Search This Blog

Tuesday, February 22, 2022

Pellet fuel

From Wikipedia, the free encyclopedia
 
Wood pellets

Pellet fuels (or pellets) are biofuels made from compressed organic matter or biomass. Pellets can be made from any one of five general categories of biomass: industrial waste and co-products, food waste, agricultural residues, energy crops, and untreated lumber. Wood pellets are the most common type of pellet fuel and are generally made from compacted sawdust and related industrial wastes from the milling of lumber, manufacture of wood products and furniture, and construction. Other industrial waste sources include empty fruit bunches, palm kernel shells, coconut shells, and tree tops and branches discarded during logging operations. So-called "black pellets" are made of biomass, refined to resemble hard coal and were developed to be used in existing coal-fired power plants. Pellets are categorized by their heating value, moisture and ash content, and dimensions. They can be used as fuels for power generation, commercial or residential heating, and cooking. Pellets are extremely dense and can be produced with a low moisture content (below 10%) that allows them to be burned with a very high combustion efficiency.

Further, their regular geometry and small size allow automatic feeding with very fine calibration. They can be fed to a burner by auger feeding or by pneumatic conveying. Their high density also permits compact storage and transport over long distance. They can be conveniently blown from a tanker to a storage bunker or silo on a customer's premises.

A broad range of pellet stoves, central heating furnaces, and other heating appliances have been developed and marketed since the mid-1980s. In 1997 fully automatic wood pellet boilers with similar comfort level as oil and gas boilers became available in Austria. With the surge in the price of fossil fuels since 2005, the demand for pellet heating has increased in Europe and North America, and a sizable industry is emerging. According to the International Energy Agency Task 40, wood pellet production has more than doubled between 2006 and 2010 to over 14 million tons. In a 2012 report, the Biomass Energy Resource Center says that it expects wood pellet production in North America to double again in the next five years.

Production

Pellet truck being filled at a plant in Germany.

Pellets are produced by compressing the wood material which has first passed through a hammer mill to provide a uniform dough-like mass. This mass is fed to a press, where it is squeezed through a die having holes of the size required (normally 6 mm diameter, sometimes 8 mm or larger). The high pressure of the press causes the temperature of the wood to increase greatly, and the lignin plasticizes slightly, forming a natural "glue" that holds the pellet together as it cools.

Pellets can be made from grass and other non-woody forms of biomass that do not contain lignin. A 2005 news story from Cornell University News suggested that grass pellet production was more advanced in Europe than North America. It suggested the benefits of grass as a feedstock included its short growing time (70 days), and ease of cultivation and processing. The story quoted Jerry Cherney, an agriculture professor at the school, stating that grasses produce 96% of the heat of wood and that "any mixture of grasses can be used, cut in mid- to late summer, left in the field to leach out minerals, then baled and pelleted. Drying of the hay is not required for pelleting, making the cost of processing less than with wood pelleting." In 2012, the Department of Agriculture of Nova Scotia announced as a demonstration project conversion of an oil-fired boiler to grass pellets at a research facility.

Rice-husk fuel-pellets are made by compacting rice-husk obtained as by-product of rice-growing from the fields. It also has similar characteristics to the wood-pellets and more environment-friendly, as the raw material is a waste-product. The energy content is about 4-4.2 kcal/kg and moisture content is typically less than 10%. The size of pellets is generally kept to be about 6 mm diameter and 25 mm length in the form of a cylinder; though larger cylinder or briquette forms are not uncommon. It is much cheaper than similar energy-pellets and can be compacted/manufactured from the husk at the farm itself, using cheap machinery. They generally are more environment-friendly as compared to wood-pellets. In the regions of the world where wheat is the predominant food-crop, wheat husk can also be compacted to produce energy-pellets, with characteristics similar to rice-husk pellets.

A report by CORRIM (Consortium On Research on Renewable Industrial Material) for the Life-Cycle Inventory of Wood Pellet Manufacturing and Utilization estimates the energy required to dry, pelletize and transport pellets is less than 11% of the energy content of the pellets if using pre-dried industrial wood waste. If the pellets are made directly from forest material, it takes up to 18% of the energy to dry the wood and additional 8% for transportation and manufacturing energy. An environmental impact assessment of exported wood pellets by the Department of Chemical and Mineral Engineering, University of Bologna, Italy and the Clean Energy Research Centre, at the University of British Columbia, published in 2009, concluded that the energy consumed to ship Canadian wood pellets from Vancouver to Stockholm (15,500 km via the Panama Canal), is about 14% of the total energy content of the wood pellets.

Pellet standards

Pellets conforming to the norms commonly used in Europe (DIN 51731 or Ö-Norm M-7135) have less than 10% water content, are uniform in density (higher than 1 ton per cubic meter, thus it sinks in water)(bulk density about 0.6-0.7 ton per cubic meter), have good structural strength, and low dust and ash content. Because the wood fibres are broken down by the hammer mill, there is virtually no difference in the finished pellets between different wood types. Pellets can be made from nearly any wood variety, provided the pellet press is equipped with good instrumentation, the differences in feed material can be compensated for in the press regulation. In Europe, the main production areas are located in south Scandinavia, Finland, Central Europe, Austria, and the Baltic countries.

Pellets conforming to the European standards norms which contain recycled wood or outside contaminants are considered Class B pellets. Recycled materials such as particle board, treated or painted wood, melamine resin-coated panels and the like are particularly unsuitable for use in pellets, since they may produce noxious emissions and uncontrolled variations in the burning characteristics of the pellets.

Standards used in the United States are different, developed by the Pellet Fuels Institute and, as in Europe, are not mandatory. Still, many manufacturers comply, as warranties of US-manufactured or imported combustion equipment may not cover damage by pellets non-conformant with regulations. Prices for US pellets surged during the fossil fuel price inflation of 2007–2008, but later dropped markedly and are generally lower on a price per energy amount basis than most fossil fuels, excluding coal.

Regulatory agencies in Europe and North America are in the process of tightening the emissions standards for all forms of wood heat, including wood pellets and pellet stoves. These standards will become mandatory, with independently certified testing to ensure compliance. In the United States, the new rules initiated in 2009 have completed the EPA regulatory review process, with final new rules issued for comment on June 24, 2014. The American Lumber Standard Committee will be the independent certification agency for the new pellet standards.

Hazards

Wood pellets can emit large quantities of poisonous carbon monoxide during storage. Fatal accidents have taken place in private storerooms and onboard marine vessels.

When handled, wood pellets give off fine dust which can cause serious dust explosions.

Wood pellets are typically stored in bulk in large silos. Pellets may self-heat, ignite and give rise to a deep-seated smoldering fire that is very difficult to extinguish. The smoldering fire produces toxic carbon monoxide and flammable pyrolysis gases that can lead to silo explosions.

Pellet stove operation

There are three general types of pellet heating appliances: free standing pellet stoves, pellet stove inserts and pellet boilers.

Pellet stoves work like modern furnaces, where fuel, wood, or other biomass pellets, is stored in a storage bin called a hopper. The hopper can be located on the top of the appliance, the side of it or remotely. A mechanical auger automatically feeds pellets into a burn pot. From there, they burn at high temperatures with minimal emissions. Heat-exchange tubes send air heated by fire into room. Convection fans circulate air through heat-exchange tubes and into room. Pellet stoves have circuit boards inside that act like a thermostat and to regulate temperature.

A pellet stove insert is a stove that is inserted into an existing masonry or prefabricated wood fireplace, similar to a fireplace insert.

