Search This Blog

Tuesday, March 19, 2019

Curium

From Wikipedia, the free encyclopedia

Curium,  96Cm
Curium.jpg
Curium
Pronunciation/ˈkjʊəriəm/ (KEWR-ee-əm)
Appearancesilvery metallic, glows purple in the dark
Mass number247 (most stable isotope)
Curium in the periodic table
Hydrogen
Helium
Lithium Beryllium
Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium
Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium
Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium

Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Gd

Cm

(Upn)
americiumcuriumberkelium
Atomic number (Z)96
Groupgroup n/a
Periodperiod 7
Blockf-block
Element category  actinide
Electron configuration[Rn] 5f7 6d1 7s2
Electrons per shell
2, 8, 18, 32, 25, 9, 2
Physical properties
Phase at STPsolid
Melting point1613 K ​(1340 °C, ​2444 °F)
Boiling point3383 K ​(3110 °C, ​5630 °F)
Density (near r.t.)13.51 g/cm3
Heat of fusion13.85 kJ/mol
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1788 1982



Atomic properties
Oxidation states+2, +3, +4, +5, +6, (an amphoteric oxide)
ElectronegativityPauling scale: 1.3
Ionization energies
  • 1st: 581 kJ/mol

Atomic radiusempirical: 174 pm
Covalent radius169±3 pm
Color lines in a spectral range
Spectral lines of curium
Other properties
Natural occurrencesynthetic
Crystal structuredouble hexagonal close-packed (dhcp)
Double hexagonal close packed crystal structure for curium
Electrical resistivity1.25 µΩ·m
Magnetic orderingantiferromagnetic-paramagnetic transition at 52 K
CAS Number7440-51-9
History
Namingnamed after Marie Skłodowska-Curie and Pierre Curie
DiscoveryGlenn T. Seaborg, Ralph A. James, Albert Ghiorso (1944)
Main isotopes of curium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
242Cm syn 160 d SF
α 238Pu
243Cm syn 29.1 y α 239Pu
ε 243Am
SF
244Cm syn 18.1 y SF
α 240Pu
245Cm syn 8500 y SF
α 241Pu
246Cm syn 4730 y α 242Pu
SF
247Cm syn 1.56×107 y α 243Pu
248Cm syn 3.40×105 y α 244Pu
SF
250Cm syn 9000 y SF
α 246Pu
β 250Bk

Curium is a transuranic radioactive chemical element with symbol Cm and atomic number 96. This element of the actinide series was named after Marie and Pierre Curie – both were known for their research on radioactivity. Curium was first intentionally produced and identified in July 1944 by the group of Glenn T. Seaborg at the University of California, Berkeley. The discovery was kept secret and only released to the public in November 1947. Most curium is produced by bombarding uranium or plutonium with neutrons in nuclear reactors – one tonne of spent nuclear fuel contains about 20 grams of curium.

Curium is a hard, dense, silvery metal with a relatively high melting point and boiling point for an actinide. Whereas it is paramagnetic at ambient conditions, it becomes antiferromagnetic upon cooling, and other magnetic transitions are also observed for many curium compounds. In compounds, curium usually exhibits valence +3 and sometimes +4, and the +3 valence is predominant in solutions. Curium readily oxidizes, and its oxides are a dominant form of this element. It forms strongly fluorescent complexes with various organic compounds, but there is no evidence of its incorporation into bacteria and archaea. When introduced into the human body, curium accumulates in the bones, lungs and liver, where it promotes cancer.

All known isotopes of curium are radioactive and have a small critical mass for a sustained nuclear chain reaction. They predominantly emit α-particles, and the heat released in this process can serve as a heat source in radioisotope thermoelectric generators, but this application is hindered by the scarcity and high cost of curium isotopes. Curium is used in production of heavier actinides and of the 238Pu radionuclide for power sources in artificial pacemakers. It served as the α-source in the alpha particle X-ray spectrometers installed on several space probes, including the Sojourner, Spirit, Opportunity and Curiosity Mars rovers and the Philae lander on comet 67P/Churyumov–Gerasimenko, to analyze the composition and structure of the surface.

History

The 60-inch (150 cm) cyclotron at the Lawrence Radiation Laboratory, University of California, Berkeley, in August 1939.
 
