Search This Blog

Saturday, May 27, 2023

Spiral galaxy

From Wikipedia, the free encyclopedia

An example of a spiral galaxy, the Pinwheel Galaxy (also known as Messier 101 or NGC 5457)

Spiral galaxies form a class of galaxy originally described by Edwin Hubble in his 1936 work The Realm of the Nebulae and, as such, form part of the Hubble sequence. Most spiral galaxies consist of a flat, rotating disk containing stars, gas and dust, and a central concentration of stars known as the bulge. These are often surrounded by a much fainter halo of stars, many of which reside in globular clusters.

Spiral galaxies are named by their spiral structures that extend from the center into the galactic disc. The spiral arms are sites of ongoing star formation and are brighter than the surrounding disc because of the young, hot OB stars that inhabit them.

Roughly two-thirds of all spirals are observed to have an additional component in the form of a bar-like structure, extending from the central bulge, at the ends of which the spiral arms begin. The proportion of barred spirals relative to barless spirals has likely changed over the history of the universe, with only about 10% containing bars about 8 billion years ago, to roughly a quarter 2.5 billion years ago, until present, where over two-thirds of the galaxies in the visible universe (Hubble volume) have bars.

The Milky Way is a barred spiral, although the bar itself is difficult to observe from Earth's current position within the galactic disc. The most convincing evidence for the stars forming a bar in the galactic center comes from several recent surveys, including the Spitzer Space Telescope.

Together with irregular galaxies, spiral galaxies make up approximately 60% of galaxies in today's universe. They are mostly found in low-density regions and are rare in the centers of galaxy clusters.

Structure

Tuning-fork-style diagram of the Hubble sequence

Spiral galaxies may consist of several distinct components:

The relative importance, in terms of mass, brightness and size, of the different components varies from galaxy to galaxy.

Spiral arms

Spiral arms are regions of stars that extend from the center of barred and unbarred spiral galaxies. These long, thin regions resemble a spiral and thus give spiral galaxies their name. Naturally, different classifications of spiral galaxies have distinct arm-structures. Sc and SBc galaxies, for instance, have very "loose" arms, whereas Sa and SBa galaxies have tightly wrapped arms (with reference to the Hubble sequence). Either way, spiral arms contain many young, blue stars (due to the high mass density and the high rate of star formation), which make the arms so bright.

Bulge

A bulge is a large, tightly packed group of stars. The term refers to the central group of stars found in most spiral galaxies, often defined as the excess of stellar light above the inward extrapolation of the outer (exponential) disk light.

NGC 1300 in infrared light.

Using the Hubble classification, the bulge of Sa galaxies is usually composed of Population II stars, which are old, red stars with low metal content. Further, the bulge of Sa and SBa galaxies tends to be large. In contrast, the bulges of Sc and SBc galaxies are much smaller and are composed of young, blue Population I stars. Some bulges have similar properties to those of elliptical galaxies (scaled down to lower mass and luminosity); others simply appear as higher density centers of disks, with properties similar to disk galaxies.

Many bulges are thought to host a supermassive black hole at their centers. In our own galaxy, for instance, the object called Sagittarius A* is believed to be a supermassive black hole. There are many lines of evidence for the existence of black holes in spiral galaxy centers, including the presence of active nuclei in some spiral galaxies, and dynamical measurements that find large compact central masses in galaxies such as Messier 106.

Bar

Spiral galaxy NGC 2008

Bar-shaped elongations of stars are observed in roughly two-thirds of all spiral galaxies. Their presence may be either strong or weak. In edge-on spiral (and lenticular) galaxies, the presence of the bar can sometimes be discerned by the out-of-plane X-shaped or (peanut shell)-shaped structures which typically have a maximum visibility at half the length of the in-plane bar.

Spheroid

Spiral galaxy NGC 1345

The bulk of the stars in a spiral galaxy are located either close to a single plane (the galactic plane) in more or less conventional circular orbits around the center of the galaxy (the Galactic Center), or in a spheroidal galactic bulge around the galactic core.

However, some stars inhabit a spheroidal halo or galactic spheroid, a type of galactic halo. The orbital behaviour of these stars is disputed, but they may exhibit retrograde and/or highly inclined orbits, or not move in regular orbits at all. Halo stars may be acquired from small galaxies which fall into and merge with the spiral galaxy—for example, the Sagittarius Dwarf Spheroidal Galaxy is in the process of merging with the Milky Way and observations show that some stars in the halo of the Milky Way have been acquired from it.

NGC 428 is a barred spiral galaxy, located approximately 48 million light-years away from Earth in the constellation of Cetus.

Unlike the galactic disc, the halo seems to be free of dust, and in further contrast, stars in the galactic halo are of Population II, much older and with much lower metallicity than their Population I cousins in the galactic disc (but similar to those in the galactic bulge). The galactic halo also contains many globular clusters.

The motion of halo stars does bring them through the disc on occasion, and a number of small red dwarfs close to the Sun are thought to belong to the galactic halo, for example Kapteyn's Star and Groombridge 1830. Due to their irregular movement around the center of the galaxy, these stars often display unusually high proper motion.

Oldest spiral galaxy

The oldest spiral galaxy on file is BX442. At eleven billion years old, it is more than two billion years older than any previous discovery. Researchers believe the galaxy's shape is caused by the gravitational influence of a companion dwarf galaxy. Computer models based on that assumption indicate that BX442's spiral structure will last about 100 million years.

Related

In June 2019, citizen scientists through Galaxy Zoo reported that the usual Hubble classification, particularly concerning spiral galaxies, may not be supported, and may need updating.