Pellet boilers are standalone central heating and hot water systems designed to replace traditional fossil fuel systems in residential, commercial and institutional applications. Automatic or auto-pellet boilers include silos for bulk storage of pellets, a fuel delivery system that moves the fuel from the silo to the hopper, a logic controller to regulate temperature across multiple heating zones and an automated ash removal system for long-term automated operations.

Pellet baskets allow a person to heat their home using pellets in existing stoves or fireplaces.

Energy output and efficiency

Wood-pellet heater

The energy content of wood pellets is approximately 4.7 – 5.2 MWh/tonne (~7450 BTU/lb), 14.4-20.3 MJ/kg.

High-efficiency wood pellet stoves and boilers have been developed in recent years, typically offering combustion efficiencies of over 85%. The newest generation of wood pellet boilers can work in condensing mode and therefore achieve 12% higher efficiency values. Wood pellet boilers have limited control over the rate and presence of combustion compared to liquid or gaseous-fired systems; however, for this reason they are better suited for hydronic heating systems due to the hydronic system's greater ability to store heat. Pellet burners capable of being retrofitted to oil-burning boilers are also available.

Air pollution emissions

Emissions such as NOx, SOx and volatile organic compounds from pellet burning equipment are in general very low in comparison to other forms of combustion heating. A recognized problem is the emission of fine particulate matter to the air, especially in urban areas that have a high concentration of pellet heating systems or coal or oil heating systems in close proximity. This PM2.5 emissions of older pellet stoves and boilers can be problematic in close quarters, especially in comparison to natural gas (or renewable biogas), though on large installations electrostatic precipitators, cyclonic separators, or baghouse particle filters can control particulates when properly maintained and operated.

Global warming

There is uncertainty to what degree making heat or electricity by burning wood pellets contributes to global climate change, as well as how the impact on climate compares to the impact of using competing sources of heat. Factors in the uncertainty include the wood source, carbon dioxide emissions from production and transport as well as from final combustion, and what time scale is appropriate for the consideration.

A report by the Manomet Center for Conservation Sciences, "Biomass Sustainability and Carbon Policy Study" issued in June 2010 for the Massachusetts Department of Energy Resources, concludes that burning biomass such as wood pellets or wood chips releases a large amount of CO2 into the air, creating a "carbon debt" that is not retired for 20–25 years and after which there is a net benefit. In June 2011 the department was preparing to file its final regulation, expecting to significantly tighten controls on the use of biomass for energy, including wood pellets. Biomass energy proponents have disputed the Manomet report's conclusions, and scientists have pointed out oversights in the report, suggesting that climate impacts are worse than reported.

Until ca. 2008 it was commonly assumed, even in scientific papers, that biomass energy (including from wood pellets) is carbon neutral, largely because regrowth of vegetation was believed to recapture and store the carbon that is emitted to the air. Then, scientific papers studying the climate implications of biomass began to appear which refuted the simplistic assumption of its carbon neutrality. According to the Biomass Energy Resource Center, the assumption of carbon neutrality "has shifted to a recognition that the carbon implications of biomass depend on how the fuel is harvested, from what forest types, what kinds of forest management are applied, and how biomass is used over time and across the landscape."

In 2011 twelve prominent U.S. environmental organization, including as Greenpeace USA and the Southern Environmental Law Center, adopted policy setting a high bar for government incentives of biomass energy, including wood pellets. It states in part that, "[b]iomass sources and facilities qualifying for (government) incentives must result in lower life-cycle, cumulative and net GHG and ocean acidifying emissions, within 20 years and also over the longer term, than the energy sources they replace or compete with."

On 11 February 2021 five hundred scientists and economists wrote a letter regarding the use of forests for bioenergy to world leaders. It warns that "The burning of wood will increase warming for decades to centuries. That is true even when the wood replaces coal, oil or natural gas". The letter calls for an end to subsidies for the burning of wood and an end to the treatment of the burning of biomass as carbon neutral in renewable energy standards and emissions trading systems.

Sustainability

The wood products industry is concerned that if large-scale use of wood energy is instituted, the supply of raw materials for construction and manufacturing (lumber) will be significantly curtailed.

Cost

Due to the rapid increase in popularity since 2005, pellet availability and cost may be an issue. This is an important consideration when buying a pellet stove, furnace, pellet baskets or other devices known in the industry as Bradley Burners. However, current pellet production is increasing and there are plans to bring several new pellet mills online in the US in 2008–2009.

The cost of the pellets can be affected by the building cycle leading to fluctuations in the supply of sawdust and offcuts.

Per the New Hampshire Office of Energy and Planning release on Fuel Prices updated on 5 Oct 2015, the cost of #2 fuel oil delivered can be compared to the cost of Bulk Delivered Wood Fuel Pellets using their BTU equivalent: 1 ton pellets = 118.97 gallon of #2 Fuel Oil. This assumes that one ton of pellets produces 16,500,000 BTU and one gallon of #2 Fuel Oil produces 138,690 BTU. Thus if #2 Fuel Oil delivered costs $1.90/Gal, the breakeven price for pellets is $238.00/Ton delivered.

Usage by region

Europe

Pellets on the store shelf in Germany
EU pellet use (ton)
Country 2013
UK 4 540 000
Italy 3 300 000
Denmark 2 500 000
Netherlands 2 000 000
Sweden 1 650 000
Germany 1 600 000
Belgium 1 320 000

Usage across Europe varies due to government regulations. In the Netherlands, Belgium, and the UK, pellets are used mainly in large-scale power plants. The UK's largest power plant, the Drax power station, converted some of its units to pellet burners starting in 2012; by 2015 Drax had made the UK the largest recipient of exports of wood pellets from the US. In Denmark and Sweden, pellets are used in large-scale power plants, medium-scale district heating systems, and small-scale residential heat. In Germany, Austria, Italy, and France, pellets are used mostly for small-scale residential and industrial heat.

The UK has initiated a grant scheme called the Renewable Heat Incentive (RHI) allowing non-domestic and domestic wood pellet boiler installations to receive payments over a period of between 7 and 20 years. It is the first such scheme in the world and aims to increase the amount of renewable energy generated in the UK, in line with EU commitments. Scotland and Northern Ireland have separate but similar schemes. From Spring 2015, any biomass owners—whether domestic or commercial—must buy their fuels from BSL (Biomass Suppliers List) approved suppliers in order to receive RHI payments. The Renewable Heat Incentive scandal also referred to as the "cash for ash scandal", was a political scandal in Northern Ireland that centred on a failed renewable energy (wood pellet burning) incentive scheme.

Pellets are widely used in Sweden, the main pellet producer in Europe, mainly as an alternative to oil-fired central heating. In Austria, the leading market for pellet central heating furnaces (relative to its population), it is estimated that 2/3 of all new domestic heating furnaces are pellet burners. In Italy, a large market for automatically fed pellet stoves has developed. Italy's main usage for pellets is small-scale private residential and industrial boilers for heating.

In 2014 in Germany, the overall wood pellet consumption per year comprised 2,2 million tones. These pellets are consumed predominantly by residential small-scale heating sector. The co-firing plants which use pellet sector for energy production are not widespread in the country. The largest amount of wood pellets is certified with DINplus, and these are the pellets of the highest quality. As a rule, the pellets of lower quality are exported.

India

In 2019, India started co-firing biomass pellets in coal fired power stations around its capital city Delhi to reduce the air pollution caused by the stubble/biomass burning in open fields to clear the fields for sowing next crop. Plans are made to use biomass pellets for power generation throughout the country to utilize nearly 145 million tonnes of agricultural residue to replace equal quantity of imported coal in power generation.