Although curium had likely been produced in previous nuclear experiments, it was first intentionally synthesized, isolated and identified in 1944, at the University of California, Berkeley, by Glenn T. Seaborg, Ralph A. James, and Albert Ghiorso. In their experiments, they used a 60-inch (150 cm) cyclotron.

Curium was chemically identified at the Metallurgical Laboratory (now Argonne National Laboratory) at the University of Chicago. It was the third transuranium element to be discovered even though it is the fourth in the series – the lighter element americium was unknown at the time.

The sample was prepared as follows: first plutonium nitrate solution was coated on a platinum foil of about 0.5 cm2 area, the solution was evaporated and the residue was converted into plutonium(IV) oxide (PuO2) by annealing. Following cyclotron irradiation of the oxide, the coating was dissolved with nitric acid and then precipitated as the hydroxide using concentrated aqueous ammonia solution. The residue was dissolved in perchloric acid, and further separation was carried out by ion exchange to yield a certain isotope of curium. The separation of curium and americium was so painstaking that the Berkeley group initially called those elements pandemonium (from Greek for all demons or hell) and delirium (from Latin for madness).

The curium-242 isotope was produced in July–August 1944 by bombarding 239Pu with α-particles to produce curium with the release of a neutron:
Curium-242 was unambiguously identified by the characteristic energy of the α-particles emitted during the decay:
The half-life of this alpha decay was first measured as 150 days and then corrected to 162.8 days.
Another isotope 240Cm was produced in a similar reaction in March 1945:
The half-life of the 240Cm α-decay was correctly determined as 26.7 days.

The discovery of curium, as well as americium, in 1944 was closely related to the Manhattan Project, so the results were confidential and declassified only in 1945. Seaborg leaked the synthesis of the elements 95 and 96 on the U.S. radio show for children, the Quiz Kids, five days before the official presentation at an American Chemical Society meeting on November 11, 1945, when one of the listeners asked whether any new transuranium element beside plutonium and neptunium had been discovered during the war. The discovery of curium (242Cm and 240Cm), their production and compounds were later patented listing only Seaborg as the inventor.

The new element was named after Marie Skłodowska-Curie and her husband Pierre Curie who are noted for discovering radium and for their work in radioactivity. It followed the example of gadolinium, a lanthanide element above curium in the periodic table, which was named after the explorer of the rare earth elements Johan Gadolin:
As the name for the element of atomic number 96 we should like to propose "curium", with symbol Cm. The evidence indicates that element 96 contains seven 5f electrons and is thus analogous to the element gadolinium with its seven 4f electrons in the regular rare earth series. On this base element 96 is named after the Curies in a manner analogous to the naming of gadolinium, in which the chemist Gadolin was honored.
The first curium samples were barely visible, and were identified by their radioactivity. Louis Werner and Isadore Perlman created the first substantial sample of 30 µg curium-242 hydroxide at the University of California in 1947 by bombarding americium-241 with neutrons. Macroscopic amounts of curium(III) fluoride were obtained in 1950 by W. W. T. Crane, J. C. Wallmann and B. B. Cunningham. Its magnetic susceptibility was very close to that of GdF3 providing the first experimental evidence for the +3 valence of curium in its compounds. Curium metal was produced only in 1951 by reduction of CmF3 with barium.

Characteristics

Physical

Double-hexagonal close packing with the layer sequence ABAC in the crystal structure of α-curium (A: green, B: blue, C: red)
 
Orange fluorescence of Cm3+ ions in a solution of tris(hydrotris)pyrazolylborato-Cm(III) complex, excited at 396.6 nm.
 
A synthetic, radioactive element, curium is a hard, dense metal with a silvery-white appearance and physical and chemical properties resembling those of gadolinium. Its melting point of 1340 °C is significantly higher than that of the previous transuranic elements neptunium (637 °C), plutonium (639 °C) and americium (1173 °C). In comparison, gadolinium melts at 1312 °C. The boiling point of curium is 3110 °C. With a density of 13.52 g/cm3, curium is significantly lighter than neptunium (20.45 g/cm3) and plutonium (19.8 g/cm3), but is heavier than most other metals. Between two crystalline forms of curium, the α-Cm is more stable at ambient conditions. It has a hexagonal symmetry, space group P63/mmc, lattice parameters a = 365 pm and c = 1182 pm, and four formula units per unit cell. The crystal consists of a double-hexagonal close packing with the layer sequence ABAC and so is isotypic with α-lanthanum. At pressures above 23 GPa, at room temperature, α-Cm transforms into β-Cm, which has a face-centered cubic symmetry, space group Fm3m and the lattice constant a = 493 pm. Upon further compression to 43 GPa, curium transforms to an orthorhombic γ-Cm structure similar to that of α-uranium, with no further transitions observed up to 52 GPa. These three curium phases are also referred to as Cm I, II and III.