Origin of the spiral structure

Spiral galaxy NGC 6384 taken by Hubble Space Telescope.
 
The spiral galaxy NGC 1084, home of five supernovae.

The pioneer of studies of the rotation of the Galaxy and the formation of the spiral arms was Bertil Lindblad in 1925. He realized that the idea of stars arranged permanently in a spiral shape was untenable. Since the angular speed of rotation of the galactic disk varies with distance from the centre of the galaxy (via a standard solar system type of gravitational model), a radial arm (like a spoke) would quickly become curved as the galaxy rotates. The arm would, after a few galactic rotations, become increasingly curved and wind around the galaxy ever tighter. This is called the winding problem. Measurements in the late 1960s showed that the orbital velocity of stars in spiral galaxies with respect to their distance from the galactic center is indeed higher than expected from Newtonian dynamics but still cannot explain the stability of the spiral structure.

Since the 1970s, there have been two leading hypotheses or models for the spiral structures of galaxies:

  • star formation caused by density waves in the galactic disk of the galaxy.
  • the stochastic self-propagating star formation model (SSPSF model) – star formation caused by shock waves in the interstellar medium. The shock waves are caused by the stellar winds and supernovae from recent previous star formation, leading to self-propagating and self-sustaining star formation. Spiral structure then arises from differential rotation of the galaxy's disk.

These different hypotheses are not mutually exclusive, as they may explain different types of spiral arms.

Density wave model

Bertil Lindblad proposed that the arms represent regions of enhanced density (density waves) that rotate more slowly than the galaxy's stars and gas. As gas enters a density wave, it gets squeezed and makes new stars, some of which are short-lived blue stars that light the arms.

Historical theory of Lin and Shu

Exaggerated diagram illustrating Lin and Shu's explanation of spiral arms in terms of slightly elliptical orbits.

The first acceptable theory for the spiral structure was devised by C. C. Lin and Frank Shu in 1964, attempting to explain the large-scale structure of spirals in terms of a small-amplitude wave propagating with fixed angular velocity, that revolves around the galaxy at a speed different from that of the galaxy's gas and stars. They suggested that the spiral arms were manifestations of spiral density waves – they assumed that the stars travel in slightly elliptical orbits, and that the orientations of their orbits is correlated i.e. the ellipses vary in their orientation (one to another) in a smooth way with increasing distance from the galactic center. This is illustrated in the diagram to the right. It is clear that the elliptical orbits come close together in certain areas to give the effect of arms. Stars therefore do not remain forever in the position that we now see them in, but pass through the arms as they travel in their orbits.

Star formation caused by density waves

The following hypotheses exist for star formation caused by density waves:

  • As gas clouds move into the density wave, the local mass density increases. Since the criteria for cloud collapse (the Jeans instability) depends on density, a higher density makes it more likely for clouds to collapse and form stars.
  • As the compression wave goes through, it triggers star formation on the leading edge of the spiral arms.
  • As clouds get swept up by the spiral arms, they collide with one another and drive shock waves through the gas, which in turn causes the gas to collapse and form stars.
The bright galaxy NGC 3810 demonstrates classical spiral structure in this very detailed image from Hubble. Credit: ESA/Hubble and NASA.

More young stars in spiral arms

Spiral arms appear visually brighter because they contain both young stars and more massive and luminous stars than the rest of the galaxy. As massive stars evolve far more quickly, their demise tends to leave a darker background of fainter stars immediately behind the density waves. This make the density waves much more prominent.

Spiral arms simply appear to pass through the older established stars as they travel in their galactic orbits, so they also do not necessarily follow the arms. As stars move through an arm, the space velocity of each stellar system is modified by the gravitational force of the local higher density. Also the newly created stars do not remain forever fixed in the position within the spiral arms, where the average space velocity returns to normal after the stars depart on the other side of the arm.

Gravitationally aligned orbits

Charles Francis and Erik Anderson showed from observations of motions of over 20,000 local stars (within 300 parsecs) that stars do move along spiral arms, and described how mutual gravity between stars causes orbits to align on logarithmic spirals. When the theory is applied to gas, collisions between gas clouds generate the molecular clouds in which new stars form, and evolution towards grand-design bisymmetric spirals is explained.

Distribution of stars in spirals

The similar distribution of stars in spirals

The stars in spirals are distributed in thin disks radial with intensity profiles such that

with being the disk scale-length; is the central value; it is useful to define: as the size of the stellar disk, whose luminosity is

.

The spiral galaxies light profiles, in terms of the coordinate , do not depend on galaxy luminosity.

Spiral nebula

Spiral galaxy, LEDA 2046648, is about one billion light-years away.

Before it was understood that spiral galaxies existed outside of our Milky Way galaxy, they were often referred to as spiral nebulae. The question of whether such objects were separate galaxies independent of the Milky Way, or a type of nebula existing within our own galaxy, was the subject of the Great Debate of 1920, between Heber Curtis of Lick Observatory and Harlow Shapley of Mount Wilson Observatory. Beginning in 1923, Edwin Hubble observed Cepheid variables in several spiral nebulae, including the so-called "Andromeda Nebula", proving that they are, in fact, entire galaxies outside our own. The term spiral nebula has since fallen out of use. Another similar spiral galaxy, well outside of the Milky Way galaxy, is LEDA 2046648, detected by the James Webb Space Telescope at the beginning of 2023, and which is estimated to be about one billion light-years away.

