Search This Blog

Wednesday, October 29, 2025

Isotope

From Wikipedia, the free encyclopedia
The three naturally occurring isotopes of hydrogen. The fact that each nuclide has 1 proton makes them all isotopes of hydrogen: the identity of the isotope is given by the number of protons and neutrons. From left to right, the isotopes are protium (1H) with 0 neutrons, deuterium (2H) with 1 neutron, and tritium (3H) with 2 neutrons.

Isotopes are distinct nuclear species (or nuclides) of the same chemical element. They have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), but different nucleon numbers (mass numbers) due to different numbers of neutrons in their nuclei. While all isotopes of a given element have virtually the same chemical properties, they have different atomic masses and physical properties.

The term isotope comes from the Greek roots isos (ἴσος "equal") and topos (τόπος "place"), meaning "the same place": different isotopes of an element occupy the same place on the periodic table. It was coined by Scottish doctor and writer Margaret Todd in a 1913 suggestion to the British chemist Frederick Soddy, who popularized the term.

The number of protons within the atom's nucleus is called its atomic number and is equal to the number of electrons in the neutral (non-ionized) atom. Each atomic number identifies a specific element, but not the isotope; an atom of a given element may have a wide range in its number of neutrons. The number of nucleons (both protons and neutrons) in the nucleus is the atom's mass number, and each isotope of a given element has a different mass number.

For example, carbon-12, carbon-13, and carbon-14 are three isotopes of the element carbon with mass numbers 12, 13, and 14, respectively. The atomic number of carbon is 6, which means that every carbon atom has 6 protons so that the neutron numbers of these isotopes are 6, 7, and 8 respectively.

Isotope vs. nuclide

A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example, carbon-13 with 6 protons and 7 neutrons. Thus the terms are roughly synonymous, but the nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, whereas the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear. The neutron number greatly affects nuclear properties, but its effect on chemical properties is negligible for most elements. Even for the lightest elements, whose ratio of neutron number to atomic number varies the most between isotopes, it usually has only a small effect although it matters in some circumstances (for hydrogen, the lightest element, the isotope effect is large enough to affect biology strongly). The term isotopes (originally also isotopic elements, now sometimes isotopic nuclides) is intended to imply comparison (like synonyms or isomers). For example, the nuclides 12
6
C
, 13
6
C
, 14
6
C
are isotopes (nuclides with the same atomic number but different mass numbers), but 40
18
Ar
, 40
19
K
, 40
20
Ca
are isobars (nuclides with the same mass number). As the older and better-known term, isotope is however still used in some contexts where nuclide might be more appropriate, such as in nuclear technology and nuclear medicine.

Notation

This is a diagram that explains AZE notation. On the left is a model of an atom, with a nucleus in the middle consisting of two circular protons marked with a "+" symbol tightly placed next to two blue neutrons. A ring surrounds the nucleus, containing two circular electrons that are smaller than the neutrons and the electrons. A description for protons says in a neutral atom they are the same as the number of electrons. On the right is the AZE notation of Helium, with the chemical symbol He with a superscript and subscript to the left of the symbol. The superscript, 4, is the atomic / mass number, the sum of the protons and neutrons. The subscript, 2, is the number of protons.
An explanation of the superscripts and subscripts seen in AZE notation.

An isotope/nuclide is specified by the name of the element (this indicates the atomic number) followed by a hyphen and the mass number (e.g. helium-3, helium-4, carbon-12, carbon-14, uranium-235 and uranium-239). When a chemical symbol is used, e.g. "C" for carbon, standard notation (also known as "AZE notation" as it is written AZE where A is the mass number, Z the atomic number, and E the element name) is to indicate the mass number (number of nucleons) with a superscript at the upper left of the chemical symbol and to indicate the atomic number with a subscript at the lower left (e.g. 3
2
He
, 4
2
He
, 12
6
C
, 14
6
C
, 235
92
U
, and 239
92
U
). Because the atomic number is already fixed by the element symbol, it is common to state only the mass number in the superscript and leave out the atomic number subscript (e.g. 3He, 4He, 12C, 14C, 235U, and 239U). The letter m (for metastable) is appended after the mass number to indicate a nuclear isomer, a metastable or energetically excited nuclear state (as opposed to the lowest-energy ground state), for example 180m
73
Ta
(tantalum-180m); a number can be appended to it to distinguish different metastable states, though this is rare in practice.

The common pronunciation of the AZE notation is different from how it is written: 4
2
He
is commonly pronounced helium-four instead of four-two-helium, and 235
92
U
uranium two-thirty-five (American English) or uranium-two-three-five (British) instead of 235-92-uranium or 235-uranium. This is not an error but the original spoken usage for isotope names, originating before AZE notation became established.

Radioactive, primordial, and stable isotopes

Some isotopes/nuclides are radioactive, and are therefore called radioisotopes or radionuclides, whereas others have never been observed to decay radioactively and are called stable isotopes or stable nuclides. For example, 14C is a radioactive form of carbon, while 12C and 13C are stable isotopes. There are about 339 naturally occurring nuclides on Earth, of which 286 are primordial nuclides, meaning that they have existed since the Solar System's formation.

Primordial nuclides include 35 nuclides with very long half-lives (over 100 million years) and 251 that are considered "stable nuclides", as they have not been observed to decay. In most cases, if an element has stable isotopes, those isotopes predominate in the elemental abundance found on Earth and in the Solar System. However, in the cases of three elements (tellurium, indium, and rhenium) the most abundant isotope found in nature is actually one (or two) extremely long-lived radioisotope(s) of the element, despite these elements having one or more stable isotopes.

Theory predicts that many apparently "stable" nuclides are radioactive, with extremely long half-lives (discounting the possibility of proton decay, which would make all nuclides ultimately unstable). Some stable nuclides are in theory energetically susceptible to other known forms of decay, such as alpha decay or double beta decay, but no decay products have yet been observed, and so these isotopes are said to be "observationally stable". The predicted half-lives for these nuclides often greatly exceed the estimated age of the universe, and in fact, there are also 31 known radionuclides (see primordial nuclide) with half-lives longer than the age of the universe.

The total of all known nuclides, of which most have been created only artificially, is several thousand, of which 987 are stable or have a half-life longer than one hour; see List of nuclides.