New Zealand

The total sales of wood pellets in New Zealand was 3–500,000 tonnes in 2013. Recent construction of new wood pellet plants has given a huge increase in production capacity. Nature's Flame wood pellet processing plant, in Taupo, is due in late 2019 to double its annual production capacity to 85,000 tonnes. Azwood Energy operates a wood pellet processing plant in Nelson, utilising more than 1.2 million cubic metres of forestry residue each year to provide carbon neutral fuel for domestic use, hospitals, schools and industrial processes, including milk-processing.

United States

Some companies import European-made boilers. As of 2009, about 800,000 Americans were using wood pellets for heat. It was estimated that 2.33 million tons of wood pellets would be used for heat in the US in 2013. The US wood pellet export to Europe grew from 1.24 million ton in 2006 to 7 million ton in 2012, but forests grew even more.

Other uses

Horse bedding

When small amounts of water are added to wood pellets, they expand and revert to sawdust. This makes them suitable to use as a horse bedding. The ease of storage and transportation are additional benefits over traditional bedding. However, some species of wood, including walnut, can be toxic to horses and should never be used for bedding.

In Thailand, rice husk pellets are being produced for animal bedding. They have a high absorption rate which makes them ideal for the purpose.

Cattle fodder

The biomass pellets made from edible matter can also be used as cattle fodder by importing from far away fodder surplus places to overcome the fodder shortage.

Absorbents

Wood pellets are also used to absorb contaminated water when drilling oil or gas wells.

Cooking

Wood pellet grills have gained popularity as a versatile way to grill, bake, and smoke. The size of the pellets makes it useful for creating a wood fired grill that still controls its temperature precisely.

 

Monday, February 21, 2022

Computer-supported collaborative learning

From Wikipedia, the free encyclopedia

Computer-supported collaborative learning (CSCL) is a pedagogical approach wherein learning takes place via social interaction using a computer or through the Internet. This kind of learning is characterized by the sharing and construction of knowledge among participants using technology as their primary means of communication or as a common resource. CSCL can be implemented in online and classroom learning environments and can take place synchronously or asynchronously.

The study of computer-supported collaborative learning draws on a number of academic disciplines, including instructional technology, educational psychology, sociology, cognitive psychology, and social psychology. It is related to collaborative learning and computer supported cooperative work (CSCW).

History

Interactive computing technology was primarily conceived by academics, but the use of technology in education has historically been defined by contemporary research trends. The earliest instances of software in instruction drilled students using the behaviorist method that was popular throughout the mid-twentieth century. In the 1970s as cognitivism gained traction with educators, designers began to envision learning technology that employed artificial intelligence models that could adapt to individual learners. Computer-supported collaborative learning emerged as a strategy rich with research implications for the growing philosophies of constructivism and social cognitivism.

Though studies in collaborative learning and technology took place throughout the 1980s and 90s, the earliest public workshop directly addressing CSCL was "Joint Problem Solving and Microcomputers" which took place in San Diego in 1983. Six years later in 1989, the term "computer-supported collaborative learning" was used in a NATO-sponsored workshop in Maratea, Italy. A biannual CSCL conference series began in 1995. At the 2002 and 2003 CSCL conferences, the International Society of the Learning Sciences (ISLS) was established to run the CSCL and ICLS conference series and the International Journal of Computer-Supported Collaborative Learning (ijCSCL) and JLS journals.

The ijCSCL was established by the CSCL research community and ISLS. It began quarterly publication by Springer in 2006. It is peer reviewed and published both online and in print. Since 2009, it has been rated by ISI as being in the top 10% of educational research journals based on its impact factor.

The rapid development of social media technologies and the increasing need of individuals to understand and use those technologies has brought researchers from many disciplines to the field of CSCL. CSCL is used today in traditional and online schools and knowledge-building communities such as Wikipedia.

Theories

The field of CSCL draws heavily from a number of learning theories that emphasize that knowledge is the result of learners interacting with each other, sharing knowledge, and building knowledge as a group. Since the field focuses on collaborative activity and collaborative learning, it inherently takes much from constructivist and social cognitivist learning theories.

Precursor theories

The roots of collaborative epistemology as related to CSCL can be found in Vygotsky's social learning theory. Of particular importance to CSCL is the theory's notion of internalization, or the idea that knowledge is developed by one's interaction with one's surrounding culture and society. The second key element is what Vygotsky called the Zone of proximal development. This refers to a range of tasks that can be too difficult for a learner to master by themselves but is made possible with the assistance of a more skilled individual or teacher. These ideas feed into a notion central to CSCL: knowledge building is achieved through interaction with others.

Cooperative learning, though different in some ways from collaborative learning, also contributes to the success of teams in CSCL environments. The distinction can be stated as: cooperative learning focuses on the effects of group interaction on individual learning whereas collaborative learning is more concerned with the cognitive processes at the group unit of analysis such as shared meaning making and the joint problem space. The five elements for effective cooperative groups identified by the work of Johnson and Johnson are positive interdependence, individual accountability, promotive interaction, social skills, and group processing. Because of the inherent relationship between cooperation and collaboration, understanding what encourages successful cooperation is essential to CSCL research.

In the late 1980s and early 1990s, Marlene Scardamalia and Carl Bereiter wrote seminal articles leading to the development of key CSCL concepts: knowledge-building communities and knowledge-building discourse, intentional learning, and expert processes. Their work led to an early collaboration-enabling technology known as the Computer Supported Intentional Learning Environment (CSILE). Characteristically for CSCL, their theories were integrated with the design, deployment, and study of the CSCL technology. CSILE later became Knowledge Forum, which is the most widely used CSCL technology worldwide to date.

Other learning theories that provide a foundation for CSCL include distributed cognition, problem-based learning, group cognition, cognitive apprenticeship, and situated learning. Each of these learning theories focuses on the social aspect of learning and knowledge building, and recognizes that learning and knowledge building involve inter-personal activities including conversation, argument, and negotiation.

Collaboration theory and group cognition

Only in the last 15 to 20 years have researchers begun to explore the extent to which computer technology could enhance the collaborative learning process. While researchers, in general, have relied on learning theories developed without consideration of computer-support, some have suggested that the field needs to have a theory tailored and refined for the unique challenges that confront those trying to understand the complex interplay of technology and collaborative learning.

Collaboration theory, suggested as a system of analysis for CSCL by Gerry Stahl in 2002-2006, postulates that knowledge is constructed in social interactions such as discourse. The theory suggests that learning is not a matter of accepting fixed facts, but is the dynamic, on-going, and evolving result of complex interactions primarily taking place within communities of people. It also emphasizes that collaborative learning is a process of constructing meaning and that meaning creation most often takes place and can be observed at the group unit of analysis. The goal of collaboration theory is to develop an understanding of how meaning is collaboratively constructed, preserved, and re-learned through the media of language and artifacts in group interaction. There are four crucial themes in collaboration theory: collaborative knowledge building (which is seen as a more concrete term than "learning"); group and personal perspectives intertwining to create group understanding; mediation by artifacts (or the use of resources which learners can share or imprint meaning on); and interaction analysis using captured examples that can be analyzed as proof that the knowledge building occurred.

Collaboration theory proposes that technology in support of CSCL should provide new types of media that foster the building of collaborative knowing; facilitate the comparison of knowledge built by different types and sizes of groups; and help collaborative groups with the act of negotiating the knowledge they are building. Further, these technologies and designs should strive to remove the teacher as the bottleneck in the communication process to the facilitator of student collaboration. In other words, the teacher should not have to act as the conduit for communication between students or as the avenue by which information is dispensed, but should structure the problem-solving tasks. Finally, collaboration theory-influenced technologies will strive to increase the quantity and quality of learning moments via computer-simulated situations.