Milky Way

Milky Way Galaxy's spiral arms and barred core – based on WISE data

The Milky Way was once considered an ordinary spiral galaxy. Astronomers first began to suspect that the Milky Way is a barred spiral galaxy in the 1960s. Their suspicions were confirmed by Spitzer Space Telescope observations in 2005, which showed that the Milky Way's central bar is larger than what was previously suspected.

Dense plasma focus

From Wikipedia, the free encyclopedia

A dense plasma focus (DPF) is a type of plasma generating system originally developed as a fusion power device starting in the early 1960s. The system demonstrated scaling laws that suggested it would not be useful in the commercial power role, and since the 1980s it has been used primarily as a fusion teaching system, and as a source of neutrons and X-rays.

The original concept was developed in 1954 by N.V. Filippov, who noticed the effect while working on early pinch machines in the USSR. A major research program on DPF was carried out in the USSR through the late 1950s, and continues to this day. A different version of the same basic concept was independently discovered in the US by J.W. Mather in the early 1960s. This version saw some development in the 1970s, and variations continue to be developed.

The basic design derives from the z-pinch concept. Both the DPF and pinch use large electrical currents run through a gas to cause it to ionize into a plasma and then pinch down on itself to increase the density and temperature of the plasma. The DPF differs largely in form; most devices use two concentric cylinders and form the pinch at the end of the central cylinder. In contrast, z-pinch systems generally use a single cylinder, sometimes a torus, and pinch the plasma into the center.

The plasma focus is similar to the high-intensity plasma gun device (HIPGD) (or just plasma gun), which ejects plasma in the form of a plasmoid, without pinching it. A comprehensive review of the dense plasma focus and its diverse applications has been made by Krishnan in 2012.

Pinch concept

Pinch-based devices are the earliest systems to be seriously developed for fusion research, starting with very small machines built in London in 1948. These normally took one of two forms; linear pinch machines are straight tubes with electrodes at both ends to apply the current into the plasma, whereas toroidal pinch machines are donut-shaped machines with large magnets wrapped around them that supply the current via magnetic induction.

In both types of machines, a large burst of current is applied to a dilute gas inside the tube. This current initially ionizes the gas into a plasma. Once the ionization is complete, which occurs in microseconds, the plasma begins to conduct a current. Due to the Lorentz force, this current creates a magnetic field that causes the plasma to "pinch" itself down into a filament, similar to a lightning bolt. This process increases the density of the plasma very rapidly, causing its temperature to increase.

Early devices quickly demonstrated a problem with the stability of this process. As the current began to flow in the plasma, magnetic effects known as the "sausage" and "kink" appeared that caused the plasma to become unstable and eventually hit the sides of the container. When this occurred, the hot plasma would cause atoms of the metal or glass to spall off and enter the fuel, rapidly cooling the plasma. Unless the plasma could be made stable, this loss process would make fusion impossible.

In the mid-1950s, two possible solutions appeared. In the fast-pinch concept, a linear device would undergo the pinch so quickly that the plasma as a whole would not move, instead only the outermost layer would begin to pinch, creating a shock wave that would continue the process after the current was removed. In the stabilized pinch, new magnetic fields would be added that would mix with the current's field and create a more stable configuration. In testing, neither of these systems worked, and the pinch route to fusion was largely abandoned by the early 1960s.

DPF concept

During experiments on a linear pinch machine, Filippov noticed that certain arrangements of the electrodes and tube would cause the plasma to form into new shapes. This led to the DPF concept.

In a typical DPF machine, there are two cylindrical electrodes. The inner one, often solid, is physically separated from the outer by an insulating disk at one end of the device. It is left open at the other end. The end result is something like a coffee mug with a half hot dog standing on its end in the middle of the mug.

When current is applied, it begins to arc at the path of least resistance, at the end near the insulator disk. This causes the gas in the area to rapidly ionize, and current begins to flow through it to the outer electrode. The current creates a magnetic field that begins to push the plasma down the tube towards the open end. It reaches the end in microseconds.

When it reaches the end, it continues moving for a short time, but the endpoints of the current sheet remain attached to the end of the cylinders. This causes the plasma sheet to bow out into a shape not unlike an umbrella or the cap of a mushroom.

At this point further movement stops, and the continuing current instead begins to pinch the section near the central electrode. Eventually this causes the former ring-shaped area to compress down into a vertical post extending off the end of the inner electrode. In this area the density is greatly increased.

The whole process proceeds at many times the speed of sound in the ambient gas. As the current sheath continues to move axially, the portion in contact with the anode slides across the face of the anode, axisymmetrically. When the imploding front of the shock wave coalesces onto the axis, a reflected shock front emanates from the axis until it meets the driving current sheath which then forms the axisymmetric boundary of the pinched, or focused, hot plasma column.

The dense plasma column (akin to the Z-pinch) rapidly pinches and undergoes instabilities and breaks up. The intense electromagnetic radiation and particle bursts, collectively referred to as multi-radiation occur during the dense plasma and breakup phases. These critical phases last typically tens of nanoseconds for a small (kJ, 100 kA) focus machine to around a microsecond for a large (MJ, several MA) focus machine.

The process, including axial and radial phases, may last, for the Mather DPF machine, a few microseconds (for a small focus) to 10 microseconds for a larger focus machine. A Filippov focus machine has a very short axial phase compared to a Mather focus.

Applications

When operated using deuterium, intense bursts of X-rays and charged particles are emitted, as are nuclear fusion byproducts including neutrons. There is ongoing research that demonstrates potential applications as a soft X-ray source for next-generation microelectronics lithography, surface micromachining, pulsed X-ray and neutron source for medical and security inspection applications and materials modification, among others.