History

Radioactive isotopes

The existence of isotopes was first suggested in 1913 by the radiochemist Frederick Soddy, based on studies of radioactive decay chains that indicated about 40 different species referred to as radioelements (i.e. radioactive elements) between uranium and lead, although the periodic table only allowed for 11 elements between lead and uranium inclusive.

Several attempts to separate these new radioelements chemically had failed. For example, Soddy had shown in 1910 that mesothorium (later shown to be 228Ra), radium (226Ra, the longest-lived isotope), and thorium X (224Ra) are impossible to separate. Attempts to place the radioelements in the periodic table led Soddy and Kazimierz Fajans independently to propose their radioactive displacement law in 1913, to the effect that alpha decay produced an element two places to the left in the periodic table, whereas beta decay emission produced an element one place to the right. Soddy recognized that emission of an alpha particle followed by two beta particles led to the formation of an element chemically identical to the initial element but with a mass four units lighter and with different radioactive properties.

Soddy proposed that several types of atoms (differing in radioactive properties) could occupy the same place in the table. For example, the alpha-decay of uranium-235 forms thorium-231, whereas the beta decay of actinium-230 forms thorium-230. The term "isotope", Greek for "at the same place", was suggested to Soddy by Margaret Todd, a Scottish physician and family friend, during a conversation in which he explained his ideas to her. He received the 1921 Nobel Prize in Chemistry in part for his work on isotopes.

In the bottom right corner of J. J. Thomson's photographic plate are the separate impact marks for the two isotopes of neon: neon-20 and neon-22.

In 1914 T. W. Richards found variations between the atomic weight of lead from different mineral sources, attributable to radiogenic variations in isotopic composition; the natural radioactive series ending with three different isotopes of lead.

Stable isotopes

The first evidence for multiple isotopes of a stable (non-radioactive) element was found by J. J. Thomson in 1912 as part of his exploration into the composition of canal rays (positive ions). Thomson channelled streams of neon ions through parallel magnetic and electric fields, measured their deflection by placing a photographic plate in their path, and computed their mass to charge ratio using a method that became known as the Thomson's parabola method. Each stream created a glowing patch on the plate at the point it struck. Thomson observed two separate parabolic patches of light on the photographic plate (see image), which suggested two species of nuclei with different mass-to-charge ratios. He wrote "There can, therefore, I think, be little doubt that what has been called neon is not a simple gas but a mixture of two gases, one of which has an atomic weight about 20 and the other about 22. The parabola due to the heavier gas is always much fainter than that due to the lighter, so that probably the heavier gas forms only a small percentage of the mixture."

F. W. Aston subsequently discovered multiple stable isotopes for numerous elements using a mass spectrograph, related to Thomson's method. In 1919 Aston studied neon with sufficient resolution to show that the two isotopic masses are very close to the integers 20 and 22, and that neither is equal to the known molar mass (20.2) of neon gas. This is an example of Aston's whole number rule for isotopic masses, now known to be exceptionless, which states that large deviations of elemental molar masses from integers are due to the fact that the element is a mixture of isotopes. Aston similarly showed in 1920 that the molar mass of chlorine (35.45) is a weighted average of the almost integral masses for the two isotopes 35Cl and 37Cl.

Neutrons

After the discovery of the neutron by James Chadwick in 1932, the ultimate root cause for the existence of isotopes was clarified, that is, the nuclei of different isotopes for a given element have different numbers of neutrons, albeit having the same number of protons.

Variation in properties between isotopes

Chemical and molecular properties

A neutral atom has the same number of electrons as protons. Thus different isotopes of a given element all have the same number of electrons and share a similar electronic structure. Because the chemical behaviour of an atom is largely determined by its electronic structure, different isotopes exhibit nearly identical chemical behaviour.

The main exception to this is the kinetic isotope effect: due to their larger masses, heavier isotopes tend to react somewhat more slowly than lighter isotopes of the same element. This is most pronounced by far for protium (1
H
), deuterium (2
H
), and tritium (3
H
), because deuterium has twice the mass of protium and tritium has three times the mass of protium. These mass differences also affect the behavior of their respective chemical bonds, by changing the center of gravity (reduced mass) of the atomic systems. However, for heavier elements, the relative mass difference between isotopes is much less so that the mass-difference effects on chemistry are usually negligible. (Heavy elements also have relatively more neutrons than lighter elements, so the ratio of the nuclear mass to the collective electronic mass is slightly greater.) There is also an equilibrium isotope effect.

Isotope half-lives. Z = number of protons. N = number of neutrons. The plot for stable isotopes diverges from the line Z = N as the element number Z becomes larger

Similarly, two molecules that differ only in the isotopes of their atoms (isotopologues) have identical electronic structures, and therefore almost indistinguishable physical and chemical properties (again with deuterium and tritium being the primary exceptions). The vibrational modes of a molecule are determined by its shape and by the masses of its constituent atoms; so different isotopologues have different sets of vibrational modes. Because vibrational modes allow a molecule to absorb photons of corresponding energies, isotopologues have different optical properties in the infrared range.

Nuclear properties and stability

Atomic nuclei consist of protons and neutrons bound together by the residual strong force. Because protons are positively charged, they repel each other. Neutrons, which are electrically neutral, stabilize the nucleus in two ways. Their copresence pushes protons slightly apart, reducing the electrostatic repulsion between the protons, and they exert an attractive nuclear force on each other and on protons. For this reason, one or more neutrons are necessary for two or more protons to bind into a nucleus. As the number of protons increases, so does the ratio of neutrons to protons necessary to ensure a stable nucleus (see graph at right). For example, although the neutron:proton ratio of 3
2
He
is 1:2, the neutron:proton ratio of 238
92
U
is greater than 3:2. A number of lighter elements have stable nuclides with the ratio 1:1 (Z = N). The nuclide 40
20
Ca
(calcium-40) is observationally the heaviest stable nuclide with the same number of neutrons and protons. All stable nuclides heavier than calcium-40 contain more neutrons than protons.