Stahl extended his proposals about collaboration theory during the next decade with his research on group cognition. In his book on "Group Cognition", he provided a number of case studies of prototypes of collaboration technology, as well as a sample in-depth interaction analysis and several essays on theoretical issues related to re-conceptualizing cognition at the small-group unit of analysis. He then launched the Virtual Math Teams project at the Math Forum, which conducted more than 10 years of studies of students exploring mathematical topics collaboratively online. "Studying VMT" documented many issues of design, analysis and theory related to this project. The VMT later focused on supporting dynamic geometry by integrating a multi-user version of GeoGebra. All aspects of this phase of the VMT project were described in "Translating Euclid." Then, "Constructing Dynamic Triangles Together" provided a detailed analysis of how a group of four girls learned about dynamic geometry by enacting a series of group practices during an eight-session longitudinal case study. Finally, "Theoretical Investigations: Philosophical Foundations of Group Cognition" collected important articles on the theory of collaborative learning from the CSCL journal and from Stahl's publications. The VMT project generated and analyzed data at the small-group unit of analysis, to substantiate and refine the theory of group cognition and to offer a model of design-based CSCL research.

Strategies

Currently, CSCL is used in instructional plans in classrooms both traditional and online from primary school to post-graduate institutions. Like any other instructional activity, it has its own prescribed practices and strategies which educators are encouraged to employ in order to use it effectively. Because its use is so widespread, there are innumerable scenarios in the use of CSCL, but there are several common strategies that provide a foundation for group cognition.

One of the most common approaches to CSCL is collaborative writing. Though the final product can be anything from a research paper, a Wikipedia entry, or a short story, the process of planning and writing together encourages students to express their ideas and develop a group understanding of the subject matter. Tools like blogs, interactive whiteboards, and custom spaces that combine free writing with communication tools can be used to share work, form ideas, and write synchronously.

Technology-mediated discourse refers to debates, discussions, and other social learning techniques involving the examination of a theme using technology. For example, wikis are a way to encourage discussion among learners, but other common tools include mind maps, survey systems, and simple message boards. Like collaborative writing, technology-mediated discourse allows participants that may be separated by time and distance to engage in conversations and build knowledge together.

Group exploration refers to the shared discovery of a place, activity, environment or topic among two or more people. Students do their exploring in an online environment, use technology to better understand a physical area, or reflect on their experiences together through the Internet. Virtual worlds like Second Life and Whyville as well as synchronous communication tools like Skype may be used for this kind of learning. Educators may use Orchestration Graphs to define activities and roles that students must adopt during learning, and analyzing afterwards the learning process.

Problem-based learning is a popular instructional activity that lends itself well to CSCL because of the social implications of problem solving. Complex problems call for rich group interplay that encourages collaboration and creates movement toward a clear goal.

Project-based learning is similar to problem-based learning in that it creates impetus to establish team roles and set goals. The need for collaboration is also essential for any project and encourages team members to build experience and knowledge together. Although there are many advantages to using software that has been specifically developed to support collaborative learning or project-based learning in a particular domain, any file sharing or communication tools can be used to facilitate CSCL in problem- or project-based environments.

When Web 2.0 applications (wikies, blogs, RSS feed, collaborative writing, video sharing, social networks, etc.) are used for computer-supported collaborative learning specific strategies should be used for their implementation, especially regarding (1) adoption by teachers and students; (2) usability and quality in use issues; (3) technology maintenance; (4) pedagogy and instructional design; (5) social interaction between students; (6) privacy issues; and (7) information/system security.

Teacher roles

Though the focus in CSCL is on individuals collaborating with their peers, teachers still have a vital role in facilitating learning. Most obviously, the instructor must introduce the CSCL activity in a thoughtful way that contributes to an overarching design plan for the course. The design should clearly define the learning outcomes and assessments for the activity. In order to assure that learners are aware of these objectives and that they are eventually met, proper administration of both resources and expectations is necessary to avoid learner overload. Once the activity has begun, the teacher is charged with kick-starting and monitoring discussion to facilitate learning. He or she must also be able to mitigate technical issues for the class. Lastly, the instructor must engage in assessment, in whatever form the design calls for, in order to ensure objectives have been met for all students.

Without the proper structure, any CSCL strategy can lose its effectiveness. It is the responsibility of the teacher to make students aware of what their goals are, how they should be interacting, potential technological concerns, and the time-frame for the exercise. This framework should enhance the experience for learners by supporting collaboration and creating opportunities for the construction of knowledge. Another important consideration of educators who implement online learning environments is affordance. Students who are already comfortable with online communication often choose to interact casually. Mediators should pay special attention to make students aware of their expectations for formality online. While students sometime have frames of reference for online communication, they often do not have all of the skills necessary to solve problems by themselves. Ideally, teachers provide what is called "scaffolding", a platform of knowledge that they can build on. A unique benefit of CSCL is that, given proper teacher facilitation, students can use technology to build learning foundations with their peers. This allows instructors to gauge the difficulty of the tasks presented and make informed decisions about the extent of the scaffolding needed.

Effects

According to Salomon (1995), the possibility of intellectual partnerships with both peers and advanced information technology has changed the criteria for what is counted to be the effects of technology. Instead of only concentrating on the amount and quality of learning outcomes, we need to distinguish between two kinds of effects: that is, "effects with a tool and/or collaborating peers, and effects of these." He used the term called "effects with" which is to describe the changes that take place while one is engaged in intellectual partnership with peers or with a computer tool. For example, the changed quality of problem solving in a team. And he means the word "effects of" more lasting changes that take place when computer-enhanced collaboration teaches students to ask more exact and explicit questions even when not using that system.

Applications

It has a number of implications for instructional designers, developers, and teachers.

  • First, it revealed what technological features or functions were particularly important and useful to students in the context of writing, and how a CSCL system could be adapted for use for different subject areas, which have specific implications for instructional designers or developers to consider when designing CSCL tools.
  • Second, this study also suggested the important role of a teacher in designing the scaffolds, scaffolding the collaborative learning process, and making CSCL a success. Third, it is important that a meaningful, real-world task is designed for CSCL in order to engage students in authentic learning activities of knowledge construction.
  • Third, cooperative work in the classroom, using as a tool based technology devices "one to one " where the teacher has a program of classroom management, allows not only the enhancement of teamwork where each member takes responsibilities involving the group, but also a personalized and individualized instruction, adapting to the rhythms of the students, and allowing to achieve the targets set in which has been proposed for them individualized Work Plan.

Criticism and concerns

Though CSCL holds promise for enhancing education, it is not without barriers or challenges to successful implementation. Obviously, students or participants need sufficient access to computer technology. Though access to computers has improved in the last 15 to 20 years, teacher attitudes about technology and sufficient access to Internet-connected computers continue to be barriers to more widespread usage of CSCL pedagogy.

Furthermore, instructors find that the time needed to monitor student discourse and review, comment on, and grade student products can be more demanding than what is necessary for traditional face-to-face classrooms. The teacher or professor also has an instructional decision to make regarding the complexity of the problem presented. To warrant collaborative work, the problem must be of sufficient complexity, otherwise teamwork is unnecessary. Also, there is risk in assuming that students instinctively know how to work collaboratively. Though the task may be collaborative by nature, students may still need training on how to work in a truly cooperative process.

