zone of early F stars is expected to be very shallow and absent in A-type dwarfs, yet the acoustic flux from the interior reaches a maximum for late A and early F stars provoking investigations of magnetic activity in A-type stars along three principal lines. Chemically peculiar stars of spectral type Bp or Ap are appreciable magnetic radio sources, most Bp/Ap stars remain undetected, and of those reported early on as producing X-rays only few of them can be identified as probably single stars. X-ray observations offer the possibility to detect (X-ray dark) planets as they eclipse part of the corona of their parent star while in transit. "Such methods are particularly promising for low-mass stars as a Jupiter-like planet could eclipse a rather significant coronal area."

X-ray dark planet/comet

X-ray observations offer the possibility to detect (X-ray dark) planets as they eclipse part of the corona of their parent star while in transit. "Such methods are particularly promising for low-mass stars as a Jupiter-like planet could eclipse a rather significant coronal area."

As X-ray detectors have become more sensitive, they have observed that some planets and other normally X-ray non-luminescent celestial objects under certain conditions emit, fluoresce, or reflect X-rays.

Comet Lulin

Image of Comet Lulin on 28 January 2009, when the comet was 99.5 million miles from Earth and 115.3 million miles from the Sun, from Swift. Data from Swift's Ultraviolet/Optical Telescope is shown in blue and green, and from its X-Ray Telescope in red.
NASA's Swift Gamma-Ray Burst Mission satellite was monitoring Comet Lulin as it closed to 63 Gm of Earth. For the first time, astronomers can see simultaneous UV and X-ray images of a comet. "The solar wind—a fast-moving stream of particles from the sun—interacts with the comet's broader cloud of atoms. This causes the solar wind to light up with X-rays, and that's what Swift's XRT sees", said Stefan Immler, of the Goddard Space Flight Center. This interaction, called charge exchange, results in X-rays from most comets when they pass within about three times Earth's distance from the Sun. Because Lulin is so active, its atomic cloud is especially dense. As a result, the X-ray-emitting region extends far sunward of the comet.

Radiation pressure

From Wikipedia, the free encyclopedia
 
Force on a reflector results from reflecting the photon flux
 
Radiation pressure is the pressure exerted upon any surface due to the exchange of momentum between the object and the electromagnetic field. This includes the momentum of light or electromagnetic radiation of any wavelength which is absorbed, reflected, or otherwise emitted (e.g. black-body radiation) by matter on any scale (from macroscopic objects to dust particles to gas molecules).

The forces generated by radiation pressure are generally too small to be noticed under everyday circumstances; however, they are important in some physical processes. This particularly includes objects in outer space where it is usually the main force acting on objects besides gravity, and where the net effect of a tiny force may have a large cumulative effect over long periods of time. For example, had the effects of the sun's radiation pressure on the spacecraft of the Viking program been ignored, the spacecraft would have missed Mars orbit by about 15,000 km (9,300 mi). Radiation pressure from starlight is crucial in a number of astrophysical processes as well. The significance of radiation pressure increases rapidly at extremely high temperatures, and can sometimes dwarf the usual gas pressure, for instance in stellar interiors and thermonuclear weapons

The radiation pressure of sunlight on earth is equivalent to that exerted by about a thousandth of a gram on an area of 1 square metre (measured in units of force: approx. 10 μN/m2).

Radiation pressure can equally well be accounted for by considering the momentum of a classical electromagnetic field or in terms of the momenta of photons, particles of light. The interaction of electromagnetic waves or photons with matter may involve an exchange of momentum. Due to the law of conservation of momentum, any change in the total momentum of the waves or photons must involve an equal and opposite change in the momentum of the matter it interacted with (Newton's third law of motion), as is illustrated in the accompanying figure for the case of light being perfectly reflected by a surface. This transfer of momentum is the general explanation for what we term radiation pressure.

Discovery

Johannes Kepler put forward the concept of radiation pressure back in 1619 to explain the observation that a tail of a comet always points away from the Sun.