Numbers of isotopes per element

Of the 80 elements with a stable isotope, the largest number of stable isotopes observed for any element is ten (for the element tin). No element has nine or eight stable isotopes. Five elements have seven stable isotopes, seven have six stable isotopes, eleven have five stable isotopes, nine have four stable isotopes, five have three stable isotopes, 16 have two stable isotopes (counting 180m
73
Ta
as stable), and 26 elements have only a single stable isotope (of these, 19 are so-called mononuclidic elements, having a single primordial stable isotope that dominates and fixes the atomic weight of the natural element to high precision; two radioactive mononuclidic elements occur as well). In total, there are 251 nuclides that have not been observed to decay. For the 80 elements that have one or more stable isotopes, the average number of stable isotopes is 251/80 ≈ 3.14 isotopes per element.

Even and odd nucleon numbers

Even/odd Z, N (1
H
as OE
)
p, n EE OO EO OE Total
Stable 145 5 53 48 251
Long-lived 23 4 3 5 35
All primordial 168 9 56 53 286

The proton:neutron ratio is not the only factor affecting nuclear stability. It depends also on evenness or oddness of its atomic number Z, neutron number N and, consequently, of their sum, the mass number A. Oddness of both Z and N tends to lower the nuclear binding energy, making odd nuclei, generally, less stable. This remarkable difference of nuclear binding energy between neighbouring nuclei, especially of odd-A isobars, has important consequences: unstable isotopes with a nonoptimal number of neutrons or protons decay by beta decay (including positron emission), electron capture, or other less common decay modes such as spontaneous fission and cluster decay.

Most stable nuclides are even-proton-even-neutron, where all numbers Z, N, and A are even. The odd-A stable nuclides are divided (roughly evenly) into odd-proton-even-neutron, and even-proton-odd-neutron nuclides. Stable odd-proton-odd-neutron nuclides are the least common.

Even atomic number

The 146 even-proton, even-neutron (EE) nuclides comprise ~58% of all stable nuclides and all have spin 0 because of pairing. There are also 24 primordial long-lived even-even nuclides. As a result, each of the 41 even-numbered elements from 2 to 82 has at least one stable isotope, and most of these elements have several primordial isotopes. Half of these even-numbered elements have six or more stable isotopes. The extreme stability of helium-4 due to a double pairing of 2 protons and 2 neutrons prevents any nuclides containing five (5
2
He
, 5
3
Li
) or eight (8
4
Be
) nucleons from existing long enough to serve as platforms for the buildup of heavier elements via nuclear fusion in stars (see triple alpha process).

Even-odd long-lived

Decay Half-life
113
48
Cd
beta 7.7×1015 a
147
62
Sm
alpha 1.06×1011 a
235
92
U
alpha 7.04×108 a

Only five stable nuclides contain both an odd number of protons and an odd number of neutrons. The first four "odd-odd" nuclides occur in low mass nuclides, for which changing a proton to a neutron or vice versa would lead to a very lopsided proton-neutron ratio (2
1
H
, 6
3
Li
, 10
5
B
, and 14
7
N
; spins 1, 1, 3, 1). The only other entirely "stable" odd-odd nuclide, 180m
73
Ta
(spin 9), is thought to be the rarest of the 251 stable nuclides, and is the only primordial nuclear isomer, which has not yet been observed to decay despite experimental attempts.

Many odd-odd radionuclides (such as the ground state of tantalum-180) with comparatively short half-lives are known. Usually, they beta-decay to their nearby even-even isobars that have paired protons and paired neutrons. Of the nine primordial odd-odd nuclides (five stable and four radioactive with long half-lives), only 14
7
N
is the most common isotope of a common element. This is the case because it is a part of the CNO cycle. The nuclides 6
3
Li
and 10
5
B
are minority isotopes of elements that are themselves rare compared to other light elements, whereas the other six isotopes make up only a tiny percentage of the natural abundance of their elements.

Odd atomic number

53 stable nuclides have an even number of protons and an odd number of neutrons. They are a minority in comparison to the even-even isotopes, which are about 3 times as numerous. Among the 41 even-Z elements that have a stable nuclide, only two elements (argon and cerium) have no even-odd stable nuclides. One element (tin) has three. There are 24 elements that have one even-odd nuclide and 13 that have two odd-even nuclides. Of 35 primordial radionuclides there exist four even-odd nuclides (see table at right), including the fissile 235
92
U
. Because of their odd neutron numbers, the even-odd nuclides tend to have large neutron capture cross-sections, due to the energy that results from neutron-pairing effects. These stable even-proton odd-neutron nuclides tend to be uncommon by abundance in nature, generally because, to form and enter into primordial abundance, they must have escaped capturing neutrons to form yet other stable even-even isotopes, during both the s-process and r-process of neutron capture, during nucleosynthesis in stars. For this reason, only 195
78
Pt
and 9
4
Be
are the most naturally abundant isotopes of their element.

48 stable odd-proton-even-neutron nuclides, stabilized by their paired neutrons, form most of the stable isotopes of the odd-numbered elements; the very few odd-proton-odd-neutron nuclides comprise the others. There are 41 odd-numbered elements with Z = 1 through 81, of which 39 have stable isotopes (technetium (
43
Tc
) and promethium (
61
Pm
) have no stable isotopes). Of these 39 odd Z elements, 30 elements (including hydrogen-1 where 0 neutrons is even) have one stable odd-even isotope, and nine elements: chlorine (
17
Cl
), potassium (
19
K
), copper (
29
Cu
), gallium (
31
Ga
), bromine (
35
Br
), silver (
47
Ag
), antimony (
51
Sb
), iridium (
77
Ir
), and thallium (
81
Tl
), have two odd-even stable isotopes each. This makes a total 30 + 2(9) = 48 stable odd-even isotopes.

There are also five primordial long-lived radioactive odd-even isotopes, 87
37
Rb
, 115
49
In
, 187
75
Re
, 151
63
Eu
, and 209
83
Bi
. The last two were only recently found to decay, with half-lives greater than 1018 years.

Odd neutron number

Neutron number parity (1
H
as even
)
N Even Odd
Stable 193 58
Long-lived 28 7
All primordial 221 65

Actinides with odd neutron number are generally fissile (with thermal neutrons), whereas those with even neutron number are generally not, though they are fissionable with fast neutrons. All observationally stable odd-odd nuclides have nonzero integer spin. This is because the single unpaired neutron and unpaired proton have a larger nuclear force attraction to each other if their spins are aligned (producing a total spin of at least 1 unit), instead of anti-aligned. See deuterium for the simplest case of this nuclear behavior.

Only 195
78
Pt
, 9
4
Be
, and 14
7
N
have odd neutron number and are the most naturally abundant isotope of their element.