Others have noted a concern with the concept of scripting as it pertains to CSCL. There is an issue with possibly over-scripting the CSCL experience and in so doing, creating "fake collaboration". Such over-scripted collaboration may fail to trigger the social, cognitive, and emotional mechanisms that are necessary to true collaborative learning.

There is also the concern that the mere availability of the technology tools can create problems. Instructors may be tempted to apply technology to a learning activity that can very adequately be handled without the intervention or support of computers. In the process of students and teachers learning how to use the "user-friendly" technology, they never get to the act of collaboration. As a result, computers become an obstacle to collaboration rather than a supporter of it.

For second language acquisition

History

The advent of computer-supported collaborative learning (CSCL) as an instructional strategy for second language acquisition can be traced back to the 1990s. During that time, the internet was growing rapidly, which was one of the key factors that facilitated the process. At the time, the first wikis (such as WikiWikiWeb) were still undergoing early development, but the use of other tools such as electronic discussion groups allowed for equal participation amongst peers, particularly benefiting those who would normally not participate otherwise during face-to-face interactions.

During the establishment of wikis in the 2000s, global research began to emerge regarding their effectiveness in promoting second language acquisition. Some of this research focused on more specific areas such as systemic-functional linguistics, humanistic education, experiental learning, and psycholinguistics. For example, in 2009 Yu-Ching Chen performed a study to determine the overall effectiveness of wikis in an English as a second language class in Taiwan. Another example is a 2009 study by Greg Kessler in which pre-service, non-native English speaker teachers in a Mexican university were given the task to collaborate on a wiki, which served as the final product for one of their courses. In this study, emphasis was placed on the level of grammatical accuracy achieved by the students throughout the course of the task.

Due to the continual development of technology, other educational tools aside from wikis are being implemented and studied to determine their potential in scaffolding second language acquisition. According to Mark Warschauer (2010), among these are blogs, automated writing evaluation systems, and open-source netbooks. Ex situ of the classroom, the development of other recent online tools such as Livemocha (2007) have facilitated language acquisition via member-to-member interactions, demonstrating firsthand the impact the advancement of technology has made towards meeting the varying needs of language learners.

Effectiveness and perception

Studies in the field of computer-assisted language learning (CALL) have shown that computers provide material and valuable feedback for language learners and that computers can be a positive tool for both individual and collaborative language learning. CALL programs offer the potential for interactions between the language learners and the computer. Additionally, students' autonomous language learning and self-assessment can be made widely available through the web. In CSCL, the computer is not only seen as a potential language tutor by providing assessment for students' responses, but also as a tool to give language learners the opportunity to learn from the computer and also via collaboration with other language learners. Juan focuses on new models and systems that perform efficient evaluation of student activity in online-based education. Their findings indicate that CSCL environments organized by teachers are useful for students to develop their language skills. Additionally, CSCL increases students' confidence and encourages them to maintain active learning, reducing the passive reliance on teachers' feedback. Using CSCL as a tool in the second language learning classroom has also shown to reduce learner anxiety.

Various case studies and projects had been conducted in order to measure the effectiveness and perception of CSCL in a language learning classroom. After a collaborative internet-based project, language learners indicated that their confidence in using the language had increased and that they felt more motivated to learn and use the target language. After analyzing student questionnaires, discussion board entries, final project reports, and student journals, Dooly suggests that during computer supported collaborative language learning, students have an increased awareness of different aspects of the target language and pay increased attention to their own language learning process. Since the participants of her project were language teacher trainees, she adds that they felt prepared and willing to incorporate online interaction in their own teaching in the future.

Cultural considerations

Culture may be thought of as composed of "beliefs, norms, assumptions, knowledge, values, or sets of practice that are shared and form a system". Learning communities focused in whole or part on second language acquisition may often be distinctly multicultural in composition, and as the cultural background of individual learners affects their collaborative norms and practices, this can significantly impact their ability to learn in a CSCL environment.

CSCL environments are generally valued for the potential to promote collaboration in cross-cultural learning communities. Based on social constructivist views of learning, many CSCL environments fundamentally emphasize learning as the co-construction of knowledge through the computer-mediated interaction of multivoiced community members. Computer-mediation of the learning process has been found to afford consideration of alternative viewpoints in multicultural/multilingual learning communities. When compared to traditional face-to-face environments, computer-mediated learning environments have been shown to result in more equal levels of participation for ESL students in courses with native English speakers. Language barriers for non-native speakers tend to detract from equal participation in general, and this can be alleviated to some extent through the use of technologies which support asynchronous modes of written communication.

Online learning environments however tend to reflect the cultural, epistemological, and pedagogical goals and assumptions of their designers. In computer-supported collaborative learning environments, there is evidence that cultural background may impact learner motivation, attitude towards learning and e-learning, learning preference (style), computer usage, learning behavior and strategies, academic achievement, communication, participation, knowledge transfer, sharing and collaborative learning. Studies variously comparing Asian, American and Danish and Finnish learners have suggested that learners from different cultures exhibit different interaction patterns with their peers and teachers in online. A number of studies have shown that difference in Eastern and Western educational cultures, for instance, which are found in traditional environments are also present in online environments. Zhang has described Eastern education as more group-based, teacher-dominated, centrally organized, and examination-oriented than Western approaches. Students who have learned to learn in an Eastern context emphasizing teacher authority and standardized examinations may perform differently in a CSCL environment characterized by peer critique and co-construction of educational artifacts as the primary mode of assessment.

Design implications

A "multiple cultural model" of instructional design emphasizes variability and flexibility in the process of designing for multicultural inclusiveness, focusing on the development of learning environments reflecting the multicultural realities of society, include multiple ways of teaching and learning, and promote equity of outcomes. McLoughlin, C. & Oliver propose a social, constructivist approach to the design of culturally-sensitive CSCL environments which emphasizes flexibility with regard to specific learning tasks, tools, roles, responsibilities, communication strategies, social interactions, learning goals and modes of assessment [B5]. Constructivist instructional design approaches such as R2D2 which emphasize reflexive, recursive, participatory design of learning experiences may be employed in developing CSCL which authentically engages learners from diverse linguistic and cultural backgrounds.

Dyslexia in Computer-Supported Collaborative Learning

History

Dyslexia primarily involves difficulties with reading, spelling and sentence structure, transposition, memory, organization and time management, and lack of confidence. Dyslexia has in the past two decades become increasingly present in research and legislation. The United Kingdom passed the Disability Discrimination Act 1995 in which institutions were required to "reasonably adjust" instruction for students with disabilities, particularly physical and sensory disabilities; in 2002, the Special Education Needs and Disabilities Act adjusted the legislation to include learning disabilities.

The Americans with Disabilities Act of 1990 (ADA) established that all students with disabilities must be included in all state and districtwide assessments of student progress. The ADA also guarantees equal accommodation for the disabled in, "employment, public accommodations, state and local government services, transportation, and telecommunications."

In recent years, tools such as WebHelpDyslexia and other capabilities of web applications have increased the availability of tools to provide coping skills for students with dyslexia.

Research on Dyslexia in E-Learning Environments

In 2006, Woodfine argued that dyslexia can impact the ability of a student to participate in synchronous e-learning environments, especially if activities being completed are text-based. During experimental qualitative research, Woodfine found that data suggested "learners with dyslexia might suffer from embarrassment, shame and even guilt about their ability to interact with other learners when in a synchronous environment."

In a study by Fichten et al., it was found that assistive technology can be beneficial in aiding students with the progression of their reading and writing skills. Tools such as spell check or text-to-speech can be helpful to learners with dyslexia by allowing them to focus more on self-expression and less on errors.