For nuclear weapons applications, dense plasma focus devices can be used as an external neutron source. Other applications include simulation of nuclear explosions (for testing of the electronic equipment) and a short and intense neutron source useful for non-contact discovery or inspection of nuclear materials (uranium, plutonium).

Characteristics

An important characteristic of the dense plasma focus is that the energy density of the focused plasma is practically a constant over the whole range of machines, from sub-kilojoule machines to megajoule machines, when these machines are tuned for optimal operation. This means that a small table-top-sized plasma focus machine produces essentially the same plasma characteristics (temperature and density) as the largest plasma focus. Of course the larger machine will produce the larger volume of focused plasma with a corresponding longer lifetime and more radiation yield.

Even the smallest plasma focus has essentially the same dynamic characteristics as larger machines, producing the same plasma characteristics and the same radiation products. This is due to the scalability of plasma phenomena.

See also plasmoid, the self-contained magnetic plasma ball that may be produced by a dense plasma focus.

Design parameters

The fact that the plasma energy density is constant throughout the range of plasma focus devices, from big to small, is related to the value of a design parameter that needs to be kept at a certain value if the plasma focus is to operate efficiently.

The critical 'speed' design parameter for neutron-producing devices is , where is the current, is the anode radius, and is the gas density or pressure.

For example, for neutron-optimised operation in deuterium the value of this critical parameter, experimentally observed over a range of machines from kilojoules to hundreds of kilojoules, is: 9 kA/(mm·Torr0.5), or 780 kA/(m·Pa0.5), with a remarkably small deviation of 10% over such a large range of sizes of machines.

Thus if we have a peak current of 180 kA we require an anode radius of 10 mm with a deuterium fill pressure of 4 Torr (530 Pa). The length of the anode has then to be matched to the risetime of the capacitor current in order to allow an average axial transit speed of the current sheath of just over 50 mm/μs. Thus a capacitor risetime of 3 μs requires a matched anode length of 160 mm.

The above example of peak current of 180 kA rising in 3 μs, anode radius and length of respectively 10 and 160 mm are close to the design parameters of the UNU/ICTP PFF (United Nations University/International Centre for Theoretical Physics Plasma Fusion Facility). This small table-top device was designed as a low-cost integrated experimental system for training and transfer to initiate/strengthen experimental plasma research in developing countries.

It can be noted that the square of the drive parameter is a measure of the "plasma energy density".

On the other hand, another proposed, so called "energy density parameter" , where E is the energy stored in the capacitor bank and a is the anode radius, for neutron-optimised operation in deuterium the value of this critical parameter, experimentally observed over a range of machines from tens of joules to hundreds of kilojoules, is in the order of J/m3. For example, for a capacitor bank of 3kJ, the anode radius is in the order of 12mm. This parameter has a range of 3.6x10^9 to 7.6x10^11 for the machines surveyed by Soto. The wide range of this parameter is because it is a "storage energy density" which translates into plasma energy density with different efficiency depending on the widely differing performance of different machines. Thus to result in the necessary plasma energy density (which is found to be a near constant for optimized neutron production) requires widely differing initial storage density.

Current research

A network of ten identical DPF machines operates in eight countries around the world. This network produces research papers on topics including machine optimization & diagnostics (soft x-rays, neutrons, electron and ion beams), applications (microlithography, micromachining, materials modification and fabrication, imaging & medical, astrophysical simulation) as well as modeling & computation. The network was organized by Sing Lee in 1986 and is coordinated by the Asian African Association for Plasma Training, AAAPT. A simulation package, the Lee Model, has been developed for this network but is applicable to all plasma focus devices. The code typically produces excellent agreement between computed and measured results, and is available for downloading as a Universal Plasma Focus Laboratory Facility. The Institute for Plasma Focus Studies IPFS was founded on 25 February 2008 to promote correct and innovative use of the Lee Model code and to encourage the application of plasma focus numerical experiments. IPFS research has already extended numerically-derived neutron scaling laws to multi-megajoule experiments. These await verification. Numerical experiments with the code have also resulted in the compilation of a global scaling law indicating that the well-known neutron saturation effect is better correlated to a scaling deterioration mechanism. This is due to the increasing dominance of the axial phase dynamic resistance as capacitor bank impedance decreases with increasing bank energy (capacitance). In principle, the resistive saturation could be overcome by operating the pulse power system at a higher voltage.

The International Centre for Dense Magnetised Plasmas (ICDMP) in Warsaw Poland, operates several plasma focus machines for an international research and training programme. Among these machines is one with energy capacity of 1 MJ making it one of the largest plasma focus devices in the world.

In Argentina there is an Inter-institutional Program for Plasma Focus Research since 1996, coordinated by a National Laboratory of Dense Magnetized Plasmas (www.pladema.net) in Tandil, Buenos Aires. The Program also cooperates with the Chilean Nuclear Energy Commission, and networks the Argentine National Energy Commission, the Scientific Council of Buenos Aires, the University of Center, the University of Mar del Plata, The University of Rosario, and the Institute of Plasma Physics of the University of Buenos Aires. The program operates six Plasma Focus Devices, developing applications, in particular ultra-short tomography and substance detection by neutron pulsed interrogation. PLADEMA also contributed during the last decade with several mathematical models of Plasma Focus. The thermodynamic model was able to develop for the first time design maps combining geometrical and operational parameters, showing that there is always an optimum gun length and charging pressure which maximize the neutron emission. Currently there is a complete finite-elements code validated against numerous experiments, which can be used confidently as a design tool for Plasma Focus.