Occurrence in nature

Elements are composed either of one nuclide (mononuclidic elements), or of more than one naturally occurring isotopes. The unstable (radioactive) isotopes are either primordial or postprimordial. Primordial isotopes were a product of stellar nucleosynthesis or another type of nucleosynthesis such as cosmic ray spallation, and have persisted down to the present because their rate of decay is very slow (e.g. uranium-238 and potassium-40). Post-primordial isotopes were created by cosmic ray bombardment as cosmogenic nuclides (e.g., tritium, carbon-14), or by the decay of a radioactive primordial isotope to a radioactive radiogenic nuclide daughter (e.g. uranium to radium). A few isotopes are naturally synthesized as nucleogenic nuclides, by some other natural nuclear reaction, such as when neutrons from natural nuclear fission are absorbed by another atom.

As discussed above, only 80 elements have any stable isotopes, and 26 of these have only one stable isotope. Thus, about two-thirds of stable elements occur naturally on Earth in multiple stable isotopes, with the largest number of stable isotopes for an element being ten, for tin (
50
Sn
). There are about 94 elements found naturally on Earth (up to plutonium inclusive), though some are detected only in very tiny amounts, such as plutonium-244. Scientists estimate that the elements that occur naturally on Earth (some only as radioisotopes) occur as 339 isotopes (nuclides) in total. Only 251 of these naturally occurring nuclides are stable, in the sense of never having been observed to decay as of the present time. An additional 35 primordial nuclides (to a total of 286 primordial nuclides), are radioactive with known half-lives, but have half-lives longer than 100 million years, allowing them to exist from the beginning of the Solar System. See list of nuclides for details.

All the known stable nuclides occur naturally on Earth; the other naturally occurring nuclides are radioactive but occur on Earth due to their relatively long half-lives, or else due to other means of ongoing natural production. These include the afore-mentioned cosmogenic nuclides, the nucleogenic nuclides, and any radiogenic nuclides formed by ongoing decay of a primordial radioactive nuclide, such as radon and radium from uranium.

An additional ~3000 radioactive nuclides not found in nature have been created in nuclear reactors and in particle accelerators. Many short-lived nuclides not found naturally on Earth have also been observed by spectroscopic analysis, being naturally created in stars or supernovae. An example is aluminium-26, which is not naturally found on Earth but is found in abundance on an astronomical scale.

The tabulated atomic masses of elements are averages that account for the presence of multiple isotopes with different masses. Before the discovery of isotopes, empirically determined noninteger values of relative atomic mass confounded scientists. For example, a sample of chlorine contains 75.8% chlorine-35 and 24.2% chlorine-37, giving an average atomic mass of 35.5 daltons.

According to generally accepted cosmology theory, only isotopes of hydrogen and helium, traces of some isotopes of lithium and beryllium, and perhaps some boron, were created at the Big Bang, while all other nuclides were synthesized later, in stars and supernovae, and in interactions between energetic particles such as cosmic rays, and previously produced nuclides. (See nucleosynthesis for details of the various processes thought responsible for isotope production.) The respective abundances of isotopes on Earth result from the quantities formed by these processes, their spread through the galaxy, and the rates of decay for isotopes that are unstable. After the initial coalescence of the Solar System, isotopes were redistributed according to mass, and the isotopic composition of elements varies slightly from planet to planet. This sometimes makes it possible to trace the origin of meteorites.

Atomic mass of isotopes

The atomic mass of an isotope (nuclide) is determined mainly by its atomic mass number (i.e. number of nucleons in its nucleus). Small corrections are due to the binding energy of the nucleus (see mass defect), the slight difference in mass between proton and neutron, and the mass of the electrons associated with the atom, the latter because the electron:nucleon ratio differs among isotopes.

The mass number is a dimensionless quantity. The atomic mass, on the other hand, is measured using the dalton (symbol Da), which is defined in terms of the mass of the carbon-12 atom. It is also called the unified atomic mass unit (symbol u).

The atomic masses of naturally occurring isotopes of an element determine the standard atomic weight of the element. When the element contains N isotopes, the expression below is applied for the average atomic mass :

where m1, m2, ..., mN are the atomic masses of each individual isotope, and x1, ..., xN are the relative abundances of these isotopes.

Applications of isotopes

Purification of isotopes

Several applications exist that capitalize on the properties of the various isotopes of a given element. Isotope separation is a significant technological challenge, particularly with heavy elements such as uranium or plutonium. Lighter elements such as lithium, carbon, nitrogen, and oxygen are commonly separated by gas diffusion of their compounds such as CO and NO. The separation of hydrogen and deuterium is unusual because it is based on chemical rather than physical properties, for example in the Girdler sulfide process. Uranium isotopes have been separated in bulk by gas diffusion, gas centrifugation, laser ionization separation, and (in the Manhattan Project) by a type of production mass spectrometry.

Use of chemical and biological properties

  • Isotope analysis is the determination of isotopic signature, the relative abundances of isotopes of a given element in a particular sample. Isotope analysis is frequently done by isotope ratio mass spectrometry. For biogenic substances in particular, significant variations of isotopes of C, N, and O can occur. Analysis of such variations has a wide range of applications, such as the detection of adulteration in food products or the geographic origins of products using isoscapes. The identification of certain meteorites as having originated on Mars is based in part upon the isotopic signature of trace gases contained in them.
  • Isotopic substitution can be used to determine the mechanism of a chemical reaction via the kinetic isotope effect.
  • Another common application is isotopic labeling, the use of unusual isotopes as tracers or markers in chemical reactions. Normally, atoms of a given element are indistinguishable from each other. However, by using isotopes of different masses, even different nonradioactive stable isotopes can be distinguished by mass spectrometry or infrared spectroscopy. For example, in 'stable isotope labeling with amino acids in cell culture (SILAC)' stable isotopes are used to quantify proteins. If radioactive isotopes are used, they can be detected by the radiation they emit (this is called radioisotopic labeling).
  • Isotopes are commonly used to determine the concentration of various elements or substances using the isotope dilution method, whereby known amounts of isotopically substituted compounds are mixed with the samples and the isotopic signatures of the resulting mixtures are determined with mass spectrometry.

