Search This Blog

Saturday, August 9, 2014

Space Launch System

Space Launch System

From Wikipedia, the free encyclopedia
 
Space Launch System
Art of SLS launch.jpg
Artist's rendering of the SLS Block 1 crewed variant launching
FunctionLaunch vehicle
Country of originUnited States
Cost per launch ()US$500 million (2012)[1]
Size
Diameter8.4 m (330 in) (core stage)
Stages2
Capacity
Payload to
LEO
70,000 to 130,000 kg (150,000 to 290,000 lb)
Associated rockets
FamilyShuttle-Derived Launch Vehicles
Launch history
StatusUndergoing development
Launch sitesLC-39, Kennedy Space Center
First flightDecember 17, 2017[2]
Notable payloadsOrion MPCV
Boosters (Block I)
No boosters2 Space Shuttle Solid Rocket Boosters
(5-segment)
Engines1
Thrust16,000 kN (3,600,000 lbf)
Total thrust32,000 kN (7,200,000 lbf)
Specific impulse269 seconds (2.64 km/s)
Burn time124 seconds
FuelAPCP
First Stage (Block I, IB, II) - Core Stage
Diameter8.4 m (330 in)
Empty mass85,270 kg (187,990 lb)
Gross mass979,452 kg (2,159,322 lb)
Engines4 RS-25D/E[3]
Thrust7,440 kN (1,670,000 lbf)
Specific impulse363 seconds (3.56 km/s) (sea level), 452 seconds (4.43 km/s) (vacuum)
FuelLH2/LOX
Second Stage (Block I) - ICPS
Length13.7 m (540 in)
Diameter5 m (200 in)
Empty mass3,490 kg (7,690 lb)
Gross mass30,710 kg (67,700 lb)
Engines1 RL10B-2
Thrust110.1 kN (24,800 lbf)
Specific impulse462 seconds (4.53 km/s)
Burn time1125 seconds
FuelLH2/LOX
Second Stage (Block IB, Block II) - Exploration Upper Stage
Engines4 RL10
Thrust440 kN (99,000 lbf)
FuelLH2/LOX

The Space Launch System (SLS) is a United States Space Shuttle-derived heavy launch vehicle being designed by NASA. It follows the cancellation of the Constellation Program, and is to replace the retired Space Shuttle. The NASA Authorization Act of 2010 envisions the transformation of the Ares I and Ares V vehicle designs into a single launch vehicle usable for both crew and cargo.
The SLS launch vehicle is to be upgraded over time with more powerful versions. Its initial Block I version, without an upper stage, is to lift a payload of 70 metric tons to low Earth orbit (LEO) and the Block IB approximately 105 metric tons.[4] The SLS Block II with an Exploration Upper Stage and advanced boosters is planned to have a payload lift capability of around 155 metric tons to LEO,[5] above the congressionally mandated minimum of 130 metric tons;[6] this would make the SLS the most capable heavy lift vehicle ever built.[7]

SLS is to be capable of lifting astronauts and hardware to near-Earth destinations such as asteroids, the Moon, Mars, and most of the Earth's Lagrangian points. SLS may also support trips to the International Space Station, if necessary. The SLS program is integrated with NASA's Orion Crew and Service Module, with astronauts returning to earth in a capsule-shaped, four-person crew module. SLS will use the ground operations and launch facilities at NASA's Kennedy Space Center, Florida. The first flight-test of the Block I variant of the vehicle, Exploration Mission 1, is scheduled to fly in 2017.

Design and development


Space Launch System's planned variants

On September 14, 2011, NASA announced its design selection for the new launch system, declaring that it would take the agency's astronauts farther into space than ever before and provide the cornerstone for future US human space exploration efforts.[8][9][10] Four versions of the launch vehicle have been planned at various times – Blocks 0, I, IA, IB and II. Each configuration utilizes different core stages, boosters and upper stages, with some components deriving directly from Space Shuttle hardware and others being developed specifically for the SLS.[11] Block II of the SLS, the most capable variant, was initially depicted as having five RS-25E engines, upgraded boosters and an 8.4-meter diameter upper stage with three J-2X engines.[12][13] Along with its baseline 8.4 meter diameter payload fairing a longer but thinner 5-meter class payload fairing with a length of 10 m or greater is also considered for propelling heavier payloads to deep space.[14] Since then a number of changes have been made, with Block 0 and Block IA no longer in design and the final Block II design being dependent on an ongoing booster competition and further analysis. The initial Block I two-stage variant will have a lift capability of between 70,000 and 77,000 kg, while the proposed Block II final variant will have similar lift capacity and height to the original Saturn V.[15] By November 2011, NASA had selected five rocket configurations for wind tunnel testing, described in three Low Earth Orbit classes; 70 metric tons (t), 95 t, and 140 t.[16]

In 2011, NASA announced that development of the Orion spacecraft from the Constellation program will continue as the Multi-Purpose Crew Vehicle (MPCV)[17] to be flown on SLS.

On July 31, 2013 the SLS passed the Preliminary Design Review (PDR). The review encompassed all aspects of the SLS' design, not only the rocket and boosters but also ground support and logistical arrangements. Successful completion of the PDR paves the way for Gate-C approval by NASA senior administration, enabling the project to move from design to implementation.[18]

Core stage

The core stage of the SLS is common to all vehicle configurations, essentially consisting of a modified Space Shuttle External Tank with the aft section adapted to accept the rocket's Main Propulsion System (MPS) and the top converted to host an interstage structure.[7][19] It will be fabricated at the Michoud Assembly Facility.[20] The stage will utilize four RS-25 engines.
  • Block 0 was an initial planning baseline version, from Shuttle components, using an 8.4 meter core stage and three RS-25D engines.[21][22] However, NASA managers preferred designing the SLS core stage to use four RS-25 engines, skipping to the Block 0 configuration, as it would remove the need to substantially redesign the core stage to accommodate an extra engine.[23]
  • Block I and IB: 8.4 meter core with four RS-25D/E engines.[11]
  • Block II: Initially planned to use five RS-25D/E engines,[12] Block II is now expected to use four engines like Block I and IB.[3]

Boosters

In addition to the thrust produced by the engines on the core stage, the first two minutes of flight will be aided by two rocket boosters mounted to either side of the core stage.

Shuttle-derived solid rocket boosters

Blocks I and IB of the SLS will use modified Space Shuttle Solid Rocket Boosters (SRBs), extended from four segments to five segments. Unlike the Space Shuttle boosters, these will not be recovered and will sink into the Atlantic Ocean downrange.[2] Alliant Techsystems (ATK), the builder of the Space Shuttle SRBs, has completed three full-scale, full-duration static tests of the five-segment rocket booster. Development motor (DM-1) was successfully tested on September 10, 2009; DM-2 on August 31, 2010 and DM-3 on September 8, 2011. For DM-2 the motor was cooled to a core temperature of 40 degrees Fahrenheit (4 degrees Celsius), and for DM-3 it was heated to above 90 °F (32 °C). In addition to other objectives, these tests validated motor performance at extreme temperatures.[24][25][26] Each five-segment SRB has a thrust of 3,600,000 lbf (16 MN) at sea level.