Curium has peculiar magnetic properties. Whereas its neighbor element americium shows no deviation from Curie-Weiss paramagnetism in the entire temperature range, α-Cm transforms to an antiferromagnetic state upon cooling to 65–52 K, and β-Cm exhibits a ferrimagnetic transition at about 205 K. Meanwhile, curium pnictides show ferromagnetic transitions upon cooling: 244CmN and 244CmAs at 109 K, 248CmP at 73 K and 248CmSb at 162 K. The lanthanide analogue of curium, gadolinium, as well as its pnictides, also show magnetic transitions upon cooling, but the transition character is somewhat different: Gd and GdN become ferromagnetic, and GdP, GdAs and GdSb show antiferromagnetic ordering.

In accordance with magnetic data, electrical resistivity of curium increases with temperature – about twice between 4 and 60 K – and then remains nearly constant up to room temperature. There is a significant increase in resistivity over time (about 10 µΩ·cm/h) due to self-damage of the crystal lattice by alpha radiation. This makes uncertain the absolute resistivity value for curium (about 125 µΩ·cm). The resistivity of curium is similar to that of gadolinium and of the actinides plutonium and neptunium, but is significantly higher than that of americium, uranium, polonium and thorium.

Under ultraviolet illumination, curium(III) ions exhibit strong and stable yellow-orange fluorescence with a maximum in the range about 590–640 nm depending on their environment. The fluorescence originates from the transitions from the first excited state 6D7/2 and the ground state 8S7/2. Analysis of this fluorescence allows monitoring interactions between Cm(III) ions in organic and inorganic complexes.

Chemical

Curium ions in solution almost exclusively assume the oxidation state of +3, which is the most stable oxidation state for curium. The +4 oxidation state is observed mainly in a few solid phases, such as CmO2 and CmF4. Aqueous curium(IV) is only known in the presence of strong oxidizers such as potassium persulfate, and is easily reduced to curium(III) by radiolysis and even by water itself. The chemical behavior of curium is different from the actinides thorium and uranium, and is similar to that of americium and many lanthanides. In aqueous solution, the Cm3+ ion is colorless to pale green, and Cm4+ ion is pale yellow. The optical absorption of Cm3+ ions contains three sharp peaks at 375.4, 381.2 and 396.5 nanometers and their strength can be directly converted into the concentration of the ions. The +6 oxidation state has only been reported once in solution in 1978, as the curyl ion (CmO2+
2
): this was prepared from the beta decay of americium-242 in the americium(V) ion 242AmO+
2
. Failure to obtain Cm(VI) from oxidation of Cm(III) and Cm(IV) may be due to the high Cm4+/Cm3+ ionization potential and the instability of Cm(V).

Curium ions are hard Lewis acids and thus form most stable complexes with hard bases. The bonding is mostly ionic, with a small covalent component. Curium in its complexes commonly exhibits a 9-fold coordination environment, within a tricapped trigonal prismatic geometry.

Isotopes

Thermal neutron cross sections (barns)

242Cm 243Cm 244Cm 245Cm 246Cm 247Cm
Fission 5 617 1.04 2145 0.14 81.90
Capture 16 130 15.20 369 1.22 57
C/F ratio 3.20 0.21 14.62 0.17 8.71 0.70
LEU spent fuel 20 years after 53 MWd/kg burnup
3 common isotopes 51 3700 390

Fast reactor MOX fuel (avg 5 samples, burnup 66-120GWd/t)
Total curium 3.09×103% 27.64% 70.16% 2.166% 0.0376% 0.000928%
Isotope 242Cm 243Cm 244Cm 245Cm 246Cm 247Cm 248Cm 250Cm
Critical mass, kg 25 7.5 33 6.8 39 7 40.4 23.5

About 20 radioisotopes and 7 nuclear isomers between 233Cm and 252Cm are known for curium, and no stable isotopes. The longest half-lives have been reported for 247Cm (15.6 million years) and 248Cm (348,000 years). Other long-lived isotopes are 245Cm (half-life 8500 years), 250Cm (8,300 years) and 246Cm (4,760 years). Curium-250 is unusual in that it predominantly (about 86%) decays via spontaneous fission. The most commonly used curium isotopes are 242Cm and 244Cm with the half-lives of 162.8 days and 18.1 years, respectively.