In Chile, at the Chilean Nuclear Energy Commission the plasma focus experiments have been extended to sub-kilojoules devices and the scales rules have been stretched up to region less than one joule. Their studies have contributes to know that is possible to scale the plasma focus in a wide range of energies and sizes keeping the same value of ion density, magnetic field, plasma sheath velocity, Alfvén speed and the quantity of energy per particle. Therefore, fusion reactions are even possible to be obtained in ultraminiature devices (driven by generators of 0.1J for example), as they are in the bigger devices (driven by generators of 1MJ). However, the stability of the plasma pinch highly depends on the size and energy of the device. A rich plasma phenomenology it has been observed in the table-top plasma focus devices developed at the Chilean Nuclear Energy Commission: filamentary structures, toroidal singularities, plasma bursts and plasma jets generations. In addition, possible applications are explored using these kind of small plasma devices: development of portable generator as non-radioactive sources of neutrons and x-rays for field applications, pulsed radiation applied to biological studies, plasma focus as neutron source for nuclear fusion-fission hybrid reactors, and the use of plasma focus devices as plasma accelerators for studies of materials under intense fusion-relevant pulses. In addition, Chilean Nuclear Energy Commission currently operates the facility SPEED-2, the largest Plasma Focus facility of the southern hemisphere.

Since the beginning of 2009, a number of new plasma focus machines have been/are being commissioned including the INTI Plasma Focus in Malaysia, the NX3 in Singapore, the first plasma focus to be commissioned in a US university in recent times, the KSU Plasma Focus at Kansas State University which recorded its first fusion neutron emitting pinch on New Year's Eve 2009 and the IR-MPF-100 plasma focus (115kJ) in Iran.

Fusion power

Several groups proposed that fusion power based on the DPF could be economically viable, possibly even with low-neutron fuel cycles like p-B11. The feasibility of net power from p-B11 in the DPF requires that the bremsstrahlung losses be reduced by quantum mechanical effects induced by an extremely strong magnetic field "frozen into the plasma". The high magnetic field also results in a high rate of emission of cyclotron radiation, but at the densities envisioned, where the plasma frequency is larger than the cyclotron frequency, most of this power will be reabsorbed before being lost from the plasma. Another advantage claimed is the capability of direct conversion of the energy of the fusion products into electricity, with an efficiency potentially above 70%.

Lawrenceville Plasma Physics

Experiments and computer simulations to investigate the capability of DPF for fusion power are underway at Lawrenceville Plasma Physics (LPP) under the direction of Eric Lerner, who explained his "Focus Fusion" approach in a 2007 Google Tech Talk. On November 14, 2008, Lerner received funding for continued research, to test the scientific feasibility of Focus Fusion.

On October 15, 2009, the DPF device "Focus Fusion-1" achieved its first pinch. On January 28, 2011, LPP published initial results including experimental shots with considerably higher fusion yields than the historical DPF trend. In March, 2012, the company announced that it had achieved temperatures of 1.8 billion degrees, beating the old record of 1.1 billion that had survived since 1978. In 2016 the company announced that it had achieved a fusion yield of 0.25 joules. In 2017 the company reduced impurities by mass by 3x and ion numbers by 10x. Fusion yield increased by 50%. Fusion yield doubled compared to other plasma focus devices with the same 60 kJ energy input. In addition, mean ion energy increased to a record of 240 ± 20 keV for any confined fusion plasma. A deuterium-nitrogen mix and corona-discharge pre-ionization reduced the fusion yield standard deviation by 4x to about 15%.

In 2019, the team conducted a series of experiments replacing tungsten electrodes with beryllium electrodes (termed Focus Fusion 2B). After 44 shots, the electrode formed a much thinner 10 nm oxide layer with correspondingly fewer impurities and less electrode erosion than with tungsten electrodes. Fusion yield reached 0.1 joule. Yield generally increased and impurities decreased with an increasing number of shots.

Planetary nebula

From Wikipedia, the free encyclopedia
 
Planetary nebula
N1535s.jpg
Characteristics
TypeEmission nebula
Mass range0.1M-1M
Size range~1 ly
Density100 to 10,000 particles per cm3
External links
inline Media category
inline Q13632
Additional Information
Discovered1764, Charles Messier
The image's organization is similar to that of a cat's eye. A bright, almost pinpoint, white circle in the center depicts the central star. The central star is encapsulated by a purple and red irregularly edged, elliptically shaped area which suggests a three-dimensional shell. This is surrounded by a pair of superimposed circular regions of red with yellow and green edges, suggesting another three-dimensional shell.
X-ray/optical composite image of the Cat's Eye Nebula (NGC 6543)
 
Two cameras aboard Webb Telescope captured the latest image of this planetary nebula, cataloged as NGC 3132, and known informally as the Southern Ring Nebula. It is approximately 2,500 light-years away.
Two cameras aboard Webb Telescope captured the latest image of this planetary nebula, cataloged as NGC 3132, and known informally as the Southern Ring Nebula. It is approximately 2,500 light-years away.
 
NGC 6326, a planetary nebula with glowing wisps of outpouring gas that are lit up by a binary central star

A planetary nebula (PN, plural PNe) is a type of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from red giant stars late in their lives.

The term "planetary nebula" is a misnomer because they are unrelated to planets. The term originates from the planet-like round shape of these nebulae observed by astronomers through early telescopes. The first usage may have occurred during the 1780s with the English astronomer William Herschel who described these nebulae as resembling planets; however, as early as January 1779, the French astronomer Antoine Darquier de Pellepoix described in his observations of the Ring Nebula, "very dim but perfectly outlined; it is as large as Jupiter and resembles a fading planet". Though the modern interpretation is different, the old term is still used.