Design implications

Alsobhi, et al., examined assistive technologies for dyslexic students and concluded that the most fundamental considerations to be had when serving students of this population are: "the learning styles that people with dyslexia exhibit, and how assistive technology can be adapted to align with these learning behaviors."

The Dyslexia Adaptive E-Learning (DAEL) is a suggested a framework that proposes four dimensions that cover 26 attributes. The proposed framework asks educators to make decisions based on perceived ease of use, perceived usefulness, and system adaptability:

  • perceived ease of use: This refers to the degree to which a student believes that using the technology is free of effort. One technique to increase the perceived ease of use includes utilizing technology in which self-descriptiveness is present. This, coupled with clarity and logical flow of functions, makes the learning process easier and the interaction between the user and machine more convenient.
  • perceived usefulness: Defined as how a student's performance, or learning performance, can be enhanced by a system. Studies show the impact of perceived ease of use and perceived usefulness and their role in a users' decision on whether to use a system again. Scaffolding as well as accommodations to the student's learning style will help overcome limitations of system operations, as will feedback geared toward system improvements.
  • system adaptability: Refers to the user experiences and the way in which students are given control over a system to increase confidence and comfort in their learning. In addition to implications for the system, the flow of content shouldb be logical and the tone (attitude) of content should be encouraging.

508 Compliance & the implications for Educators

Educators that choose to use the CSCL environment must be aware of 508 compliance and its legal implications. "In the U.S., the criteria for designing Web pages accessibly are provided by two major sets: the W3C's Web Accessibility Guidelines (WCAG) and the design standards issued under U.S. federal law, Section 508 of the Rehabilitation Act, as amended in 1998.1 Features of accessible design include, among others, the provision of ALT tags for nontextual elements, such as images, animations and image map hot spots; meaningful link text; logical and persistent page organization, and the inclusion of skip navigation links."

Unfortunately, not all educators are exposed to these guidelines, especially if their collegiate programs do not provide exposure to the use of computers, aspects of web design or technology in education. In some cases, it may be advantageous for the educator to collaborate with an instructional technologist or web designer to ensure 508 guidelines are addressed in the desired learning environment for the CSCL.

Web 3.0 and Computer-Supported Collaborative Learning (CSCL)

The World Wide Web began as information sharing on static webpages accessible on a computer through the use of a web browser. As more interactive capabilities were added, it evolved into Web 2.0, which allowed for user-generated content and participation (e.g. social networking). This opened up many new possibilities for computer-supported collaborative learning (CSCL) using the Internet. The internet is now entering a new phase, Web 3.0 or the Semantic Web, which is characterized by the greater interconnectivity of machine-readable data from many different sources. New intelligent technology applications will be able to manage, organize and create meaning from this data, which will have a significant impact on CSCL.

The interconnectivity of machine-readable data with semantic tags means that searches will be greatly enhanced. Search results will be more relevant, recommendations of resources will be made based on search terms and results will include multimedia content.

New Web 3.0 capabilities for learners include enhanced tools for managing learning, allowing them to self-regulate and co-regulate learning without the assistance of an instructor. Through the use of Web 3.0, groups and communities can be formed according to specific criteria without human input. These communities and groups can provide support to new learners and give experts an opportunity to share their knowledge.

Teachers can benefit from these same capabilities to manage their teaching. In addition, the software for Web 3.0 collaboration will include using data from group communications, which then generates how much each individual has collaborated based on how often they communicate and how long their messages are.

Examples of new Web 3.0 tools to enhance CSCL

Virtual Assistants and Intelligent Agents

Making data machine-readable is leading to the development of virtual assistants and intelligent agents. These are tools which can access data on a user's behalf and will be able to assist learners and collaborators in several ways. They can provide personalized and customized search results by accessing data on a variety of platforms, recommend resources based on user information and preferences, manage administrative tasks, communicate with other agents and databases, and help organize information and interactions with collaborators.

Virtual Learning Communities

Virtual learning communities are cyberspaces that allow for individual and collaborative learning to take place. While they exist today, with Web 3.0 they will gain enhanced features enabling more collaborative learning to take place. Some describe them as evolving out of existing learning management systems (LMSs), adding intelligent agents and virtual assistants that can enhance content searches and deal with administrative and communication tasks, or enabling different LMSs around the world to communicate with each other, creating an even larger community to share resources and locate potential collaborators. Virtual learning communities will also enable different types of peer-to-peer interaction and resource sharing to support co-construction of knowledge. These communities may also include some aspects of 3D gaming and VR.

Non-immersive and Immersive 3D Virtual Environments

Through the use of 3D gaming, users can simulate lives of others while providing their knowledge throughout the 3D environment as an avatar. These 3D environments also foster simulation and scenario building for places where users would otherwise not have access. The 3D environments facilitate online knowledge building communities. Non-immersive environments are environments in which not all five senses are used but still allows users to interact in virtual worlds. Virtual Reality (VR) headsets are sometimes used to give users a full immersion experience, into these 3D virtual worlds. This allows users to interact with each other in real time and simulate different learning situations with other users. These learning experiences and environments vary between fields and learning goals. Certain virtual reality headsets allow users to communicate with each other while being in different physical locations.

Multimodal literacy development in CSCL

The concept of Multimodal literacy

Multimodal literacy is the way processes of literacy - reading, writing, talking, listening and viewing - are occurring within and around new communication media. (Kress & Jewitt, 2003; Pahl & Rowsell, 2005; Walsh, 2008) It refers to meaning-making that occurs through the reading, viewing, understanding, responding to and producing and interacting with multimedia and digital texts. (Walsh, 2010)

Literature review on multi-modal literacy in CSCL

* Online forum

Online forums offer numerous advantages for both teacher and students for collaborative learning online. Discussion forums provide a wider platform to exchange information and ideas, to develop writing and reading skills, critical thinking skills. (Jill Margerison, 2013) A collaborative online forum can also help students learn about the unique challenges of online communication, especially the need for clarity and the dangers of sarcasm. (Susan Martens-Baker, 2009) For the teacher, they offer a flexible platform from which to educate in a participatory culture, where teachers and students can interact with each other and create new knowledge. (Jill Margerison, 2013)

* Video games

Video games were designed as a learning tool engaged learners who advance through experimentation, critical thinking and practice in the virtual world. (Abrams, 2009) Video games in CSCL can promote positive interdependence, individual accountability, face-to-face promotive interaction, social skills, and group processing abilities in the ELA classroom. Through interactions in the virtual world, learners have the opportunities to establish their presence, identity and create meanings for their lives.

* Multimodal composition in digital storytelling: podcast, video/ audio crafts

Digital storytelling refers to integrating a variety of means, such as images, audio, video, graphics and diagram to personal narratives and crafts. Four skill competencies: reading, writing, speaking, and listening would be enhanced by producing digital products. (Brenner, 2014) Students have a greater sense of autonomy, agency through the digital storytelling in CSCL.

The implication for classroom teaching

* Online-forum

Online forums provide opportunities for young people to engage in the self-exposition as they practice digital literacies and hone the skill of movement across multiple literacies, languages and subject positions. Meanwhile, identity is a constellation of the multiple communities. It is also important to emphasize the potentially harmful cultural discourses that occur within young people's consumption. (Kim, 2015)

* Videogame

Through capitalizing on students' gaming experiences by recognizing how they apply to the subject at hand, teachers can highlight the benefits of virtual learning environments and draw upon students' gaming experiences to understand their application of virtual learning across curricula. Educators need to choose the appropriate game for the particular subject to endorse their instruction and promote collaboration among students.