Advanced boosters

NASA will eventually switch from Shuttle-derived five-segment SRBs to upgraded boosters[27] These may be of either the solid rocket or liquid rocket booster type.[11] NASA originally planned to incorporate these advanced boosters in the Block IA configuration of SLS, but this was superseded by Block IB, which will continue to use five-segment SRBs combined with a new upper stage,[28] after it was determined that the Block IA configuration would result in high acceleration which would be unsuitable for Orion and could result in a costly redesign of the Block I core.[29] Prior to the selection of Block IB, NASA intended to begin the Advanced Booster Competition,[3][30][31] which would have selected an advanced booster in 2015. Though NASA is no longer planning on selecting new boosters for the first flights of SLS,[32] competitors for the advanced booster include:
  • Aerojet, in partnership with Teledyne Brown, with a domestic version of an uprated Soviet NK-33 LOX/RP-1 engine, an engine derived from the NK-15 initially designed to lift the unsuccessful N-1 Soviet moonshot vehicle, with each engine's thrust increased from 394,000 lbf (1.75 MN) to at least 500,000 lbf (2.2 MN) at sea level. This booster would be powered by eight AJ-26-500 engines,[33] or four AJ-1E6 engines[34] On February 14, 2013, NASA awarded a $23.3 million 30-month contract Aerojet to build a full-scale 550,000-pound thrust class main injector and thrust chamber to be used in the advanced booster.[35] Two standard Aerojet AJ-26 engines, together producing a combined 735,000 lbf (3.27 MN) of sea level thrust, successfully lifted the Antares rocket in 2013.[36]
  • Pratt & Whitney Rocketdyne and Dynetics, with a booster design known as "Pyrios", which would use two F-1B engines derived from the F-1 LOX/RP-1 engine that powered the first stage of the Saturn V vehicle in the Apollo program. In 2012, it was determined that if the dual-engined Pyrios booster was selected for the SLS Block II, the payload could be 150 metric tons (t) to Low Earth Orbit, 20 t more than the baseline 130 t to LEO for SLS Block II.[37] In 2013, it was reported that in comparison to the F-1 engine that it is derived from, the F-1B engine is to have improved efficiency, be more cost effective and have fewer engine parts.[38] Each F-1B is to produce 1,800,000 lbf (8.0 MN) of thrust at sea level, an increase over the 1,550,000 lbf (6.9 MN) of thrust of the initial F-1 engine.[39]
  • ATK proposed an advanced SRB named "Dark Knight" with more energetic propellant, a lighter composite case, and other design improvements to reduce costs and improve performance. ATK states it provides "capability for the SLS to achieve 130 t payload with significant margin" when combined with a Block II core stage containing five RS-25 engines. However, the advanced SRB would achieve no more than 113 t to low earth orbit with the current core stage with four RS-25 engines.[3][37][40]
Christopher Crumbly, manager of NASA’s SLS advanced development office in January 2013 commented on the booster competition, "The F-1 has great advantages because it is a gas generator and has a very simple cycle. The oxygen-rich staged combustion cycle [Aerojet’s engine] has great advantages because it has a higher specific impulse. The Russians have been flying ox[ygen]-rich for a long time. Either one can work. The solids [of ATK] can work."[41]

Upper stage


An RL10 engine, like the one pictured above, will be used as the second stage engine in both the ICPS and EUS upper stages.

SLS will make use of two upper stages, the Interim Cryogenic Propulsion Stage and the Exploration Upper Stage both powered by RL10 engines.

Confirmed upper stages

  • Block I, scheduled to fly only Exploration Mission 1 (EM-1) in 2017, will use a modified Delta IV 5 meter Delta Cryogenic Second Stage (DCSS),[42] referred to as the Interim Cryogenic Propulsion Stage (ICPS). This stage will be powered a single RL10B-2. SLS will be capable of lifting 70 metric tons in this configuration, however the ICPS will be considered part of the payload and be placed into an initial 1,800 km by -93 km suborbital trajectory along with the Orion crew capsule, where the the stage will perform an orbital insertion burn and then a translunar injection burn to send the uncrewed Orion on a circumlunar excursion.[43]
  • Block IB, scheduled to debut on Exploration Mission 2 (EM-2), will use the 8.4 meter Exploration Upper Stage (EUS), previously named the Dual Use Upper Stage (DUUS), powered by four RL10 engines.[28] The EUS is to complete the SLS ascent phase and then re-ignite to send its payload to destinations beyond low Earth orbit, similar to the role performed by the Saturn V's 3rd stage, the J-2 powered S-IVB, in function but closer to the Saturn I's 2nd stage, the S-IV, in engine layout as the S-IV contained a cluster of six RL-10 engines. The SLS's four RL-10 engined 2nd stage will be capable of placing 105[29] to 118[5] metric tons into low Earth orbit.
  • Block II, not expected until the 2030s,[29] would combine the Block IB EUS with advanced boosters and be capable of placing 155 metric tons into LEO.[5] Previously, NASA had focused development on an Earth Departure Stage powered by two or three J-2X engines,[44][45] which has been dropped in favor of the RL10 powered EUS.[28]

Other upper stages

Prior to the selection of the EUS, NASA and Boeing analyzed the performance of several upper stage options:[46]
  • Block I SLS without an upper stage would be capable of delivering 70 t to low earth orbit (LEO), and, using an ICPS, 20.2 t to Trans-Mars injection (TMI) and 2.9 t to Europa.
  • A 4 engine RL10 option, could deliver 93.1 t to LEO, 31.7 t to TMI and 8.1 t to Europa.
  • A 2 engine MB60 (an comparable to the RL60)[47] could deliver 97 t to LEO, 32.6 t to TMI and 8.5 t to Europa.
  • A single engine J-2X, with its higher thrust than other upper stage options, could deliver 105.2 t to LEO but due to lower specific impulse than the RL10 or MB60 its long range capability would be marginally lower than the previous two options: 31.6 t to TMI and 7.1 to Europa.
An additional beyond LEO engine for interplanetary travel from Earth orbit to Mars orbit, and back, is being studied at Marshall Space Flight Center with a focus on nuclear thermal rocket (NTR) engines, which would be at least twice as efficient as chemical rockets. NTR engines, such as the Pewee of Project Rover, were selected in the Mars Design Reference Architecture (DRA).[48][49][50]
An NTR equipped Mars transfer vehicle would cut down on trip times and therefore reduce the amount of time the crew would be exposed to the most penetrating cosmic rays. Over $1.5 billion has been invested over the years in the development and successful ground testing of NTR technology during Project Rover and related projects.[51]