All planetary nebulae form at the end of the life of a star of intermediate mass, about 1-8 solar masses. It is expected that the Sun will form a planetary nebula at the end of its life cycle. They are relatively short-lived phenomena, lasting perhaps a few tens of millennia, compared to considerably longer phases of stellar evolution. Once all of the red giant's atmosphere has been dissipated, energetic ultraviolet radiation from the exposed hot luminous core, called a planetary nebula nucleus (P.N.N.), ionizes the ejected material. Absorbed ultraviolet light then energizes the shell of nebulous gas around the central star, causing it to appear as a brightly coloured planetary nebula.

Planetary nebulae probably play a crucial role in the chemical evolution of the Milky Way by expelling elements into the interstellar medium from stars where those elements were created. Planetary nebulae are observed in more distant galaxies, yielding useful information about their chemical abundances.

Starting from the 1990s, Hubble Space Telescope images revealed that many planetary nebulae have extremely complex and varied morphologies. About one-fifth are roughly spherical, but the majority are not spherically symmetric. The mechanisms that produce such a wide variety of shapes and features are not yet well understood, but binary central stars, stellar winds and magnetic fields may play a role.

Observations

Colorful shell which has an almost eye like appearance. The center shows the small central star with a blue circular area that could represent the iris. This is surrounded by an iris like area of concentric orange bands. This is surrounded by an eyelid shaped red area before the edge where plain space is shown. Background stars dot the whole image.
NGC 7293, the Helix Nebula.
 
Spherical shell of colored area against background stars. Intricate cometary-like knots radiate inwards from the edge to about a third of the way to the center. The center half contains brighter spherical shells that overlap each other and have rough edges. Lone central star is visible in the middle. No background stars are visible.
NGC 2392, the Eskimo Nebula.

Discovery

The first planetary nebula discovered (though not yet termed as such) was the Dumbbell Nebula in the constellation of Vulpecula. It was observed by Charles Messier on July 12, 1764 and listed as M27 in his catalogue of nebulous objects. To early observers with low-resolution telescopes, M27 and subsequently discovered planetary nebulae resembled the giant planets like Uranus. As early as January 1779, the French astronomer Antoine Darquier de Pellepoix described in his observations of the Ring Nebula, "a very dull nebula, but perfectly outlined; as large as Jupiter and looks like a fading planet".

The nature of these objects remained unclear. In 1782, William Herschel, discoverer of Uranus, found the Saturn Nebula (NGC 7009) and described it as "A curious nebula, or what else to call it I do not know". He later described these objects as seeming to be planets "of the starry kind". As noted by Darquier before him, Herschel found that the disk resembled a planet but it was too faint to be one. In 1785, Herschel wrote to Jérôme Lalande:

These are celestial bodies of which as yet we have no clear idea and which are perhaps of a type quite different from those that we are familiar with in the heavens. I have already found four that have a visible diameter of between 15 and 30 seconds. These bodies appear to have a disk that is rather like a planet, that is to say, of equal brightness all over, round or somewhat oval, and about as well defined in outline as the disk of the planets, of a light strong enough to be visible with an ordinary telescope of only one foot, yet they have only the appearance of a star of about ninth magnitude.

He assigned these to Class IV of his catalogue of "nebulae", eventually listing 78 "planetary nebulae", most of which are in fact galaxies.

Herschel used the term "planetary nebulae" for these objects. The origin of this term not known. The label "planetary nebula" became ingrained in the terminology used by astronomers to categorize these types of nebulae, and is still in use by astronomers today.

Spectra

The nature of planetary nebulae remained unknown until the first spectroscopic observations were made in the mid-19th century. Using a prism to disperse their light, William Huggins was one of the earliest astronomers to study the optical spectra of astronomical objects.

On August 29, 1864, Huggins was the first to analyze the spectrum of a planetary nebula when he observed Cat's Eye Nebula. His observations of stars had shown that their spectra consisted of a continuum of radiation with many dark lines superimposed. He found that many nebulous objects such as the Andromeda Nebula (as it was then known) had spectra that were quite similar. However, when Huggins looked at the Cat's Eye Nebula, he found a very different spectrum. Rather than a strong continuum with absorption lines superimposed, the Cat's Eye Nebula and other similar objects showed a number of emission lines. Brightest of these was at a wavelength of 500.7 nanometres, which did not correspond with a line of any known element.

At first, it was hypothesized that the line might be due to an unknown element, which was named nebulium. A similar idea had led to the discovery of helium through analysis of the Sun's spectrum in 1868. While helium was isolated on Earth soon after its discovery in the spectrum of the Sun, "nebulium" was not. In the early 20th century, Henry Norris Russell proposed that, rather than being a new element, the line at 500.7 nm was due to a familiar element in unfamiliar conditions.

Physicists showed in the 1920s that in gas at extremely low densities, electrons can occupy excited metastable energy levels in atoms and ions that would otherwise be de-excited by collisions that would occur at higher densities. Electron transitions from these levels in nitrogen and oxygen ions (O+, O2+ (a.k.a. O iii), and N+) give rise to the 500.7 nm emission line and others. These spectral lines, which can only be seen in very low-density gases, are called forbidden lines. Spectroscopic observations thus showed that nebulae were made of extremely rarefied gas.

Planetary nebula NGC 3699 is distinguished by an irregular mottled appearance and a dark rift.

Central stars

The central stars of planetary nebulae are very hot. Only when a star has exhausted most of its nuclear fuel can it collapse to a small size. Planetary nebulae are understood as a final stage of stellar evolution. Spectroscopic observations show that all planetary nebulae are expanding. This led to the idea that planetary nebulae were caused by a star's outer layers being thrown into space at the end of its life.