The assertion that light, as electromagnetic radiation, has the property of momentum and thus exerts a pressure upon any surface it is exposed to was published by James Clerk Maxwell in 1862, and proven experimentally by Russian physicist Pyotr Lebedev in 1900 and by Ernest Fox Nichols and Gordon Ferrie Hull in 1901. The pressure is very feeble, but can be detected by allowing the radiation to fall upon a delicately poised vane of reflective metal in a Nichols radiometer (this should not be confused with the Crookes radiometer, whose characteristic motion is not caused by radiation pressure but by impacting gas molecules).

Theory

Radiation pressure can be viewed as a consequence of the conservation of momentum given the momentum attributed to electromagnetic radiation. That momentum can be equally well calculated on the basis of electromagnetic theory or from the combined momenta of a stream of photons, giving identical results as is shown below.

Radiation pressure from momentum of an electromagnetic wave

According to Maxwell's theory of electromagnetism, an electromagnetic wave carries momentum, which will be transferred to an opaque surface it strikes. 

The energy flux (irradiance) of a plane wave is calculated using the Poynting vector , whose magnitude we denote by S. S divided by the speed of light is the density of the linear momentum per unit area (pressure) of the electromagnetic field. So, dimensionally, the Poynting vector is S=(power/area)=(rate of doing work/area)=(ΔF/Δt)Δx/area, which is the speed of light, c=Δx/Δt, times pressure, ΔF/area. That pressure is experienced as radiation pressure on the surface:
where is pressure (usually in Pascals), is the incident irradiance (usually in W/m2) and is the speed of light in vacuum. 

If the surface is planar at an angle α to the incident wave, the intensity across the surface will be geometrically reduced by the cosine of that angle and the component of the radiation force against the surface will also be reduced by the cosine of α, resulting in a pressure:
The momentum from the incident wave is in the same direction of that wave. But only the component of that momentum normal to the surface contributes to the pressure on the surface, as given above. The component of that force tangent to the surface is not called pressure.

Radiation pressure from reflection

The above treatment for an incident wave accounts for the radiation pressure experienced by a black (totally absorbing) body. If the wave is specularly reflected, then the recoil due to the reflected wave will further contribute to the radiation pressure. In the case of a perfect reflector, this pressure will be identical to the pressure caused by the incident wave:
thus doubling the net radiation pressure on the surface:
For a partially reflective surface, the second term must be multiplied by the reflectivity (also known as reflection coefficient of intensity), so that the increase is less than double. For a diffusely reflective surface, the details of the reflection and geometry must be taken into account, again resulting in an increased net radiation pressure of less than double.

Radiation pressure by emission

Just as a wave reflected from a body contributes to the net radiation pressure experienced, a body that emits radiation of its own (rather than reflected) obtains a radiation pressure again given by the irradiance of that emission in the direction normal to the surface Ie:
The emission can be from black-body radiation or any other radiative mechanism. Since all materials emit black-body radiation (unless they are totally reflective or at absolute zero), this source for radiation pressure is ubiquitous but usually very tiny. However, because black-body radiation increases rapidly with temperature (according to the fourth power of temperature as given by the Stefan–Boltzmann law), radiation pressure due to the temperature of a very hot object (or due to incoming black-body radiation from similarly hot surroundings) can become very significant. This becomes important in stellar interiors which are at millions of degrees.

Radiation pressure in terms of photons

Electromagnetic radiation can be viewed in terms of particles rather than waves; these particles are known as photons. Photons do not have a rest-mass; however, photons are never at rest (they move at the speed of light) and acquire a momentum nonetheless which is given by:
where p is momentum, h is Planck's constant, λ is wavelength, and c is speed of light in vacuum. And Ep is the energy of a single photon given by:
The radiation pressure again can be seen as the transfer of each photon's momentum to the opaque surface, plus the momentum due to a (possible) recoil photon for a (partially) reflecting surface. Since an incident wave of irradiance If over an area A has a power of IfA, this implies a flux of If/Ep photons per second per unit area striking the surface. Combining this with the above expression for the momentum of a single photon, results in the same relationships between irradiance and radiation pressure described above using classical electromagnetics. And again, reflected or otherwise emitted photons will contribute to the net radiation pressure identically.