Use of nuclear properties

  • A technique similar to radioisotopic labeling is radiometric dating: using the known half-life of an unstable element, one can calculate the amount of time that has elapsed since a known concentration of isotope existed. The most widely known example is radiocarbon dating used to determine the age of carbonaceous materials.
  • Several forms of spectroscopy rely on the unique nuclear properties of specific isotopes, both radioactive and stable. For example, nuclear magnetic resonance (NMR) spectroscopy can be used only for isotopes with a nonzero nuclear spin. The most common nuclides used with NMR spectroscopy are 1H, 2D, 15N, 13C, and 31P.
  • Mössbauer spectroscopy also relies on the nuclear transitions of specific isotopes, such as 57Fe.
  • Radionuclides also have important uses. Nuclear power and nuclear weapons development require relatively large quantities of specific isotopes. Nuclear medicine and radiation oncology utilize radioisotopes respectively for medical diagnosis and treatment.

Reusable launch vehicle

From Wikipedia, the free encyclopedia
Booster hooked up on a crane
Recovery of Falcon 9 first-stage booster after its first landing

A reusable launch vehicle has parts that can be recovered and reflown, while carrying payloads from the surface to outer space. Rocket stages are the most common launch vehicle parts aimed for reuse. Smaller parts such as fairings, boosters or rocket engines can also be reused, though reusable spacecraft may be launched on top of an expendable launch vehicle. Reusable launch vehicles do not need to make these parts for each launch, therefore reducing its launch cost significantly. However, these benefits are diminished by the cost of recovery and refurbishment.

Reusable launch vehicles may contain additional avionics and propellant, making them heavier than their expendable counterparts. Reused parts may need to enter the atmosphere and navigate through it, so they are often equipped with heat shields, grid fins, and other flight control surfaces. By modifying their shape, spaceplanes can leverage aviation mechanics to aid in its recovery, such as gliding or lift. In the atmosphere, parachutes or retrorockets may also be needed to slow it down further. Reusable parts may also need specialized recovery facilities such as runways or autonomous spaceport drone ships. Some concepts rely on ground infrastructures such as mass drivers to accelerate the launch vehicle beforehand.

Since at least in the early 20th century, single-stage-to-orbit reusable launch vehicles have existed in science fiction. In the 1970s, the first reusable launch vehicle, the Space Shuttle, was developed. However, in the 1990s, due to the program's failure to meet expectations, reusable launch vehicle concepts were reduced to prototype testing. The rise of private spaceflight companies in the 2000s and 2010s lead to a resurgence of their development, such as in SpaceShipOne, New Shepard, Electron, Falcon 9, and Falcon Heavy. Many launch vehicles are now expected to debut with reusability in the 2020s, such as Starship, New Glenn, Neutron, Maia, Miura 5, Long March 10 and 12, Terran R, Stoke Space Nova, and the suborbital Dawn Mk-II Aurora.

The impact of reusability in launch vehicles has been foundational in the space flight industry. So much so that in 2024, the Cape Canaveral Space Force Station initiated a 50-year forward looking plan for the Cape that involved major infrastructure upgrades (including to Port Canaveral) to support a higher anticipated launch cadence and landing sites for the new generation of vehicles.

Configurations

Fully reusable launch vehicle

Several companies are currently developing fully reusable launch vehicles as of January 2025. Each of them is working on a two-stage-to-orbit system. SpaceX is testing Starship, which has been in development since 2016 and has made an initial test flight in April 2023 and a total of 11 flights as of October 2025. Blue Origin, with Project Jarvis, began development work by early 2021, but has announced no date for testing and have not discussed the project publicly. Stoke Space is also developing a rocket which is planned to be reusable.

As of January 2025, Starship is the only launch vehicle intended to be fully reusable that has been fully built and tested. The fifth test flight was on October 13, 2024, in which the vehicle completed a suborbital launch and landed both stages for the second time. The Super Heavy booster was caught successfully by the "chopstick system" on Orbital Pad A for the first time. The Ship completed its second successful reentry and returned for a controlled splashdown in the Indian Ocean. The test marked the second instance that could be considered meeting all requirements to be fully reusable.

Partially reusable launch systems

Partial reusable launch systems, in the form of multiple stage to orbit systems have been so far the only reusable configurations in use. The historic Space Shuttle reused its Solid Rocket Boosters, its RS-25 engines and the Space Shuttle orbiter that acted as an orbital insertion stage, but it did not reuse the External Tank that fed the RS-25 engines. This is an example of a reusable launch system which reuses specific components of rockets. ULA's Vulcan Centaur was originally designed to reuse the first stage engines, while the tank is expended. The engines would splashdown on an inflatable aeroshell, then be recovered. On 23 February 2024, one of the nine Merlin engines powering a Falcon 9 launched for the 22nd time, making it the most reused liquid fuel engine used in an operational manner, having already surpassed Space Shuttle Main Engine number 2019's record of 19 flights. As of 2024, Falcon 9 and Falcon Heavy are the only orbital rockets to reuse their boosters, although multiple other systems are in development. All aircraft-launched rockets reuse the aircraft.

Other than that a range of non-rocket liftoff systems have been proposed and explored over time as reusable systems for liftoff, from balloons to space elevators. Existing examples are systems which employ winged horizontal jet-engine powered liftoff. Such aircraft can air launch expendable rockets and can because of that be considered partially reusable systems if the aircraft is thought of as the first stage of the launch vehicle. An example of this configuration is the Orbital Sciences Pegasus. For suborbital flight the SpaceShipTwo uses for liftoff a carrier plane, its mothership the Scaled Composites White Knight Two. Rocket Lab is working on Neutron, and the European Space Agency is working on Themis. Both vehicles are planned to recover the first stage.

So far, most launch systems achieve orbital insertion with at least partially expended multistaged rockets, particularly with the second and third stages. Only the Space Shuttle has achieved a reuse of the orbital insertion stage, by using the engines and fuel tank of its orbiter. The Buran spaceplane and Starship spacecraft are two other reusable spacecraft that were designed to be able to act as orbital insertion stages and have been produced, however the former only made one uncrewed test flight before the project was cancelled, and the latter is not yet operational, having completed eight suborbital test flights, as of April 2025, which achieved all of its mission objectives at the fourth flight.