Multimodal composition: podcast, audio, video crafts in digital storytelling

Students who engage in collaborative learning for creating digital production show the characteristics of leadership. Moreover, students would gain the experience of collaboration and expand their skill of the multimodal literacy. In addition, digital composition provides a meaningful tool for teachers to assess. (Brenner, 2014)

Applications for ELLs

Multimodal literacy can facilitate English learners' literacy learning. It has provided opportunities for English learners to expand the interpretation of texts. (Ajayi, 2009) Specifically, English language learners can increase their language ability through computer-collaborative learning. The multimodality platforms provide students, especially ELLs with an anxiety-free zone to collaborate with their peers in a virtual world in order to make meanings together. Technology self-efficacy increases ELLs' level of independence and reduces their level of anxiety. (Mellati, Zangoei & Khademi, 2015) ELLs will have more motivation and self-confident while participating in online group projects to make contributions and share knowledge with their peers. As a result of collaborative learning, ELLs would expand their vocabulary, gain advanced and more academic grammars.

CSCL in Post-Secondary Education

Overview of CSCL in Post-Secondary Education

Research on CSCL in post-secondary education settings

The applications of CSCL in post-secondary education demonstrate positive impacts on students' learning such as promoting learner interaction, motivation and understanding. As collaborative learning is grounded in social constructivism, the interaction and collaboration during learning is valued.

Developing Professional Skills

There's research findings that shows online students had higher scores than face-to-face students in professional competence acquisition test, showing the effectiveness of CSCL in promoting the development of professional skills

Knowledge Building

Knowledge co-construction among geographically dispersed students in an online postgraduate program was explained in a study as students relied heavily on each other for their on-going participation in the online discussions and joint refinement of ideas introduced.

Design Principles & Instructional Strategies for CSCL in Post-Secondary Education

The design principles for using CSCL can be considered from different perspectives. For technical use, instructors need to provide tutorials and online training modules to students. For collaboration, students need time to plan and coordinate group work as well as instructors' support and guidance on the discussions. Also, group size and composition should be taken into consideration for better quality of interaction. More instructional strategies are presented below.

Project-Based Settings Using Wikis

Wikis is a tool for learners to co-construct knowledge online with the access to create and edit contents. There are three phases of using wikis for collaborative writing:

Phase 1. Crisis of Authority

Users experience challenges due to unfamiliarity with the use of wiki and the unknown of other teammates' boundaries of being commented or revised on their writings.

Phase 2. Crisis of Relationship

Collaborative learning emerges and group communication is improved.

Phase 3. Resolution of Crisis

More frequent communication occurs and increased co-writing among team members.

To better design wiki-based project, the design principles design include:

1. Provide learners with a practice article to edit at the beginning of a course for getting familiar with using wikis

2. Informs learners of different communication tools to work collaboratively.

3. Engage learners with repeated wiki article assignments.

4. Provide timely feedback on students' discussion, participation and interaction.

Online Learning Management Systems

The characteristic of social interaction in CSCL can be demonstrated on the online learning community where learners can communicate with each other. One of the medium facilitating the online community to work is online learning management system that provides all people including learners, professors, and administrative staff to communicate.

When using an online learning management system for collaborative learning, the instructor should provide technical training by presenting video tutorials, online training modules or online workshops.

Mobile Computer Supported Collaborative Learning

Mobile CSCL (mCSCL) is beneficial to students' learning achievements, attitude and interactions. The suggested design principles from CSCL include:

1. An idea group size is around 3 to 4 people.

2. A duration between 1 and 4 weeks demonstrate better effects. The criticisms version indicate in the case of short term course the interactions networks not consolidate.

Professional Teaching Community

Professional teacher communities are positively related to student learning, teacher learning, teacher practice and school culture. Teacher collaboration is a significant element of these communities. Reflection‐oriented tasks (such as reflection on teaching performance in individual writing, peer feedback, and collective writing) stimulated participation, and in combination with task structure also interaction in these communities. Furthermore, structured tasks(such as crossword puzzles, the path to come to a solution is unambiguous and answers can be immediately checked) which required critical reflection on personal experiences and perspectives triggered task‐related communication and a deep level of information exchange.

Distance Learning

The European Union Comenius fund sponsored FISTE project which is concerned with the educational use of information and communication technologies (ICTs), specifically with the development and dissemination of a new pedagogical strategy for distance learning through in-service teacher education in schools across Europe. This project uses the online Virtual Learning Environment platform BSCW as a Computer Supportive Communication Learning tool to facilitate the way the participants work together. This work has involved schools and teacher training providers, building culturally different work in in-service teacher education in the participating countries. The value of using CSCL supported technology for in-service teacher education in Europe lies in the concept of hinterland. Cross-national courses like the FISTE would be difficult to run without this technological approach.

Forest gardening

From Wikipedia, the free encyclopedia
 
Robert Hart's forest garden in Shropshire

Forest gardening is a low-maintenance, sustainable, plant-based food production and agroforestry system based on woodland ecosystems, incorporating fruit and nut trees, shrubs, herbs, vines and perennial vegetables which have yields directly useful to humans. Making use of companion planting, these can be intermixed to grow in a succession of layers to build a woodland habitat. Forest gardening is a prehistoric method of securing food in tropical areas. In the 1980s, Robert Hart coined the term "forest gardening" after adapting the principles and applying them to temperate climates.

History

Since prehistoric times hunter-gatherers might have influenced forests, for instance in Europe by Mesolithic people bringing favored plants like hazel with them. Forest gardens are probably the world's oldest form of land use and most resilient agroecosystem. They originated in prehistoric times along jungle-clad river banks and in the wet foothills of monsoon regions. In the gradual process of families improving their immediate environment, useful tree and vine species were identified, protected and improved whilst undesirable species were eliminated. Eventually superior foreign species were selected and incorporated into the gardens. First Nation villages in Alaska with forest gardens, that were filled with nuts, stone fruit, berries, and herbs, were noted by an archeologist from the Smithsonian in the 1930s.

Forest gardens are still common in the tropics and known by various names such as: home gardens in Kerala in South India, Nepal, Zambia, Zimbabwe and Tanzania; Kandyan forest gardens in Sri Lanka; huertos familiares, the "family orchards" of Mexico. These are also called agroforests and, where the wood components are short-statured, the term shrub garden is employed. Forest gardens have been shown to be a significant source of income and food security for local populations.

Robert Hart adapted forest gardening for the United Kingdom's temperate climate during the 1980s. His theories were later developed by Martin Crawford from the Agroforestry Research Trust and various permaculturalists such as Graham Bell, Patrick Whitefield, Dave Jacke and Geoff Lawton.

In temperate climates

Robert Hart, forest gardening pioneer

Hart began farming at Wenlock Edge in Shropshire with the intention of providing a healthy and therapeutic environment for himself and his brother Lacon. Starting as relatively conventional smallholders, Hart soon discovered that maintaining large annual vegetable beds, rearing livestock and taking care of an orchard were tasks beyond their strength. However, a small bed of perennial vegetables and herbs he planted was looking after itself with little intervention.