Assembled rocket

Before launch, the SLS will have the ability to tolerate a minimum of 13 tanking cycles due to launch scrubs and other launch delays. The assembled rocket is to be able to remain at the launch pad for a minimum of 180 days and can remain in stacked configuration for at least 200 days without destacking.[52]

Program costs

During the joint Senate-NASA presentation in September 2011, it was stated that the SLS program has a projected development cost of $18 billion through 2017, with $10 billion for the SLS rocket, $6 billion for the Orion Multi-Purpose Crew Vehicle and $2 billion for upgrades to the launch pad and other facilities at Kennedy Space Center.[53] These costs and schedule are considered optimistic in an independent 2011 cost assessment report by Booz Allen Hamilton for NASA.[54] An unofficial 2011 NASA document estimated the cost of the program through 2025 to total at least $41bn for four 70 t launches (1 unmanned in 2017, 3 manned starting in 2021),[55] with the 130 t version ready no earlier than 2030.[56] HEFT estimated unit costs for Block 0 at $1.6bn and Block 1 at $1.86bn in 2010.[57]
However since these estimates were made the Block 0 was dropped in late 2011 and is no longer being designed,[23] and NASA announced in 2013 that the European Space Agency will build the Orion Service Module.[58]

NASA SLS deputy project manager Jody Singer at Marshall Space Flight Center, Huntsville, Alabama stated in September 2012 that $500 million per launch is a reasonable target cost for SLS, with a relatively minor dependence of costs on launch capability.[1] By comparison, the cost for a Saturn V launch was US$185 million in 1969 dollars.[59]

On July 24, 2014, Government Accountability Office audit predicted that SLS will not launch by the end of 2017 as planned since NASA is not receiving sufficient funding.[60]

Criticism

Criticism of SLS falls in several areas. The Space Access Society, Space Frontier Foundation and the Planetary Society called for cancellation of the project, arguing that SLS will consume the funds for other projects from the NASA budget and will not reduce launch costs;[61][62][63] some estimate this cost for the SLS to be about $8,500 per pound lifted to low earth orbit (LEO).[64][better source needed] U.S. Representative Dana Rohrabacher and others added that instead, a propellant depot should be developed and the Commercial Crew Development program accelerated.[61][65][66][67][68] Two studies, one not publicly released from NASA[69][70] and another from the Georgia Institute of Technology, show this option to be a possibly cheaper alternative.[71][72]

Others suggest it will cost less to use an existing lower payload capacity rocket (Atlas V, Delta IV, Falcon 9, or the derivative Falcon Heavy), with on-orbit assembly and propellant depots as needed, rather than develop a new launch vehicle for space exploration without competition for the whole design.[73][74][75][76][77] The Augustine commission proposed an option for a commercial 75 metric ton launcher with lower operating costs, and noted that a 40 to 60 t launcher can support lunar exploration.[78]

Mars Society founder Robert Zubrin who co-authored the influential Mars Direct concept suggested that a heavy lift vehicle should be developed for $5 billion on fixed-price requests for proposal. Zubrin also disagrees with those that say the U.S. does not need a heavy-lift vehicle.[79] Based upon extrapolations of increased payload lift capabilities from past experience with SpaceX's Falcon launch vehicles, SpaceX CEO Elon Musk guaranteed that his company could build the conceptual Falcon XX, a vehicle in the 140-150 t payload range, for $2.5 billion, or $300 million per launch, but cautioned that this price tag did not include a potential upper-stage upgrade.[80][81]

Rep. Tom McClintock and other groups argue that the Congressional mandates forcing NASA to use Space Shuttle components for SLS amounts to a de-facto non-competitive, single source requirement assuring contracts to existing shuttle suppliers, and calling the Government Accountability Office (GAO) to investigate possible violations of the Competition in Contracting Act (CICA).[62][82][83]
Opponents of the heavy launch vehicle have critically used the name "Senate launch system".[42] The Competitive Space Task Force, in September 2011, said that the new government launcher directly violates NASA’s charter, the Space Act, and the 1998 Commercial Space Act requirements for NASA to pursue the "fullest possible engagement of commercial providers" and to "seek and encourage, to the maximum extent possible, the fullest commercial use of space".[61]

Proposed missions and schedule

Some of the currently proposed NASA Design Reference Missions (DRM) and others include:[12][84][85][86][87]

An Astronaut, possibly part of Exploration Mission 2, performing a Tethering Asteroid capture Maneuver at a Near Earth Object (NEO). The Space Exploration Vehicle is close by, with the Orion Multi-Purpose Crew Vehicle (MPCV) docked to the Deep Space Habitat in the background.
  • ISS Back-Up Crew Delivery – a single launch mission of up to four astronauts via a Block 1 SLS/Orion-MPCV without an Interim Cryogenic Propulsion Stage (ICPS) to the International Space Station (ISS) if the Commercial Crew Development program does not come to fruition. This potential mission mandated by the NASA Authorization Act of 2010 is deemed undesirable since the 70 t SLS and BEO Orion would be overpriced and overpowered for the mission requirements. Its current description is “delivers crew members and cargo to ISS if other vehicles are unable to perform that function. Mission length 216 mission days. 6 crewed days. Up to 210 days at the ISS.”
  • Tactical Timeframe DRMs
    • BEO Uncrewed Lunar Fly-byExploration Mission 1 (EM-1), a reclassification of SLS-1, is a single launch mission of a Block I SLS with ICPS and a Block 1 Orion MPCV (Multi-Purpose Crew Vehicle), with a destination of 70,000 km past the lunar surface, to be conducted by 2017.[88] Its current description is “Uncrewed Lunar Flyby: Uncrewed mission Beyond Earth Orbit (BEO) to test critical mission events and demonstrate performance in relevant environments. Expected drivers include: SLS and ICPS performance, MPCV environments, MPCV re-entry speed, and BEO operations.”[84]
    • BEO Crewed Lunar OrbitExploration Mission 2 (EM-2), a reclassification of SLS-2, is a single launch mission of a Block I SLS with ICPS and lunar Block 1 Orion MPCV with a liftoff mass around 68.8 t with SLS’ Payload Insertion of 50.7 t, which would be a ten to fourteen day mission with a crew of four astronauts who would spend four days in lunar orbit. Its current description is “Crewed mission to enter lunar orbit, test critical mission events, and perform operations in relevant environments”. The destination for EM-2, as of 2013, is regarded to be a captured asteroid in lunar orbit, to be conducted by no later than 2021.[88]

Artist's rendering of the proposed Mars Transfer Vehicle (MTV) "Copernicus" that would incorporate NTR propulsion and inflatable habitat technology. A five meter diameter crewed Orion MPCV is docked on the far left.