Reusable spacecraft

Launch systems can be combined with reusable spaceplanes or capsules. The Space Shuttle orbiter, SpaceShipTwo, Dawn Mk-II Aurora, and the under-development Indian RLV-TD are examples for a reusable space vehicle (a spaceplane) as well as a part of its launch system. Contemporary reusable orbital vehicles include the X-37, Dragon 2, and the upcoming Dream Chaser, Indian RLV-TD and the upcoming European Space Rider (successor to the IXV).

As with launch vehicles, all pure spacecraft during the early decades of human capacity to achieve spaceflight were designed to be single-use items. This was true both for satellites and space probes intended to be left in space for a long time, as well as any object designed to return to Earth such as human-carrying space capsules or the sample return canisters of space matter collection missions like Stardust (1999–2006) or Hayabusa (2005–2010). Exceptions to the general rule for space vehicles were the US Gemini SC-2, the Soviet Union spacecraft Vozvraschaemyi Apparat (VA), the US Space Shuttle orbiter (mid-1970s-2011, with 135 flights between 1981 and 2011) and the Soviet Buran (1980–1988, with just one uncrewed test flight in 1988). Both of these spaceships were also an integral part of the launch system (providing launch acceleration) as well as operating as medium-duration spaceships in space. This began to change in the mid-2010s.

In the 2010s, the space transport cargo capsule from one of the suppliers resupplying the International Space Station was designed for reuse, and after 2017, NASA began to allow the reuse of the SpaceX Dragon cargo spacecraft on these NASA-contracted transport routes. This was the beginning of design and operation of a reusable space vehicle. The Boeing Starliner capsules also reduce their fall speed with parachutes and deploy an airbag shortly before touchdown on the ground, in order to retrieve and reuse the vehicle. As of 2021, SpaceX is building and testing the Starship spaceship to be capable of surviving multiple hypersonic reentries through the atmosphere so that they become truly reusable long-duration spaceships; no Starship operational flights have yet occurred.

Entry systems

Heat shield

With possible inflatable heat shields, as developed by the US (Low Earth Orbit Flight Test Inflatable Decelerator - LOFTID) and China, single-use rockets like the Space Launch System are considered to be retrofitted with such heat shields to salvage the expensive engines, possibly reducing the costs of launches significantly. Heat shields allow an orbiting spacecraft to land safely without expending very much fuel. They need not take the form of inflatable heat shields, they may simply take the form of heat-resistant tiles that prevent heat conduction. Heat shields are also proposed for use in combination with retrograde thrust to allow for full reusability as seen in Starship.

Retrograde thrust

Reusable launch system stages such as the Falcon 9 and the New Shepard employ retrograde burns for re-entry, and landing.

Landing systems

Reusable systems can come in single or multiple (two or three) stages to orbit configurations. For some or all stages the following landing system types can be employed.

Parachutes and airbags

These are landing systems that employ parachutes and bolstered hard landings, like in a splashdown at sea or a touchdown at land. The latter may require an engine burn just before landing as parachutes alone cannot slow the craft down enough to prevent injury to astronauts. This can be seen in the Soyuz capsule. Though such systems have been in use since the beginning of astronautics to recover space vehicles, only later have the vehicles been reused.

Examples include:

Horizontal (winged)

Single or main stages, as well as fly-back boosters can employ a horizontal landing system. These vehicles land on earth much like a plane does, but they usually do not use propellant during landing. Vehicles that land horizontally on a runway require wings and undercarriage. These typically consume about 9-12% of the landing vehicle mass, which either reduces the payload or increases the size of the vehicle. Concepts such as lifting bodies offer some reduction in wing mass, as does the delta wing shape of the Space Shuttle. A variant is an in-air-capture tow back system, advocated by a company called EMBENTION with its FALCon project.

Examples include:

Vertical (retrograde)

Systems like the McDonnell Douglas DC-X (Delta Clipper) and those by SpaceX are examples of a retrograde system. The boosters of Falcon 9 and Falcon Heavy land using one of their nine engines. The Falcon 9 rocket is the first orbital rocket to vertically land its first stage on the ground. The first stage of Starship is caught by the same arms that raise it to the launch platform after performing most of the typical steps of a retrograde landing. Starship's second stage is also planned to be caught by arms attached to a tower when landing on Earth or to land vertically on the Moon or Mars. Blue Origin's New Shepard suborbital rocket also lands vertically back at the launch site. Retrograde landing typically requires about 10% of the total first stage propellant, reducing the payload that can be carried due to the rocket equation.

Landing using aerostatic force

There is also the concept of a launch vehicle with an inflatable, reusable first stage. The shape of this structure will be supported by excess internal pressure (using light gases). It is assumed that the bulk density of the first stage (without propellant) is less than the bulk density of air. Upon returning from flight, such a first stage remains floating in the air (without touching the surface of the Earth). This will ensure that the first stage is retained for reuse. Increasing the size of the first stage increases aerodynamic losses. This results in a slight decrease in payload. This reduction in payload is compensated for by the reuse of the first stage.

Constraints

Extra weight

Reusable stages weigh more than equivalent expendable stages. This is unavoidable due to the supplementary systems, landing gear and/or surplus propellant needed to land a stage. The actual mass penalty depends on the vehicle and the return mode chosen.

Refurbishment

After the launcher lands, it may need to be refurbished to prepare it for its next flight. This process may be lengthy and expensive. The launcher may not be able to be recertified as human-rated after refurbishment, although SpaceX has flown reused Falcon 9 boosters for human missions. There is eventually a limit on how many times a launcher can be refurbished before it has to be retired, but how often a launcher can be reused differs significantly between the various launch system designs.

Return to launch site

After 1980, but before the 2010s, two orbital launch vehicles developed the capability to return to the launch site (RTLS). Both the US Space Shuttle—with one of its abort modes—and the Soviet Buran had a designed-in capability to return a part of the launch vehicle to the launch site via the mechanism of horizontal-landing of the spaceplane portion of the launch vehicle. In both cases, the main vehicle thrust structure and the large propellant tank were expendable, as had been the standard procedure for all orbital launch vehicles flown prior to that time. Both were subsequently demonstrated on actual orbital nominal flights, although both also had an abort mode during launch that could conceivably allow the crew to land the spaceplane following an off-nominal launch.