Transmutation flow between 238Pu and 244Cm in LWR.  Fission percentage is 100 minus shown percentages.  Total rate of transmutation varies greatly by nuclide.  245Cm–248Cm are long-lived with negligible decay.
 
All isotopes between 242Cm and 248Cm, as well as 250Cm, undergo a self-sustaining nuclear chain reaction and thus in principle can act as a nuclear fuel in a reactor. As in most transuranic elements, the nuclear fission cross section is especially high for the odd-mass curium isotopes 243Cm, 245Cm and 247Cm. These can be used in thermal-neutron reactors, whereas a mixture of curium isotopes is only suitable for fast breeder reactors since the even-mass isotopes are not fissile in a thermal reactor and accumulate as burn-up increases. The mixed-oxide (MOX) fuel, which is to be used in power reactors, should contain little or no curium because the neutron activation of 248Cm will create californium. Californium is a strong neutron emitter, and would pollute the back end of the fuel cycle and increase the dose to reactor personnel. Hence, if the minor actinides are to be used as fuel in a thermal neutron reactor, the curium should be excluded from the fuel or placed in special fuel rods where it is the only actinide present.

The adjacent table lists the critical masses for curium isotopes for a sphere, without a moderator and reflector. With a metal reflector (30 cm of steel), the critical masses of the odd isotopes are about 3–4 kg. When using water (thickness ~20–30 cm) as the reflector, the critical mass can be as small as 59 gram for 245Cm, 155 gram for 243Cm and 1550 gram for 247Cm. There is a significant uncertainty in these critical mass values. Whereas it is usually on the order of 20%, the values for 242Cm and 246Cm were listed as large as 371 kg and 70.1 kg, respectively, by some research groups.

Currently, curium is not used as a nuclear fuel owing to its low availability and high price. 245Cm and 247Cm have a very small critical mass and therefore could be used in portable nuclear weapons, but none have been reported thus far. Curium-243 is not suitable for this purpose because of its short half-life and strong α emission which would result in excessive heat. Curium-247 would be highly suitable, having a half-life 647 times that of plutonium-239.

Occurrence

Several isotopes of curium were detected in the fallout from the Ivy Mike nuclear test.
 
The longest-lived isotope of curium, 247Cm, has a half-life of 15.6 million years. Therefore, any primordial curium, that is curium present on the Earth during its formation, should have decayed by now, although some of it would be detectable as an extinct radionuclide as an excess of its nearly stable daughter 235U. Curium is produced artificially, in small quantities for research purposes. Furthermore, it occurs in spent nuclear fuel. Curium is present in nature in certain areas used for the atmospheric nuclear weapons tests, which were conducted between 1945 and 1980. So the analysis of the debris at the testing site of the first U.S. hydrogen bomb, Ivy Mike, (1 November 1952, Enewetak Atoll), beside einsteinium, fermium, plutonium and americium also revealed isotopes of berkelium, californium and curium, in particular 245Cm, 246Cm and smaller quantities of 247Cm, 248Cm and 249Cm. For reasons of military secrecy, this result was published only in 1956.

Atmospheric curium compounds are poorly soluble in common solvents and mostly adhere to soil particles. Soil analysis revealed about 4,000 times higher concentration of curium at the sandy soil particles than in water present in the soil pores. An even higher ratio of about 18,000 was measured in loam soils.

The transuranic elements from americium to fermium, including curium, occurred naturally in the natural nuclear fission reactor at Oklo, but no longer do so.