Modern observations

Towards the end of the 20th century, technological improvements helped to further the study of planetary nebulae. Space telescopes allowed astronomers to study light wavelengths outside those that the Earth's atmosphere transmits. Infrared and ultraviolet studies of planetary nebulae allowed much more accurate determinations of nebular temperatures, densities and elemental abundances. Charge-coupled device technology allowed much fainter spectral lines to be measured accurately than had previously been possible. The Hubble Space Telescope also showed that while many nebulae appear to have simple and regular structures when observed from the ground, the very high optical resolution achievable by telescopes above the Earth's atmosphere reveals extremely complex structures.

Under the Morgan-Keenan spectral classification scheme, planetary nebulae are classified as Type-P, although this notation is seldom used in practice.

Origins

Central star has elongated S shaped curve of white emanating in opposite directions to the edge. A butterfly-like area surrounds the S shape with the S shape corresponding to the body of the butterfly.
Computer simulation of the formation of a planetary nebula from a star with a warped disk, showing the complexity which can result from a small initial asymmetry.

Stars greater than 8 solar masses (M) will probably end their lives in dramatic supernovae explosions, while planetary nebulae seemingly only occur at the end of the lives of intermediate and low mass stars between 0.8 M to 8.0 M. Progenitor stars that form planetary nebulae will spend most of their lifetimes converting their hydrogen into helium in the star's core by nuclear fusion at about 15 million K. This generated energy creates outward pressure from fusion reactions in the core, balancing the crushing inward pressures of the star's gravity. This state of equilibrium is known as the main sequence, which can last for tens of millions to billions of years, depending on the mass.

When the hydrogen source in the core starts to diminish, gravity starts compressing the core, causing a rise in temperature to about 100 million K. Such higher core temperatures then make the star's cooler outer layers expand to create much larger red giant stars. This end phase causes a dramatic rise in stellar luminosity, where the released energy is distributed over a much larger surface area, which in fact causes the average surface temperature to be lower. In stellar evolution terms, stars undergoing such increases in luminosity are known as asymptotic giant branch stars (AGB). During this phase, the star can lose 50 to 70% of its total mass from its stellar wind.

For the more massive asymptotic giant branch stars that form planetary nebulae, whose progenitors exceed about 3M, their cores will continue to contract. When temperatures reach about 100 million K, the available helium nuclei fuse into carbon and oxygen, so that the star again resumes radiating energy, temporarily stopping the core's contraction. This new helium burning phase (fusion of helium nuclei) forms a growing inner core of inert carbon and oxygen. Above it is a thin helium-burning shell, surrounded in turn by a hydrogen-burning shell. However, this new phase lasts only 20,000 years or so, a very short period compared to the entire lifetime of the star.

The venting of atmosphere continues unabated into interstellar space, but when the outer surface of the exposed core reaches temperatures exceeding about 30,000 K, there are enough emitted ultraviolet photons to ionize the ejected atmosphere, causing the gas to shine as a planetary nebula.

Lifetime

The Necklace Nebula consists of a bright ring, measuring about two light-years across, dotted with dense, bright knots of gas that resemble diamonds in a necklace. The knots glow brightly due to absorption of ultraviolet light from the central stars.

After a star passes through the asymptotic giant branch (AGB) phase, the short planetary nebula phase of stellar evolution begins as gases blow away from the central star at speeds of a few kilometers per second. The central star is the remnant of its AGB progenitor, an electron-degenerate carbon-oxygen core that has lost most of its hydrogen envelope due to mass loss on the AGB. As the gases expand, the central star undergoes a two-stage evolution, first growing hotter as it continues to contract and hydrogen fusion reactions occur in the shell around the core and then slowly cooling when the hydrogen shell is exhausted through fusion and mass loss. In the second phase, it radiates away its energy and fusion reactions cease, as the central star is not heavy enough to generate the core temperatures required for carbon and oxygen to fuse. During the first phase, the central star maintains constant luminosity, while at the same time it grows ever hotter, eventually reaching temperatures around 100,000 K. In the second phase, it cools so much that it does not give off enough ultraviolet radiation to ionize the increasingly distant gas cloud. The star becomes a white dwarf, and the expanding gas cloud becomes invisible to us, ending the planetary nebula phase of evolution. For a typical planetary nebula, about 10,000 years passes between its formation and recombination of the resulting plasma.

Role in galactic enrichment

ESO 455-10 is a planetary nebula located in the constellation of Scorpius (The Scorpion).

Planetary nebulae may play a very important role in galactic evolution. Newly born stars consist almost entirely of hydrogen and helium, but as stars evolve through the asymptotic giant branch phase, they create heavier elements via nuclear fusion which are eventually expelled by strong stellar winds. Planetary nebulae usually contain larger proportions of elements such as carbon, nitrogen and oxygen, and these are recycled into the interstellar medium via these powerful winds. In this way, planetary nebulae greatly enrich the Milky Way and their nebulae with these heavier elements – collectively known by astronomers as metals and specifically referred to by the metallicity parameter Z.

Subsequent generations of stars formed from such nebulae also tend to have higher metallicities. Although these metals are present in stars in relatively tiny amounts, they have marked effects on stellar evolution and fusion reactions. When stars formed earlier in the universe they theoretically contained smaller quantities of heavier elements. Known examples are the metal poor Population II stars. (See Stellar population.) Identification of stellar metallicity content is found by spectroscopy.