In the 2000s, both SpaceX and Blue Origin have privately developed a set of technologies to support vertical landing of the booster stage of a launch vehicle. After 2010, SpaceX undertook a development program to acquire the ability to bring back and vertically land a part of the Falcon 9 orbital launch vehicle: the first stage. The first successful landing was done in December 2015, since then several additional rocket stages landed either at a landing pad adjacent to the launch site or on an landing platform at sea, some distance away from the launch site. The Falcon Heavy is similarly designed to reuse the three cores comprising its first stage. On its first flight in February 2018, the two outer cores successfully returned to the launch site landing pads while the center core targeted the landing platform at sea but did not successfully land on it.

Blue Origin developed similar technologies for bringing back and landing their suborbital New Shepard, and successfully demonstrated return in 2015, and successfully reused the same booster on a second suborbital flight in January 2016. By October 2016, Blue had reflown, and landed successfully, that same launch vehicle a total of five times. It must however be noted that the launch trajectories of both vehicles are very different, with New Shepard going straight up and down without achieving orbital flight, whereas Falcon 9 has to cancel substantial horizontal velocity and return from a significant distance downrange, while delivering the payload to orbit with the second stage.

Both Blue Origin and SpaceX also have additional reusable launch vehicles under development. Blue is developing the first stage of the orbital New Glenn LV to be reusable, with first flight planned for no earlier than 2024. SpaceX has a new super-heavy launch vehicle under development for missions to interplanetary space. The SpaceX Starship is designed to support RTLS, vertical-landing and full reuse of both the booster stage and the integrated second-stage/large-spacecraft that are designed for use with Starship. Its first launch attempt took place in April 2023; however, both stages were lost during ascent. On the fourth launch attempt however, both the booster and the ship achieved a soft landing in the Gulf of Mexico and the Indian Ocean, respectively.

History

NEXUS concept
Atlantis taking off on STS-27

With the development of rocket propulsion in the first half of the twentieth century, space travel became a technical possibility. Early ideas of a single-stage reusable spaceplane proved unrealistic and although even the first practical rocket vehicles (V-2) could reach the fringes of space, reusable technology was too heavy. In addition, many early rockets were developed to deliver weapons, making reuse impossible by design. The problem of mass efficiency was overcome by using multiple expendable stages in a vertical launch multistage rocket. USAF and NACA had been studying orbital reusable spaceplanes since 1958, e.g. Dyna-Soar, but the first reusable stages did not fly until the advent of the US Space Shuttle in 1981.

Perhaps the first reusable launch vehicles were the ones conceptualized and studied by Wernher von Braun from 1948 until 1956. The von Braun ferry rocket underwent two revisions: once in 1952 and again in 1956. They would have landed using parachutes.

The General Dynamics Nexus was proposed in the 1960s as a fully reusable successor to the Saturn V rocket, having the capacity of transporting up to 450–910 t (990,000–2,000,000 lb) to orbit. See also Sea Dragon, and Douglas SASSTO.

The BAC Mustard was studied starting in 1964. It would have comprised three identical spaceplanes strapped together and arranged in two stages. During ascent the two outer spaceplanes, which formed the first stage, would detach and glide back individually to earth. It was canceled after the last study of the design in 1967 due to a lack of funds for development.

McDonnell Douglas DC-X
X-33 concept
Kistler K-1 concept
Hopper prototype Phoenix RLV
Scaled Composites SpaceShipOne

The Space Shuttle era

NASA started the Space Shuttle design process in 1968, with the vision of creating a fully reusable spaceplane using a crewed fly-back booster. This concept proved expensive and complex, therefore the design was scaled back to reusable solid rocket boosters and an expendable external tank. Space Shuttle Columbia launched and landed 27 times and was lost with all crew on the 28th landing attempt; Challenger launched and landed 9 times and was lost with all crew on the 10th launch attempt; Discovery launched and landed 39 times; Atlantis launched and landed 33 times; Endeavour launched and landed 25 times. The last mission of Space Shuttle, STS-135, landed back on Earth on 21 July 2011 after delivering supplies and equipment to the International Space Station ISS.

In 1986 President Ronald Reagan called for an air-breathing scramjet National Aerospace Plane (NASP)/X-30. The project failed due to technical issues and was canceled in 1993.

In the late 1980s a fully reusable version of the Soviet Energia rocket, the Energia II, was proposed. Its boosters and core would have had the capability of landing separately on a runway. This concept was not developed and even the original expendable Energia flew only twice in the late 1980s. The second flight launched the reusable spacecraft Buran on its first and only, uncrewed mission.

In the 1990s the McDonnell Douglas Delta Clipper VTOL SSTO proposal progressed to the testing phase. The DC-X prototype demonstrated rapid turnaround time and automatic computer control.

In mid-1990s, British research evolved an earlier HOTOL design into the Skylon design, which remained in development at Reaction Engines until 2024 when the company went bankrupt. In 2025, the European Space Agency (ESA) announced a plan to use technologies developed for Skylon's SABRE engine in its future Flying Engine Testbed initiative INVICTUS.

From the late 1990s to the 2000s, the European Space Agency (ESA) studied the recovery of the Ariane 5 solid rocket boosters. The last recovery attempt took place in 2009.

Two commercial ventures, Kistler Aerospace (later Rocketplane Kistler) and Rotary Rocket, attempted to build reusable privately developed rockets in the 1990s before going bankrupt.

NASA proposed reusable concepts to replace the Shuttle technology, to be demonstrated under the X-33 and X-34 programs, which were both cancelled in the early 2000s due to rising costs and technical issues.

The Ansari X Prize contest, created in 1996, was intended to develop private suborbital reusable vehicles. Many private companies competed, with the winner, Scaled Composites, reaching the Kármán line twice in a two-week period in 2004 with their reusable SpaceShipOne.[55] The design was later developed into the space tourism vehicle SpaceShipTwo, which flew on multiple suborbital flights, but never reached the Kármán line.

Between 1999 and 2004, the German DLR was working on two reusable launch vehicle concepts within the ASTRA (Ausgewählte Systeme und Technologien für Raumtransport) program. The Liquid Fly-back Booster (LFBB) was a winged horizontal landing booster for the Ariane family of rockets. The Hopper spacecraft was a rocket sled-launched spaceplane. In 2004, DLR performed a series of drop test with Phoenix RLV, a subscale prototype of Hopper, at the North European Aerospace Test range in Kiruna.