Compression in a uniform radiation field

In general, the pressure of electromagnetic waves can be obtained from the vanishing of the trace of the electromagnetic stress tensor: Since this trace equals 3Pu, we get
where u is the radiation density per unit volume. 

This can also be shown in the specific case of the pressure exerted on surfaces of a body in thermal equilibrium with its surroundings, at a temperature T: The body will be surrounded by a uniform radiation field described by the Planck black-body radiation law, and will experience a compressive pressure due to that impinging radiation, its reflection, and its own black body emission. From that it can be shown that the resulting pressure is equal to one third of the total radiant energy per unit volume in the surrounding space.

By using Stefan–Boltzmann law, this can be expressed as
where is the Stefan–Boltzmann constant.

Solar radiation pressure

Solar radiation pressure is due to the sun's radiation at closer distances, thus especially within the Solar System. While it acts on all objects, its net effect is generally greater on smaller bodies since they have a larger ratio of surface area to mass. All spacecraft experience such a pressure except when they are behind the shadow of a larger orbiting body

Solar radiation pressure on objects near the earth may be calculated using the sun's irradiance at 1 AU, known as the solar constant or GSC, whose value is set at 1361 W/m2 as of 2011.

All stars have a spectral energy distribution that depends on their surface temperature. The distribution is approximately that of black-body radiation. This distribution must be taken into account when calculating the radiation pressure or identifying reflector materials for optimizing a solar sail for instance.

Pressures of absorption and reflection

Solar radiation pressure at the earth's distance from the sun, may be calculated by dividing the solar constant GSC (above) by the speed of light c. For an absorbing sheet facing the sun, this is simply:
This result is in the S.I. unit Pascals, equivalent to N/m2 (newtons per square meter). For a sheet at an angle α to the sun, the effective area A of a sheet is reduced by a geometrical factor resulting in a force in the direction of the sunlight of:
To find the component of this force normal to the surface, another cosine factor must be applied resulting in a pressure P on the surface of:
Note, however, that in order to account for the net effect of solar radiation on a spacecraft for instance, one would need to consider the total force (in the direction away from the sun) given by the preceding equation, rather than just the component normal to the surface that we identify as "pressure". 

The solar constant is defined for the sun's radiation at the distance to the earth, also known as one astronomical unit (AU). Consequently, at a distance of R astronomical units (R thus being dimensionless), applying the inverse-square law, we would find:
Finally, considering not an absorbing but a perfectly reflecting surface, the pressure is doubled due to the reflected wave, resulting in:
Note that unlike the case of an absorbing material, the resulting force on a reflecting body is given exactly by this pressure acting normal to the surface, with the tangential forces from the incident and reflecting waves canceling each other. In practice, materials are neither totally reflecting nor totally absorbing, so the resulting force will be a weighted average of the forces calculated using these formulae. 

Solar radiation pressure on perfect reflector at normal incidence (α=0)
Distance from sun Radiation pressure in μPa (μN/m2)
0.20 AU 227
0.39 AU (Mercury) 60.6
0.72 AU (Venus) 17.4
1.00 AU (Earth) 9.08
1.52 AU (Mars) 3.91
3.00 AU (Typical asteroid) 1.01
5.20 AU (Jupiter) 0.34

Radiation pressure perturbations

Solar radiation pressure is a source of orbital perturbations. It significantly affects the orbits and trajectories of small bodies including all spacecraft. 

Solar radiation pressure affects bodies throughout much of the Solar System. Small bodies are more affected than large ones because of their lower mass relative to their surface area. Spacecraft are affected along with natural bodies (comets, asteroids, dust grains, gas molecules).