Artist's rendering of Design Reference Mission 5.0, a Manned mission to Mars with the Descent/Ascent Vehicle on the far left, and the habitat and crewed commuter vehicle, the Small Pressurized Rover (SPR),[89] on the right. The oxygen producing In-Situ Resource Utilization factory would be emplaced about 1 km away.[90]
  • Strategic Timeframe DRMs
    • GEO mission – a dual launch mission separated by 180 days to Geostationary Orbit. The first launch would comprise an SLS with a CPS and cargo hauler, the second an SLS with a CPS and Orion MPCV. Both launches would have a mass of about 110 t.
    • A set of lunar missions enabled in the early 2020s ranging from Earth Moon Lagrangian point-1 (EML-1) and low lunar orbit (LLO) to a lunar surface mission. These missions would lead to a lunar base combining commercial and international aspects.
      • The first two missions would be single launches of SLS with a CPS and Orion MPCV to EML-1 or LLO and would have a mass of 90 t and 97.5 t respectively. The LLO mission is a crewed twelve day mission with three in Lunar orbit. Its current description is “Low Lunar Orbit (LLO): Crewed mission to LLO. Expected drivers include: SLS and CPS performance, MPCV re-entry speed, and LLO environment for MPCV”.
      • The lunar surface mission set for the late 2020s would be a dual launch separated by 120 days. This would be a nineteen-day mission with seven days on the Moon's surface. The first launch would comprise an SLS with a CPS and lunar lander, the second an SLS with a CPS and Orion MPCV. Both would enter LLO for lunar orbit rendezvous prior to landing at equatorial or polar sites on the Moon. Launches would have masses of about 130 t and 108 t, respectively. Its current description is “Lunar Surface Sortie (LSS): Lands four crew members on the surface of the Moon in the equatorial or Polar Regions and returns them to Earth,” “Expected drivers include: MPCV operations in LLO environment, MPCV uncrewed ops phase, MPCV delta V requirements, RPOD (Rendezvous, Proximity Operations and Docking), MPCV number of habitable days.”
    • Five Near Earth Asteroid (NEA) missions ranging from “Minimum” to “Full” capability are being studied. Among these are two NASA Near Earth Object (NEO) missions in 2026. A 155-day mission to NEO 1999 AO10, a 304-day mission to NEO 2001 GP2, a 490-day mission to a Potentially Hazardous Asteroid such as 2000 SG344, utilizing two Block IA/B SLS vehicles,[91] and a Boeing proposed NEO mission to NEA 2008 EV5 in 2024. The latter would start from the proposed Earth-Moon L2 based Exploration Gateway Platform. Utilising a SLS third stage the trip would take about 100 days to arrive at the asteroid, 30 days for exploration, and a 235-day return trip to Earth.[92]
    • Forward Work Martian Moon Phobos/Deimos, a crewed Flexible Path mission to one of the Martian moons. It would include 40 days in the vicinity of Mars and a return Venus flyby.
    • Forward Work Mars Landing, a crewed mission, with four to six astronauts,[93] to a semi-permanent habitat for at least 540 days on the surface of the red planet in 2033 or 2045. The mission would include in-orbit assembly, with the launch of seven SLS block II heavy lift vehicles (HLVs) with a requirement of each being able to deliver 140 metric tons to low earth orbit (LEO). The seven HLV payloads, three of which would contain nuclear propulsion modules, would be assembled in LEO into three separate vehicles for the journey to Mars; one cargo In-Situ Resource Utilization Mars Lander Vehicle (MLV) created from two HLV payloads, one Habitat MLV created from two HLV payloads and a crewed Mars Transfer Vehicle (MTV), known as "Copernicus", assembled from three HLV payloads launched a number of months later. Nuclear Thermal Rocket engines such as the Pewee of Project Rover were selected in the Mars Design Reference Architecture (DRA) study as they met mission requirements being the preferred propulsion option because it is proven technology, has higher performance, lower launch mass, creates a versatile vehicle design, offers simple assembly, and has growth potential.[49][94]

One section of the Skylab II Habitat would be made from the SLS Block II upper-stage hydrogen tank, similar to but larger than Skylab. A unique use for the SLS as no other vehicle is presently being designed with an 8 meter diameter upper stage tank.
  • Other proposed missions
    • 2024+ Single Shot MSR on SLS, a crewed flight with a telerobotic Mars Sample Return (MSR) mission proposed by NASA's Mars Program Planning Group. The time frame suggests SLS-5, a 105 t Block 1A rocket to deliver an Orion capsule, SEP robotic vehicle, and Mars Ascent Vehicle (MAV). “Sample canister could be captured, inspected, encased and retrieved tele-robotically. Robot brings sample back and rendezvous with a crew vehicle." The mission may also include a “Possible Mars SEP (Solar Electric Power/Propulsion) Orbiter”.[95]
    • Potential sample return missions to Europa and Enceladus have also been noted.[96]
    • Deep Space Habitat (DSH), NASA's planned usage of spare ISS hardware, experience, and modules for future missions to asteroids, Earth-Moon Lagrangian point and Mars.[97]
    • Skylab II, proposal by Brand Griffin, an engineer with Gray Research Inc working with NASA Marshall, to use the upper stage hydrogen tank from SLS to build a 21st-century version of Skylab for future NASA missions to asteroids, Earth-Moon Lagrangian point-2 (EML2) and Mars.[98][99][100]
    • SLS DoD Missions, the HLV will be made available for Department of Defense and other US Government agencies to launch military or classified missions.
    • Commercial payloads, such as the Bigelow Commercial Space Stations have also been referenced.
    • Additionally “Secondary Payloads” mounted on SLS via an Encapsulated Secondary Payload Adapter (ESPA) ring could also be launched in conjunction with a "primary passenger" to maximize payloads.
    • Monolithic telescope mission, SLS has been proposed by Boeing as a launch vehicle for the ATLAST Space Telescope. This could be an 8m monolithic telescope or a 16m deploy-able telescope at Earth-Sun L2.[101]