In 2001, the Russian Khrunichev space centre proposed a reusable fly-back booster Baikal for the Angara family of rockets. This vehicle never flew. A similar concept was later proposed by Roscosmos in 2018 with no subsequent updates.

In 2005, NASA initiated the Commercial Orbital Transportation Services (COTS) program supporting private companies in developing uncrewed cargo vehicles for resupplying the ISS. This program has briefly resurrected the reusable Kistler K-1 concept by Rocketplane Kistler before it was cancelled for lack of private funding. However, another recipient of COTS funding from NASA, SpaceX, managed to use this support to keep operating and to develop its Falcon 9 rocket, which later bacame partially reusable.

2010s

Falcon Heavy side boosters landing during 2018 demonstration mission.
Adeline concept
Long March 9 and 10 models
Next Generation Launch Vehicle (NGLV) rocket family

In 2012, SpaceX started a flight test program with experimental vehicles. These subsequently led to the development of the Falcon 9 reusable rocket launcher. SpaceX achieved the first vertical soft landing of a reusable orbital rocket stage on December 21, 2015, after delivering 11 Orbcomm OG-2 commercial satellites into low Earth orbit. The first reuse of a Falcon 9 first stage occurred on 30 March 2017. SpaceX now routinely recovers and reuses their first stages, as well as reusing fairings.

In 2015, Airbus Defence and Space proposed the Adeline reusable engine pod for the Ariane family of rockets. In 2018, CNES declared the concept not financially interesting and it hasn't been developed further.

On 23 November 2015 the New Shepard rocket became the first Vertical Take-off, Vertical Landing (VTVL) sub-orbital rocket to reach space by passing the Kármán line (100 km or 62 mi), reaching 329,839 ft (100,535 m) before returning for a propulsive landing.

In November 2016, the European Space Agency (ESA) has selected the Spanish Company PLD Space to start developing a reusable first stage under the agency's FLPP program. This project became known as Miura 5 in 2018, when PLD Space redesigned the vehicle to increase its payload capacity after a review by ESA. In April 2019, PLD Space performed a successful drop and recovery test of a Miura 5 first stage demonstrator.

In 2017, the German Aerospace Center (DLR) started working on the Reusable Flight Experiment (ReFEx) aiming to demonstrate a winged fly-back rocket booster. As of 2024, its launch was planned for late 2026 atop a Brazilian VSB-30 sounding rocket from the Koonibba Test Range in Australia.

In 2018, China was researching possible reusability for the Long March 8 system. This had been later abandoned. However, multiple Chinese private companies developing reusable launch vehicles have been performing VTVL test flights of varying complexity and success since 2019.

In March 2019, the German Aerospace Center (DLR) started working on the EU-funded project RETALT aimed at developing retropropulsion technologies for reusable rockets.

In 2019 Rocket Lab announced plans to recover and reuse the first stage of their Electron launch vehicle, intending to use parachutes and mid-air retrieval. On 20 November 2020, Rocket Lab successfully returned an Electron first stage from an orbital launch, the stage softly splashing down in the Pacific Ocean.

2020s

In 2020, the only operational reusable orbital-class launch systems were the Falcon 9 and Falcon Heavy, the latter of which is based upon the Falcon 9. SpaceX was also developing the fully reusable Starship launch system. Blue Origin was developing its New Glenn orbital rocket with a reusable first stage.

In October 2020, Roscosmos signed a development contract for Amur, a new launcher with a reusable first stage. In 2024, Roscosmos expected the vehicle to fly no earlier than 2030 and announced intention to start developing a prototype first stage in 2025.

In December 2020, the European Space Agency (ESA) signed contracts to start developing THEMIS, a prototype reusable first stage. In September 2025, the first THEMIS prototype has been fully assembled at its launch site at Esrange in Sweden. Lessons learned through the development and testing of THEMIS, as well as smaller-scale demonstrators CALLISTO, FROG-T, and FROG-H will be used in development of future European reusable launchers Maia and Ariane Next.

In January 2022, the German Aerospace Center (DLR) initiated the Advanced Technologies for High Energetic Atmospheric Flight of Launcher Stages (ATHEAt) program for demonstrating various technologies related to launch vehicle reusability. The first suborbital test flight of the program successfully launched on 6 October 2025 from Andøya Space in Norway and the second, using a different rocket booster, is scheduled for 2026 from Esrange Space Center in Sweden.

In 2022, China revealed plans to use reusable first stages on the new Long March 9 and 10 rockets, which are expected to serve the country's crewed Lunar program. In August and September 2025, China performed first hot fire tests of Long March 10's first stage, including a restart sequence likely related to first stage landing maneuvres needed for reusability.

In October 2023, the Spanish company PLD Space, supported by ESA's FLPP funding, tested various technologies for its future reusable launch vehicle Miura 5 by successfully launching the suborbital rocket Miura 1 from the El Arenosillo Test Centre in Huelva, Spain. The company claims that as much as 70% of the technology needed for Miura 5 can be tested on Miura 1.

In September 2024, the Indian government has approved plans to develop a new partially reusable rocket NGLV. The vehicle, with a VTVL first stage, is expected to be operational around 2033.

In November 2024, China debuted the Long March 12 rocket, whose later version Long March 12A is expected to have a reusable first stage. In January 2025, the Longxing-2 VTVL demonstrator, likely a precursor to Long March 12A's first stage, flew on a high altitude suborbital test flight. As of October 2025, the outcome of this test is not known publicly.

In June 2025, the Japanese company Honda performed a successful 300 m high VTVL flight of a liquid-propellant demonstrator rocket equipped with grid fins and landing legs.

In September 2025, the European Space Agency (ESA) has awarded a contract to the Italian company Avio to start developing a reusable upper stage demonstrator. Later in 2025, ESA has also awarded a related contract to the Italian company Ingegneria Dei Sistemi (IDS) to design a reusable rocket stage recovery vessel. Meanwhile, Avio has been developing the FD1 and FD2 rocket demonstrators of methalox engines for their future Vega Next rocket, with possible reusability-related features like grid fins.

On 20 October 2025, the Chinese company LandSpace performed a static-fire test of its new rocket Zhuque-3 intended for partial reusability. The first stage of the rocket was equipped with grid fins, aerodynamic chines, and landing legs. Later in October, they conducted a vertical integration rehearsal, installing the payload in its fairing on the rocket.

Distributed artificial intelligence

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Dis...