The radiation pressure results in forces and torques on the bodies that can change their translational and rotational motions. Translational changes affect the orbits of the bodies. Rotational rates may increase or decrease. Loosely aggregated bodies may break apart under high rotation rates. Dust grains can either leave the Solar System or spiral into the Sun.

A whole body is typically composed of numerous surfaces that have different orientations on the body. The facets may be flat or curved. They will have different areas. They may have optical properties differing from other aspects.

At any particular time, some facets will be exposed to the Sun and some will be in shadow. Each surface exposed to the Sun will be reflecting, absorbing, and emitting radiation. Facets in shadow will be emitting radiation. The summation of pressures across all of the facets will define the net force and torque on the body. These can be calculated using the equations in the preceding sections.

The Yarkovsky effect affects the translation of a small body. It results from a face leaving solar exposure being at a higher temperature than a face approaching solar exposure. The radiation emitted from the warmer face will be more intense than that of the opposite face, resulting in a net force on the body that will affect its motion.

The YORP effect is a collection of effects expanding upon the earlier concept of the Yarkovsky effect, but of a similar nature. It affects the spin properties of bodies.

The Poynting–Robertson effect applies to grain-size particles. From the perspective of a grain of dust circling the Sun, the Sun's radiation appears to be coming from a slightly forward direction (aberration of light). Therefore, the absorption of this radiation leads to a force with a component against the direction of movement. (The angle of aberration is tiny since the radiation is moving at the speed of light while the dust grain is moving many orders of magnitude slower than that.) The result is a gradual spiral of dust grains into the Sun. Over long periods of time, this effect cleans out much of the dust in the Solar System. 

While rather small in comparison to other forces, the radiation pressure force is inexorable. Over long periods of time, the net effect of the force is substantial. Such feeble pressures can produce marked effects upon minute particles like gas ions and electrons, and are essential in the theory of electron emission from the Sun, of cometary material, and so on.

Because the ratio of surface area to volume (and thus mass) increases with decreasing particle size, dusty (micrometre-size) particles are susceptible to radiation pressure even in the outer solar system. For example, the evolution of the outer rings of Saturn is significantly influenced by radiation pressure.

As a consequence of light pressure, Einstein in 1909 predicted the existence of "radiation friction" which would oppose the movement of matter. He wrote, "radiation will exert pressure on both sides of the plate. The forces of pressure exerted on the two sides are equal if the plate is at rest. However, if it is in motion, more radiation will be reflected on the surface that is ahead during the motion (front surface) than on the back surface. The backward acting force of pressure exerted on the front surface is thus larger than the force of pressure acting on the back. Hence, as the resultant of the two forces, there remains a force that counteracts the motion of the plate and that increases with the velocity of the plate. We will call this resultant 'radiation friction' in brief."

Solar sails

Solar sailing, an experimental method of spacecraft propulsion, uses radiation pressure from the Sun as a motive force. The idea of interplanetary travel by light was mentioned by Jules Verne in From the Earth to the Moon

A sail reflects about 90% of the incident radiation. The 10% that is absorbed is radiated away from both surfaces, with the proportion emitted from the unlit surface depending on the thermal conductivity of the sail. A sail has curvature, surface irregularities, and other minor factors that affect its performance. 

The Japan Aerospace Exploration Agency (JAXA) has successfully unfurled a solar sail in space which has already succeeded in propelling its payload with the IKAROS project.

Cosmic effects of radiation pressure

Radiation pressure has had a major effect on the development of the cosmos, from the birth of the universe to ongoing formation of stars and shaping of clouds of dust and gasses on a wide range of scales.

The early universe

The photon epoch is a phase when the energy of the universe was dominated by photons, between 10 seconds and 380,000 years after the Big Bang.

Galaxy formation and evolution

The process of galaxy formation and evolution began early in the history of the cosmos. Observations of the early universe strongly suggest that objects grew from bottom-up (i.e., smaller objects merging to form larger ones). As stars are thereby formed and become sources of electromagnetic radiation, radiation pressure from the stars becomes a factor in the dynamics of remaining circumstellar material.