Following Hart's adoption of a raw vegan diet for health and personal reasons, he replaced his farm animals with plants. The three main products from a forest garden are fruit, nuts and green leafy vegetables. He created a model forest garden from a 0.12 acre (500 m2) orchard on his farm and intended naming his gardening method ecological horticulture or ecocultivation. Hart later dropped these terms once he became aware that agroforestry and forest gardens were already being used to describe similar systems in other parts of the world. He was inspired by the forest farming methods of Toyohiko Kagawa and James Sholto Douglas, and the productivity of the Keralan home gardens as Hart explains: "From the agroforestry point of view, perhaps the world's most advanced country is the Indian state of Kerala, which boasts no fewer than three and a half million forest gardens ... As an example of the extraordinary intensity of cultivation of some forest gardens, one plot of only 0.12 hectares (0.30 acres) was found by a study group to have twenty-three young coconut palms, twelve cloves, fifty-six bananas, and forty-nine pineapples, with thirty pepper vines trained up its trees. In addition, the smallholder grew fodder for his house-cow."

Seven-layer system

The seven layers of the forest garden

Robert Hart pioneered a system based on the observation that the natural forest can be divided into distinct levels.

He used intercropping to develop an existing small orchard of apples and pears into an edible polyculture landscape consisting of the following layers:

  1. Canopy layer consisting of the original mature fruit trees.
  2. Low-tree layer of smaller nut and fruit trees on dwarfing rootstocks.
  3. Shrub layer of fruit bushes such as currants and berries.
  4. Herbaceous layer of perennial vegetables and herbs.
  5. Rhizosphere or ‘underground’ dimension of plants grown for their roots and tubers.
  6. Ground cover layer of edible plants that spread horizontally.
  7. ‘Vertical layer’ of vines and climbers.

A key component of the seven-layer system was the plants he selected. Most of the traditional vegetable crops grown today, such as carrots, are sun-loving plants not well selected for the more shady forest garden system. Hart favored shade-tolerant perennial vegetables.

Further development

The Agroforestry Research Trust, managed by Martin Crawford, runs experimental forest gardening projects on a number of plots in Devon, United Kingdom. Crawford describes a forest garden as a low-maintenance way of sustainably producing food and other household products.

Ken Fern had the idea that for a successful temperate forest garden a wider range of edible shade tolerant plants would need to be used. To this end, Fern created the organisation Plants for a Future which compiled a plant database suitable for such a system. Fern used the term woodland gardening, rather than forest gardening, in his book Plants for a Future.

Kathleen Jannaway, the cofounder of Movement for Compassionate Living (MCL) with her husband Jack, wrote a book outlining a sustainable vegan future called Abundant Living in the Coming Age of the Tree in 1991. The MCL promotes forest gardening and other types of vegan organic gardening. In 2009 it provided a grant of £1,000 to the Bangor Forest Garden project in Gwynedd, North West Wales.

Kevin Bradley in the US called his property and nursery "Edible Forest" in 1985, which combined trees and field crops. Today, his business and the 2005 book Edible Forest Gardens have spawned little "edible forests" all over the world.

Permaculture

Bill Mollison, who coined the term permaculture, visited Robert Hart at his forest garden in Wenlock Edge in October 1990. Hart's seven-layer system has since been adopted as a common permaculture design element.

Numerous permaculturalists are proponents of forest gardens, or food forests, such as Graham Bell, Patrick Whitefield, Dave Jacke, Eric Toensmeier and Geoff Lawton. Bell started building his forest garden in 1991 and wrote the book The Permaculture Garden in 1995, Whitefield wrote the book How to Make a Forest Garden in 2002, Jacke and Toensmeier co-authored the two volume book set Edible Forest Gardens in 2005, and Lawton presented the film Establishing a Food Forest in 2008.

In tropical climates

Forest gardens, or home gardens, are common in the tropics, using intercropping to cultivate trees, crops, and livestock on the same land. In Kerala in south India as well as in northeastern India, the home garden is the most common form of land use and is also found in Indonesia. One example combines coconut, black pepper, cocoa and pineapple. These gardens exemplify polyculture, and conserve much crop genetic diversity and heirloom plants that are not found in monocultures. Forest gardens have been loosely compared to the religious concept of the Garden of Eden.

Americas

The BBC's Unnatural Histories claimed that the Amazon rainforest, rather than being a pristine wilderness, has been shaped by humans for at least 11,000 years through practices such as forest gardening and terra preta. Since the 1970s, numerous geoglyphs have been discovered on deforested land in the Amazon rainforest, furthering the evidence of Pre-Columbian civilizations.

On the Yucatán Peninsula, much of the Maya food supply was grown in "orchard gardens", known as pet kot. The system takes its name from the low wall of stones (pet meaning 'circular' and kot, 'wall of loose stones') that characteristically surrounds the gardens.

Africa

In many African countries, for example Zambia, Zimbabwe, Ethiopia and Tanzania, gardens are widespread in rural, periurban, and urban areas and they play an essential role in establishing food security. Most well known are the Chaga or Chagga gardens on the slopes of Mount Kilimanjaro in Tanzania. These are an example of an agroforestry system. In many countries, women are the main actors in home gardening and food is mainly produced for subsistence. In North Africa, oasis-layered gardening with palm trees, fruit trees, and vegetables is a traditional type of forest garden.

Plants

Some plants, such as wild yam, work as both a root plant and a vine. Ground covers: Low-growing edible 'forest garden plants help keep weeds in control and provide a great way to utilize areas that would otherwise be unused.

Plants

  • Cardamom
  • Ginger
  • Chervil
  • Bergamot
  • Sweet woodruff
  • Sweet cicely

Project

El Pilar on the BelizeGuatemala border features a forest garden to demonstrate traditional Maya agricultural practices. A further one acre model forest garden, called Känan K’aax (meaning 'well-tended garden' in Mayan), is funded by the National Geographic Society and developed at Santa Familia Primary School in Cayo.

In the United States, the largest known food forest on public land is believed to be the seven acre Beacon Food Forest in Seattle, Washington. Other forest garden projects include those at the central Rocky Mountain Permaculture Institute in Basalt, Colorado and Montview Neighborhood farm in Northampton, Massachusetts. The Boston Food Forest Coalition promotes local forest gardens.

In Canada Richard Walker has been developing and maintaining food forests in British Columbia for over 30 years. He developed a three acre food forest that at maturity provided raw materials for a plant nursery and herbal business as well as food for his family. The Living Centre has developed various forest garden projects in Ontario.

In the United Kingdom, other than those run by the Agroforestry Research Trust (ART), there are numerous forest garden projects such as the Bangor Forest Garden in Gwynedd, northwest Wales. Martin Crawford from ART administers the Forest Garden Network, an informal network of people and organisations who are cultivating forest gardens.

Since 2014, Gisela Mir and Mark Biffen have been developing a small-scale Edible Forest Garden ("Verger" in Catalan) in Cardedeu, a village near Barcelona, Catalunya. During their previous years of Permaculture training they were introduced to various Edible Forest Garden projects in Wales and other parts of the UK. It is intended as a space for experimentation and demonstration: "...we want to learn and test what it means to have an orchard in an area with a Mediterranean climate: which species grow well here; how to manage limiting aspects, such as water; and, above all, what design implications there are due to the characteristics of our climate and our latitude."  In April 2021, they published in Spanish the book "Food forests and edible gardens" (Bosques y jardines de alimentos) where they draw on their first experimental progresses and experiences, delving into the particularities of the Mediterranean climate through a book adapted to that climate and to those species. It is one of the first works on this subject not written in English.

Forest gardening in popular culture

A forest garden plays a significant role in the Video Read-Opera "Marisette's Voice," where it is the object of political machinations between two candidates for city council in the fictional city of Augusta, CY. It is also used as a metaphor for one type of society.

Cognitive rehabilitation therapy

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Cognitive_rehabilitation_therapy     ...