One proposed ATLAST telescope concept, a design based on an 8 meter monolithic mirror. The Hubble Space Telescope by comparison is equipped with a 2.5 m main mirror. A telescope with an 8 meter monolithic mirror is only possible with an 8+ meter diameter payload fairing.
    • Solar probe mission, SLS has been proposed by Boeing as a launch vehicle for Solar Probe 2. This probe would be placed in a low perihelion orbit to investigate corona heating and solar wind acceleration to provide forecasting of solar radiation events.[101]
    • Uranus mission, SLS has been proposed by Boeing as a launch vehicle for a Uranian probe. The rocket would “Deliver a small payload into orbit around Uranus and a shallow probe into the planet’s atmosphere.” The mission would study the Uranian atmosphere, magnetic and thermal characteristics, gravitational harmonics as well as do flybys of Uranian moons.[101]
A very preliminary and unofficial schedule based on a worst case budget (note that the IA has since been superseded by Block IB) has outlined some early SLS flights as:[102]
MissionTargeted dateVariantNotes
SLS-1/EM-1December 2017Block I[12]Send uncrewed Orion/MPCV on trip around the Moon.
SLS-2/EM-22021[103]Block IB[28]Send the Orion (spacecraft) with four members to an asteroid that had been robotically captured and placed in lunar orbit two years in advance.[91]
SLS-3August 2022[102]Block IA[12]
SLS-4August 2023[102]Block IA[12]
SLS-5August 2024[102]Block IA[102]Mars Sample Return Mission[95]
SLS-6August 2025[102]Block IA[102]Crewed "Exploration" Mission: Orion BEO picks up Mars sample & returns to Earth
SLS-7August 2026[102]Block IA[102]Cargo launch
SLS-8August 2027[102]Block IA[102]Crewed launch
SLS-9August 2028[102]Block IA[102]Cargo launch
SLS-10August 2029[102]Block IA[102]Crewed launch
SLS-11August 2030[102]Block IA[102]New configuration, Cargo launch
SLS-12August 2031[102]Block IA[102]Crewed mission
SLS-13August 2032[102]Block II[102]New configuration, Cargo launch

René Descartes

René Descartes

From Wikipedia, the free encyclopedia
 
René Descartes
Frans Hals - Portret van René Descartes.jpg
Portrait after Frans Hals, 1648[1]
Born(1596-03-31)31 March 1596
La Haye en Touraine, Kingdom of France
Died11 February 1650(1650-02-11) (aged 53)
Stockholm, Swedish Empire
NationalityFrench
ReligionCatholic[2]
Era17th-century philosophy
RegionWestern Philosophy
SchoolCartesianism, rationalism, foundationalism, founder of Cartesianism
Main interestsmetaphysics, epistemology, mathematics
Notable ideasCogito ergo sum, method of doubt, method of normals, Cartesian coordinate system, Cartesian dualism, ontological argument for the existence of God, mathesis universalis;
folium of Descartes
Influences
Influenced
SignatureFirma Descartes.svg

René Descartes (/ˈdˌkɑrt/;[5] French: [ʁəne dekaʁt]; Latinized: Renatus Cartesius; adjectival form: "Cartesian";[6] 31 March 1596 – 11 February 1650) was a French philosopher, mathematician and writer who spent most of his life in the Dutch Republic. He has been dubbed the father of modern philosophy, and much subsequent Western philosophy is a response to his writings,[7][8] which are studied closely to this day. In particular, his Meditations on First Philosophy continues to be a standard text at most university philosophy departments. Descartes' influence in mathematics is equally apparent; the Cartesian coordinate system — allowing reference to a point in space as a set of numbers, and allowing algebraic equations to be expressed as geometric shapes in a two-dimensional coordinate system (and conversely, shapes to be described as equations) — was named after him. He is credited as the father of analytical geometry, the bridge between algebra and geometry, crucial to the discovery of infinitesimal calculus and analysis. Descartes was also one of the key figures in the scientific revolution and has been described as an example of genius. He refused to accept the authority of previous philosophers and also refused to accept the obviousness of his own senses.

Descartes frequently sets his views apart from those of his predecessors. In the opening section of the Passions of the Soul, a treatise on the early modern version of what are now commonly called emotions, Descartes goes so far as to assert that he will write on this topic "as if no one had written on these matters before". Many elements of his philosophy have precedents in late Aristotelianism, the revived Stoicism of the 16th century, or in earlier philosophers like Augustine. In his natural philosophy, he differs from the schools on two major points: First, he rejects the splitting of corporeal substance into matter and form; second, he rejects any appeal to final ends—divine or natural—in explaining natural phenomena.[9] In his theology, he insists on the absolute freedom of God's act of creation.

Descartes laid the foundation for 17th-century continental rationalism, later advocated by Baruch Spinoza and Gottfried Leibniz, and opposed by the empiricist school of thought consisting of Hobbes, Locke, Berkeley, and Hume. Leibniz, Spinoza and Descartes were all well versed in mathematics as well as philosophy, and Descartes and Leibniz contributed greatly to science as well.

He is perhaps best known for the philosophical statement "Cogito ergo sum" (French: Je pense, donc je suis; I think, therefore I am), found in part IV of Discourse on the Method (1637 – written in French but with inclusion of "Cogito ergo sum") and §7 of part I of Principles of Philosophy (1644 – written in Latin).

Early life

Graduation registry for Descartes at the Collège Royal Henry-Le-Grand, La Flèche, 1616

Descartes was born in La Haye en Touraine (now Descartes), Indre-et-Loire, France. When he was one year old, his mother Jeanne Brochard died. His father Joachim was a member of the Parlement of Brittany at Rennes.[10] In 1606 or 1607 he entered the Jesuit Collège Royal Henry-Le-Grand at La Flèche[11] where he was introduced to mathematics and physics, including Galileo's work.[12] After graduation in December 1616, he studied at the University of Poitiers, earning a Baccalauréat and Licence in law, in accordance with his father's wishes that he should become a lawyer.[13]

In his book, Discourse On The Method, he says "I entirely abandoned the study of letters. Resolving to seek no knowledge other than that of which could be found in myself or else in the great book of the world, I spent the rest of my youth traveling, visiting courts and armies, mixing with people of diverse temperaments and ranks, gathering various experiences, testing myself in the situations which fortune offered me, and at all times reflecting upon whatever came my way so as to derive some profit from it."

Given his ambition to become a professional military officer, Descartes joined the Army of Breda under the command of Maurice of Nassau in the Dutch Republic, and undertook a formal study of military engineering, as established by Simon Stevin. Descartes therefore received much encouragement in Breda to advance his knowledge of mathematics.[14] In this way he became acquainted with Isaac Beeckman, principal of Dordrecht school. Beeckman had proposed a difficult mathematical problem, and to his astonishment, it was the young Descartes who found the solution.
Both believed that it was necessary to create a method that thoroughly linked mathematics and physics.[15] While in the service of the Duke Maximilian of Bavaria, Descartes was present at the Battle of the White Mountain outside Prague, in November 1620.[16]

Visions

On the night of 10–11 November 1619, while stationed in Neuburg an der Donau, Germany, Descartes shut himself in an "oven" (some type of room specially heated for that purpose) to escape the cold. While within, he had three visions and believed that a divine spirit revealed to him a new philosophy. Upon exiting he had formulated analytical geometry and the idea of applying the mathematical method to philosophy. He concluded from these visions that the pursuit of science would prove to be, for him, the pursuit of true wisdom and a central part of his life's work.[17][18]
Descartes also saw very clearly that all truths were linked with one another, so that finding a fundamental truth and proceeding with logic would open the way to all science. This basic truth, Descartes found quite soon: his famous "I think therefore I am".[15]

In 1622, he returned to France, and during the next few years spent time in Paris and other parts of Europe. It was during a stay in Paris that he composed his first essay on method: Regulae ad Directionem Ingenii (Rules for the Direction of the Mind).[15] He arrived in La Haye in 1623, selling all of his property to invest in bonds, which provided a comfortable income for the rest of his life. Descartes was present at the siege of La Rochelle by Cardinal Richelieu in 1627. In the fall of the same year, in the residence of the papal nuncio Guidi di Bagno, where he came with Mersenne and many other scholars to listen to a lecture given by the alchemist Monsieur de Chandoux on the principles of a supposed new philosophy,[19] Cardinal Bérulle urged him to write an exposition of his own new philosophy.