Clouds of dust and gases

The Pillars of Creation clouds within the Eagle Nebula shaped by radiation pressure and stellar winds.
 
The gravitational compression of clouds of dust and gases is strongly influenced by radiation pressure, especially when the condensations lead to star births. The larger young stars forming within the compressed clouds emit intense levels of radiation that shift the clouds, causing either dispersion or condensations in nearby regions, which influences birth rates in those nearby regions.

Clusters of stars

Stars predominantly form in regions of large clouds of dust and gases, giving rise to star clusters. Radiation pressure from the member stars eventually disperses the clouds, which can have a profound effect on the evolution of the cluster. 

Many open clusters are inherently unstable, with a small enough mass that the escape velocity of the system is lower than the average velocity of the constituent stars. These clusters will rapidly disperse within a few million years. In many cases, the stripping away of the gas from which the cluster formed by the radiation pressure of the hot young stars reduces the cluster mass enough to allow rapid dispersal.

Star formation

Star formation is the process by which dense regions within molecular clouds in interstellar space collapse to form stars. As a branch of astronomy, star formation includes the study of the interstellar medium and giant molecular clouds (GMC) as precursors to the star formation process, and the study of protostars and young stellar objects as its immediate products. Star formation theory, as well as accounting for the formation of a single star, must also account for the statistics of binary stars and the initial mass function.

Stellar planetary systems

A protoplanetary disk with a cleared central region (artist's conception).
 
Planetary systems are generally believed to form as part of the same process that results in star formation. A protoplanetary disk forms by gravitational collapse of a molecular cloud, called a solar nebula, and then evolves into a planetary system by collisions and gravitational capture. Radiation pressure can clear a region in the immediate vicinity of the star. As the formation process continues, radiation pressure continues to play a role in affecting the distribution of matter. In particular, dust and grains can spiral into the star or escape the stellar system under the action of radiation pressure.

Stellar interiors

In stellar interiors the temperatures are very high. Stellar models predict a temperature of 15 MK in the center of the Sun, and at the cores of supergiant stars the temperature may exceed 1 GK. As the radiation pressure scales as the fourth power of the temperature, it becomes important at these high temperatures. In the Sun, radiation pressure is still quite small when compared to the gas pressure. In the heaviest non-degenerate stars, radiation pressure is the dominant pressure component.

Comets

Comet Hale–Bopp (C/1995 O1). Radiation pressure and solar wind effects on the dust and gas tails are clearly seen.
 
Solar radiation pressure strongly affects comet tails. Solar heating causes gases to be released from the comet nucleus, which also carry away dust grains. Radiation pressure and solar wind then drive the dust and gases away from the Sun's direction. The gases form a generally straight tail, while slower moving dust particles create a broader, curving tail.

Laser applications of radiation pressure

Optical tweezers

Lasers can be used as a source of monochromatic light with wavelength . With a set of lenses, one can focus the laser beam to a point that is in diameter (or ). 

The radiation pressure of a 30 mW laser of 1064 nm can therefore be computed as follows:


This is used in optical tweezers.

Other examples

Laser cooling is applied to cooling materials very close to absolute zero. Atoms traveling towards a laser light source perceive a doppler effect tuned to the absorption frequency of the target element. The radiation pressure on the atom slows movement in a particular direction until the Doppler effect moves out of the frequency range of the element, causing an overall cooling effect. 

Large lasers operating in space have been suggested as a means of propelling sail craft in beam-powered propulsion

The reflection of a laser pulse from the surface of an elastic solid gives rise to various types of elastic waves that propagate inside the solid. The weakest waves are generally those that are generated by the radiation pressure acting during the reflection of the light. Recently, such light-pressure-induced elastic waves were observed inside an ultrahigh-reflectivity dielectric mirror. These waves are the most basic fingerprint of a light-solid matter interaction on the macroscopic scale.

Introduction to entropy

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Introduct...