Characteristics

Physical characteristics

Elliptical shell with fine red outer edge surrounding region of yellow and then pink around a nearly circular blue area with the central star at its center. A few background stars are visible.
NGC 6720, the Ring Nebula
 

A typical planetary nebula is roughly one light year across, and consists of extremely rarefied gas, with a density generally from 100 to 10,000 particles per cm3. (The Earth's atmosphere, by comparison, contains 2.5×1019 particles per cm3.) Young planetary nebulae have the highest densities, sometimes as high as 106 particles per cm3. As nebulae age, their expansion causes their density to decrease. The masses of planetary nebulae range from 0.1 to 1 solar masses.

Radiation from the central star heats the gases to temperatures of about 10,000 K. The gas temperature in central regions is usually much higher than at the periphery reaching 16,000–25,000 K. The volume in the vicinity of the central star is often filled with a very hot (coronal) gas having the temperature of about 1,000,000 K. This gas originates from the surface of the central star in the form of the fast stellar wind.

Nebulae may be described as matter bounded or radiation bounded. In the former case, there is not enough matter in the nebula to absorb all the UV photons emitted by the star, and the visible nebula is fully ionized. In the latter case, there are not enough UV photons being emitted by the central star to ionize all the surrounding gas, and an ionization front propagates outward into the circumstellar envelope of neutral atoms.

Numbers and distribution

About 3000 planetary nebulae are now known to exist in our galaxy, out of 200 billion stars. Their very short lifetime compared to total stellar lifetime accounts for their rarity. They are found mostly near the plane of the Milky Way, with the greatest concentration near the Galactic Center.

Morphology

Only about 20% of planetary nebulae are spherically symmetric (for example, see Abell 39). A wide variety of shapes exist with some very complex forms seen. Planetary nebulae are classified by different authors into: stellar, disk, ring, irregular, helical, bipolar, quadrupolar, and other types, although the majority of them belong to just three types: spherical, elliptical and bipolar. Bipolar nebulae are concentrated in the galactic plane, probably produced by relatively young massive progenitor stars; and bipolars in the galactic bulge appear to prefer orienting their orbital axes parallel to the galactic plane. On the other hand, spherical nebulae are probably produced by old stars similar to the Sun.

The huge variety of the shapes is partially the projection effect—the same nebula when viewed under different angles will appear different. Nevertheless, the reason for the huge variety of physical shapes is not fully understood. Gravitational interactions with companion stars if the central stars are binary stars may be one cause. Another possibility is that planets disrupt the flow of material away from the star as the nebula forms. It has been determined that the more massive stars produce more irregularly shaped nebulae. In January 2005, astronomers announced the first detection of magnetic fields around the central stars of two planetary nebulae, and hypothesized that the fields might be partly or wholly responsible for their remarkable shapes.

Membership in clusters

Abell 78, 24 inch telescope on Mt. Lemmon, AZ. Courtesy of Joseph D. Schulman.

Planetary nebulae have been detected as members in four Galactic globular clusters: Messier 15, Messier 22, NGC 6441 and Palomar 6. Evidence also points to the potential discovery of planetary nebulae in globular clusters in the galaxy M31. However, there is currently only one case of a planetary nebula discovered in an open cluster that is agreed upon by independent researchers. That case pertains to the planetary nebula PHR 1315-6555 and the open cluster Andrews-Lindsay 1. Indeed, through cluster membership, PHR 1315-6555 possesses among the most precise distances established for a planetary nebula (i.e., a 4% distance solution). The cases of NGC 2818 and NGC 2348 in Messier 46, exhibit mismatched velocities between the planetary nebulae and the clusters, which indicates they are line-of-sight coincidences. A subsample of tentative cases that may potentially be cluster/PN pairs includes Abell 8 and Bica 6, and He 2-86 and NGC 4463.

Theoretical models predict that planetary nebulae can form from main-sequence stars of between one and eight solar masses, which puts the progenitor star's age at greater than 40 million years. Although there are a few hundred known open clusters within that age range, a variety of reasons limit the chances of finding a planetary nebula within. For one reason, the planetary nebula phase for more massive stars is on the order of millennia, which is a blink of the eye in astronomic terms. Also, partly because of their small total mass, open clusters have relatively poor gravitational cohesion and tend to disperse after a relatively short time, typically from 100 to 600 million years.

Current issues in planetary nebula studies

The distances to planetary nebulae are generally poorly determined, but the Gaia mission is now measuring direct parallactic distances between their central stars and neighboring stars. It is also possible to determine distances to nearby planetary nebula by measuring their expansion rates. High resolution observations taken several years apart will show the expansion of the nebula perpendicular to the line of sight, while spectroscopic observations of the Doppler shift will reveal the velocity of expansion in the line of sight. Comparing the angular expansion with the derived velocity of expansion will reveal the distance to the nebula.

The issue of how such a diverse range of nebular shapes can be produced is a debatable topic. It is theorised that interactions between material moving away from the star at different speeds gives rise to most observed shapes. However, some astronomers postulate that close binary central stars might be responsible for the more complex and extreme planetary nebulae. Several have been shown to exhibit strong magnetic fields, and their interactions with ionized gas could explain some planetary nebulae shapes.

There are two main methods of determining metal abundances in nebulae. These rely on recombination lines and collisionally excited lines. Large discrepancies are sometimes seen between the results derived from the two methods. This may be explained by the presence of small temperature fluctuations within planetary nebulae. The discrepancies may be too large to be caused by temperature effects, and some hypothesize the existence of cold knots containing very little hydrogen to explain the observations. However, such knots have yet to be observed.

Hydrogen-like atom

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Hydrogen-like_atom ...