Work

He returned to the Dutch Republic in 1629, where he lived until September 1649. In April 1629 he joined the University of Franeker, living at the Sjaerdemaslot, and the next year, under the name "Poitevin", he enrolled at the Leiden University to study mathematics with Jacob Golius and astronomy with Martin Hortensius.[20] In October 1630 he had a falling-out with Beeckman, whom he accused of plagiarizing some of his ideas. In Amsterdam, he had a relationship with a servant girl, Helena Jans van der Strom, with whom he had a daughter, Francine, who was born in 1635 in Deventer, at which time Descartes taught at the Utrecht University. Francine Descartes died in 1640 in Amersfoort, from Scarlet Fever. Unlike many moralists of the time, Descartes was not devoid of passions but rather defended them; he wept upon her death.[21]

While in the Netherlands he changed his address frequently, living among other places in Dordrecht (1628), Franeker (1629), Amsterdam (1629–30), Leiden (1630), Amsterdam (1630–32), Deventer (1632–34), Amsterdam (1634–35), Utrecht (1635–36), Leiden (1636), Egmond (1636–38), Santpoort (1638–1640), Leiden (1640–41), Endegeest (a castle near Oegstgeest) (1641–43), and finally for an extended time in Egmond-Binnen (1643–49).

Despite these frequent moves he wrote all his major work during his 20-plus years in the Netherlands, where he managed to revolutionize mathematics and philosophy. In 1633, Galileo was condemned by the Catholic Church, and Descartes abandoned plans to publish Treatise on the World, his work of the previous four years. Nevertheless, in 1637 he published part of this work in three essays: Les Météores (The Meteors), La Dioptrique (Dioptrics) and La Géométrie (Geometry), preceded by an introduction, his famous Discours de la méthode (Discourse on the Method). In it Descartes lays out four rules of thought, meant to ensure that our knowledge rests upon a firm foundation.
René Descartes (right) with Queen Christina of Sweden (left).

Descartes continued to publish works concerning both mathematics and philosophy for the rest of his life. In 1641 he published a metaphysics work, Meditationes de Prima Philosophia (Meditations on First Philosophy), written in Latin and thus addressed to the learned. It was followed, in 1644, by Principia Philosophiæ (Principles of Philosophy), a kind of synthesis of the Meditations and the Discourse. In 1643, Cartesian philosophy was condemned at the University of Utrecht, and Descartes began his long correspondence with Princess Elisabeth of Bohemia, devoted mainly to moral and psychological subjects. Connected with this correspondence, in 1649 he published Les Passions de l'âme (Passions of the Soul), that he dedicated to the Princess. In 1647, he was awarded a pension by the King of France, though it was never paid.[22] Descartes was interviewed by Frans Burman at Egmond-Binnen in 1648.

A French translation of Principia Philosophiæ, prepared by Abbot Claude Picot, was published in 1647. This edition Descartes dedicated to Princess Elisabeth of Bohemia. In the preface Descartes praised true philosophy as a means to attain wisdom. He identifies four ordinary sources to reach wisdom, and finally says that there is a fifth, better and more secure, consisting in the search for first causes.[23]

Death

René Descartes died on 11 February 1650 in Stockholm, Sweden, while a guest at the house of the French ambassador. He had been invited by Queen Christina of Sweden to tutor her. The cause of death was said to be pneumonia. Accustomed to working in bed until noon, he may have suffered damage to his health from Christina's study regime, which began early in the morning at 5 a.m. His lack of sleep could have severely compromised his immune system. In 1991, a German scholar published a book questioning this account and more arguments against its veracity have been raised since.[24]

On the other hand, he might have been assassinated.[25] After Descartes' death, Queen Christina abdicated her throne to convert to Catholicism as Swedish law requires a Protestant ruler. The only Catholic with whom she had prolonged contact had been Descartes.[26]

In 1663, the Pope placed his works on the Index of Prohibited Books.
The tomb of Descartes (middle, with detail of the inscription), in the Abbey of Saint-Germain-des-Prés, Paris

As a Catholic in a Protestant nation, he was interred in a graveyard used mainly for unbaptized infants in Adolf Fredriks kyrka in Stockholm. Later, his remains were taken to France and buried in the Abbey of Saint-Germain-des-Prés in Paris. Although the National Convention in 1792 had planned to transfer his remains to the Panthéon, they are, two centuries later, still resting between two other graves – those of the scholarly monks Jean Mabillon and Bernard de Montfaucon — in a chapel of the abbey. His memorial, erected in the 18th century, remains in the Swedish church.

Religious beliefs

The religious beliefs of René Descartes have been rigorously debated within scholarly circles. He claimed to be a devout Catholic, saying that one of the purposes of the Meditations was to defend the Christian faith. However, in his own era, Descartes was accused of harboring secret deist or atheist beliefs. His contemporary Blaise Pascal said that "I cannot forgive Descartes; in all his philosophy, Descartes did his best to dispense with God. But Descartes could not avoid prodding God to set the world in motion with a snap of his lordly fingers; after that, he had no more use for God."[27] Stephen Gaukroger's biography of Descartes reports that "he had a deep religious faith as a Catholic, which he retained to his dying day, along with a resolute, passionate desire to discover the truth."[28] The debate continues whether Descartes was a Catholic apologist, or an atheist concealed behind pious sentiments who placed the world on a mechanistic framework, within which only man could freely move due to the grace of will granted by God.[22]

Philosophical work

Descartes is often regarded as the first thinker to emphasize the use of reason to develop the natural sciences.[29] For him the philosophy was a thinking system that embodied all knowledge, and expressed it in this way:[30]

Thus, all Philosophy is like a tree, of which Metaphysics is the root, Physics the trunk, and all the other sciences the branches that grow out of this trunk, which are reduced to three principals, namely, Medicine, Mechanics, and Ethics. By the science of Morals, I understand the highest and most perfect which, presupposing an entire knowledge of the other sciences, is the last degree of wisdom.

In his Discourse on the Method, he attempts to arrive at a fundamental set of principles that one can know as true without any doubt. To achieve this, he employs a method called hyperbolical/metaphysical doubt, also sometimes referred to as methodological skepticism: he rejects any ideas that can be doubted, and then reestablishes them in order to acquire a firm foundation for genuine knowledge.[31]

Initially, Descartes arrives at only a single principle: thought exists. Thought cannot be separated from me, therefore, I exist (Discourse on the Method and Principles of Philosophy). Most famously, this is known as cogito ergo sum (English: "I think, therefore I am"). Therefore, Descartes concluded, if he doubted, then something or someone must be doing the doubting, therefore the very fact that he doubted proved his existence. "The simple meaning of the phrase is that if one is skeptical of existence, that is in and of itself proof that he does exist."[32]
René Descartes at work

Descartes concludes that he can be certain that he exists because he thinks. But in what form? He perceives his body through the use of the senses; however, these have previously been unreliable. So Descartes determines that the only indubitable knowledge is that he is a thinking thing. Thinking is what he does, and his power must come from his essence. Descartes defines "thought" (cogitatio) as "what happens in me such that I am immediately conscious of it, insofar as I am conscious of it". Thinking is thus every activity of a person of which the person is immediately conscious.[33]

To further demonstrate the limitations of these senses, Descartes proceeds with what is known as the Wax Argument. He considers a piece of wax; his senses inform him that it has certain characteristics, such as shape, texture, size, color, smell, and so forth. When he brings the wax towards a flame, these characteristics change completely. However, it seems that it is still the same thing: it is still the same piece of wax, even though the data of the senses inform him that all of its characteristics are different. Therefore, in order to properly grasp the nature of the wax, he should put aside the senses. He must use his mind. Descartes concludes:

And so something that I thought I was seeing with my eyes is in fact grasped solely by the faculty of judgment which is in my mind.

In this manner, Descartes proceeds to construct a system of knowledge, discarding perception as unreliable and instead admitting only deduction as a method. In the third and fifth Meditation, he offers an ontological proof of a benevolent God (through both the ontological argument and trademark argument). Because God is benevolent, he can have some faith in the account of reality his senses provide him, for God has provided him with a working mind and sensory system and does not desire to deceive him. From this supposition, however, he finally establishes the possibility of acquiring knowledge about the world based on deduction and perception. In terms of epistemology therefore, he can be said to have contributed such ideas as a rigorous conception of foundationalism and the possibility that reason is the only reliable method of attaining knowledge. He, nevertheless, was very much aware that experimentation was necessary in order to verify and validate theories.[30]

Descartes also wrote a response to scepticism about the existence of the external world. He argues that sensory perceptions come to him involuntarily, and are not willed by him. They are external to his senses, and according to Descartes, this is evidence of the existence of something outside of his mind, and thus, an external world. Descartes goes on to show that the things in the external world are material by arguing that God would not deceive him as to the ideas that are being transmitted, and that God has given him the "propensity" to believe that such ideas are caused by material things.

Dualism

Descartes in his Passions of the Soul and The Description of the Human Body suggested that the body works like a machine, that it has material properties. The mind (or soul), on the other hand, was described as a nonmaterial and does not follow the laws of nature. Descartes argued that the mind interacts with the body at the pineal gland. This form of dualism or duality proposes that the mind controls the body, but that the body can also influence the otherwise rational mind, such as when people act out of passion. Most of the previous accounts of the relationship between mind and body had been uni-directional.

Descartes suggested that the pineal gland is "the seat of the soul" for several reasons. First, the soul is unitary, and unlike many areas of the brain the pineal gland appeared to be unitary (though subsequent microscopic inspection has revealed it is formed of two hemispheres). Second, Descartes observed that the pineal gland was located near the ventricles. He believed the cerebrospinal fluid of the ventricles acted through the nerves to control the body, and that the pineal gland influenced this process. Sensations delivered by the nerves to the pineal, he believed, caused it to vibrate in some sympathetic manner, which in turn gave rise to the emotions and caused the body to act.[22] Cartesian dualism set the agenda for philosophical discussion of the mind–body problem for many years after Descartes' death.[34]

In present day discussions on the practice of animal vivisection, it is normal to consider Descartes as an advocate of this practice, as a result of his dualistic philosophy. Some of the sources say that Descartes denied the animals could feel pain, and therefore could be used without concern.[35] Other sources consider that Descartes denied that animal had reason or intelligence, but did not lack sensations or perceptions, but these could be explained mechanistically.[36]

Descartes' moral philosophy

For Descartes, ethics was a science, the highest and most perfect of them. Like the rest of the sciences, ethics had its roots in metaphysics.[30] In this way he argues for the existence of God, investigates the place of man in nature, formulates the theory of mind-body dualism, and defends free will. However, as he was a convinced rationalist, Descartes clearly states that reason is sufficient in the search for the goods that we should seek, and virtue consists in the correct reasoning that should guide our actions. Nevertheless, the quality of this reasoning depends on knowledge, because a well-informed mind will be more capable of making good choices, and it also depends on mental condition. For this reason he said that a complete moral philosophy should include the study of the body. He discussed this subject in the correspondence with Princess Elisabeth of Bohemia, and as a result wrote his work The Passions of the Soul, that contains a study of the psychosomatic processes and reactions in man, with an emphasis on emotions or passions.[37]

Humans should seek the sovereign good that Descartes, following Zeno, identifies with virtue, as this produces a solid blessedness or pleasure. For Epicurus the sovereign good was pleasure, and
Descartes says that in fact this is not in contradiction with Zeno's teaching, because virtue produces a spiritual pleasure, that is better than bodily pleasure. Regarding Aristotle's opinion that happiness depends on the goods of fortune, Descartes does not deny that this good contributes to happiness, but remarks that they are in great proportion outside one's own control, whereas one's mind is under one's complete control.[37]

The moral writings of Descartes came at the last part of his life, but earlier, in his Discourse on Method he adopted three maxims to be able to act while he put all his ideas into doubt. This is known as his "Provisional Morals".

Historical impact

Cover of Meditations.

Emancipation from Church doctrine

Descartes has been often dubbed as the father of modern Western philosophy, the philosopher that with his skeptic approach has profoundly changed the course of Western philosophy and set the basis for modernity.[7][38] The first two of his Meditations on First Philosophy, those that formulate the famous methodic doubt, represent the portion of Descartes' writings that most influenced modern thinking.[39] It has been argued that Descartes himself didn't realize the extent of his revolutionary gesture.[40] In shifting the debate from "what is true" to "of what can I be certain?," Descartes shifted the authoritative guarantor of truth from God to humanity. (While the traditional concept of "truth" implies an external authority, "certainty" instead relies on the judgment of the individual.) In an anthropocentric revolution, the human being is now raised to the level of a subject, an agent, an emancipated being equipped with autonomous reason. This was a revolutionary step that posed the basis of modernity, the repercussions of which are still ongoing: the emancipation of humanity from Christian revelational truth and Church doctrine, a person who makes her own law and takes her own stand.[41][42][43] In modernity, the guarantor of truth is not God anymore but human beings, each of whom is a "self-conscious shaper and guarantor" of their own reality.[44][45] In that way, each person is turned into a reasoning adult, a subject, and agent,[44] as opposed to a child obedient to God. This change in perspective was characteristic of the shift from the Christian medieval period to the modern period; that shift had been anticipated in other fields, and now Descartes was giving it a formulation in the field of philosophy.[44][46]

This anthropocentric perspective, establishing human reason as autonomous, provided the basis for the Enlightenment's emancipation from God and the Church. It also provided the basis for all subsequent anthropology.[47] Descartes' philosophical revolution is sometimes said to have sparked modern anthropocentrism and subjectivism.[7][48][49][50]

Mathematical legacy

A Cartesian coordinates graph, using his invented x and y axes.

One of Descartes' most enduring legacies was his development of Cartesian or analytic geometry, which uses algebra to describe geometry. He "invented the convention of representing unknowns in equations by x, y, and z, and knowns by a, b, and c". He also "pioneered the standard notation" that uses superscripts to show the powers or exponents; for example, the 4 used in x4 to indicate squaring of squaring.[51][52] He was first to assign a fundamental place for algebra in our system of knowledge, and believed that algebra was a method to automate or mechanize reasoning, particularly about abstract, unknown quantities. European mathematicians had previously viewed geometry as a more fundamental form of mathematics, serving as the foundation of algebra. Algebraic rules were given geometric proofs by mathematicians such as Pacioli, Cardan, Tartaglia and Ferrari. Equations of degree higher than the third were regarded as unreal, because a three-dimensional form, such as a cube, occupied the largest dimension of reality. Descartes professed that the abstract quantity a2 could represent length as well as an area. This was in opposition to the teachings of mathematicians, such as Vieta, who argued that it could represent only area. Although Descartes did not pursue the subject, he preceded Leibniz in envisioning a more general science of algebra or "universal mathematics," as a precursor to symbolic logic, that could encompass logical principles and methods symbolically, and mechanize general reasoning.[53]

Descartes' work provided the basis for the calculus developed by Newton and Gottfried Leibniz, who applied infinitesimal calculus to the tangent line problem, thus permitting the evolution of that branch of modern mathematics.[54] His rule of signs is also a commonly used method to determine the number of positive and negative roots of a polynomial.

Descartes discovered an early form of the law of conservation of mechanical momentum (a measure of the motion of an object), and envisioned it as pertaining to motion in a straight line, as opposed to perfect circular motion, as Galileo had envisioned it. He outlined his views on the universe in his Principles of Philosophy.

Descartes also made contributions to the field of optics. He showed by using geometric construction and the law of refraction (also known as Descartes' law or more commonly Snell's law, who discovered it 16 years earlier) that the angular radius of a rainbow is 42 degrees (i.e., the angle subtended at the eye by the edge of the rainbow and the ray passing from the sun through the rainbow's centre is 42°).[55] He also independently discovered the law of reflection, and his essay on optics was the first published mention of this law.[56]

Contemporary reception

Although Descartes was well known in academic circles towards the end of his life, the teaching of his works in schools was controversial. Henri de Roy (Henricus Regius, 1598–1679), Professor of Medicine at the University of Utrecht, was condemned by the Rector of the University, Gijsbert Voet (Voetius), for teaching Descartes' physics.[57]

Writings

Handwritten letter by Descartes, December 1638.
  • 1618. Musicae Compendium. A treatise on music theory and the aesthetics of music written for Descartes' early collaborator, Isaac Beeckman (first posthumous edition 1650).
  • 1626–1628. Regulae ad directionem ingenii (Rules for the Direction of the Mind). Incomplete. First published posthumously in Dutch translation in 1684 and in the original Latin at Amsterdam in 1701 (R. Des-Cartes Opuscula Posthuma Physica et Mathematica). The best critical edition, which includes the Dutch translation of 1684, is edited by Giovanni Crapulli (The Hague: Martinus Nijhoff, 1966).
  • 1630–1631. La recherche de la vérité par la lumière naturelle (The Search for Truth) unfinished dialogue published in 1701.
  • 1630–1633. Le Monde (The World) and L'Homme (Man). Descartes' first systematic presentation of his natural philosophy. Man was published posthumously in Latin translation in 1662; and The World posthumously in 1664.
  • 1637. Discours de la méthode (Discourse on the Method). An introduction to the Essais, which include the Dioptrique, the Météores and the Géométrie.
  • 1637. La Géométrie (Geometry). Descartes' major work in mathematics. There is an English translation by Michael Mahoney (New York: Dover, 1979).
  • 1641. Meditationes de prima philosophia (Meditations on First Philosophy), also known as Metaphysical Meditations. In Latin; a French translation, probably done without Descartes' supervision, was published in 1647. Includes six Objections and Replies. A second edition, published the following year, included an additional objection and reply, and a Letter to Dinet.
  • 1644. Principia philosophiae (Principles of Philosophy), a Latin textbook at first intended by Descartes to replace the Aristotelian textbooks then used in universities. A French translation, Principes de philosophie by Claude Picot, under the supervision of Descartes, appeared in 1647 with a letter-preface to Princess Elisabeth of Bohemia.
  • 1647. Notae in programma (Comments on a Certain Broadsheet). A reply to Descartes' one-time disciple Henricus Regius.
  • 1648. La description du corps humaine (The Description of the Human Body). Published posthumously by Clerselier in 1667.
  • 1648. Responsiones Renati Des Cartes... (Conversation with Burman). Notes on a Q&A session between Descartes and Frans Burman on 16 April 1648. Rediscovered in 1895 and published for the first time in 1896. An annotated bilingual edition (Latin with French translation), edited by Jean-Marie Beyssade, was published in 1981 (Paris: PUF).
  • 1649. Les passions de l'âme (Passions of the Soul). Dedicated to Princess Elisabeth of the Palatinate.
  • 1657. Correspondance. Published by Descartes' literary executor Claude Clerselier. The third edition, in 1667, was the most complete; Clerselier omitted, however, much of the material pertaining to mathematics.
In January 2010, a previously unknown letter from Descartes, dated 27 May 1641, was found by the Dutch philosopher Erik-Jan Bos when browsing through Google. Bos found the letter mentioned in a summary of autographs kept by Haverford College in Haverford, Pennsylvania. The College was unaware that the letter had never been published. This was the third letter by Descartes found in the last 25 years.[58][59]

Introduction to entropy

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Introduct...