Synthesis

Isotope preparation

Curium is produced in small quantities in nuclear reactors, and by now only kilograms of it have been accumulated for the 242Cm and 244Cm and grams or even milligrams for heavier isotopes. This explains the high price of curium, which has been quoted at 160–185 USD per milligram, with a more recent estimate at US$2,000/g for 242Cm and US$170/g for 244Cm. In nuclear reactors, curium is formed from 238U in a series of nuclear reactions. In the first chain, 238U captures a neutron and converts into 239U, which via β decay transforms into 239Np and 239Pu.
(1)
Further neutron capture followed by β-decay produces the 241Am isotope of americium which further converts into 242Cm:
.
(2)
For research purposes, curium is obtained by irradiating not uranium but plutonium, which is available in large amounts from spent nuclear fuel. A much higher neutron flux is used for the irradiation that results in a different reaction chain and formation of 244Cm:
(3)
Curium-244 decays into 240Pu by emission of alpha particle, but it also absorbs neutrons resulting in a small amount of heavier curium isotopes. Among those, 247Cm and 248Cm are popular in scientific research because of their long half-lives. However, the production rate of 247Cm in thermal neutron reactors is relatively low because of it is prone to undergo fission induced by thermal neutrons. Synthesis of 250Cm via neutron absorption is also rather unlikely because of the short half-life of the intermediate product 249Cm (64 min), which converts by β decay to the berkelium isotope 249Bk.
(4)
The above cascade of (\ce n,γ) reactions produces a mixture of different curium isotopes. Their post-synthesis separation is cumbersome, and therefore a selective synthesis is desired. Curium-248 is favored for research purposes because of its long half-life. The most efficient preparation method of this isotope is via α-decay of the californium isotope 252Cf, which is available in relatively large quantities due to its long half-life (2.65 years). About 35–50 mg of 248Cm is being produced by this method every year. The associated reaction produces 248Cm with isotopic purity of 97%.
(5)
Another interesting for research isotope 245Cm can be obtained from the α-decay of 249Cf, and the latter isotope is produced in minute quantities from the β-decay of the berkelium isotope 249Bk.
(6)

Metal preparation

Chromatographic elution curves revealing the similarity between Tb, Gd, Eu lanthanides and corresponding Bk, Cm, Am actinides.
 
Most synthesis routines yield a mixture of different actinide isotopes as oxides, from which a certain isotope of curium needs to be separated. An example procedure could be to dissolve spent reactor fuel (e.g. MOX fuel) in nitric acid, and remove the bulk of the uranium and plutonium using a PUREX (Plutonium – URanium EXtraction) type extraction with tributyl phosphate in a hydrocarbon. The lanthanides and the remaining actinides are then separated from the aqueous residue (raffinate) by a diamide-based extraction to give, after stripping, a mixture of trivalent actinides and lanthanides. A curium compound is then selectively extracted using multi-step chromatographic and centrifugation techniques with an appropriate reagent. Bis-triazinyl bipyridine complex has been recently proposed as such reagent which is highly selective to curium. Separation of curium from a very similar americium can also be achieved by treating a slurry of their hydroxides in aqueous sodium bicarbonate with ozone at elevated temperature. Both americium and curium are present in solutions mostly in the +3 valence state; whereas americium oxidizes to soluble Am(IV) complexes, curium remains unchanged and can thus be isolated by repeated centrifugation.

Metallic curium is obtained by reduction of its compounds. Initially, curium(III) fluoride was used for this purpose. The reaction was conducted in the environment free from water and oxygen, in the apparatus made of tantalum and tungsten, using elemental barium or lithium as reducing agents.
Another possibility is the reduction of curium(IV) oxide using a magnesium-zinc alloy in a melt of magnesium chloride and magnesium fluoride.

Compounds and reactions

Oxides

Curium readily reacts with oxygen forming mostly Cm2O3 and CmO2 oxides, but the divalent oxide CmO is also known. Black CmO2 can be obtained by burning curium oxalate (Cm2(C2O4)3), nitrate (Cm(NO3)3) or hydroxide in pure oxygen. Upon heating to 600–650 °C in vacuum (about 0.01 Pa), it transforms into the whitish Cm2O3:
.
Alternatively, Cm2O3 can be obtained by reducing CmO2 with molecular hydrogen:
Furthermore, a number of ternary oxides of the type M(II)CmO3 are known, where M stands for a divalent metal, such as barium.

Thermal oxidation of trace quantities of curium hydride (CmH2–3) has been reported to produce a volatile form of CmO2 and the volatile trioxide CmO3, one of the two known examples of the very rare +6 state for curium. Another observed species was reported to behave similarly to a supposed plutonium tetroxide and was tentatively characterized as CmO4, with curium in the extremely rare +8 state; however, new experiments seem to indicate that CmO4 does not exist, and have cast doubt on the existence of PuO4 as well.

Halides

The colorless curium(III) fluoride (CmF3) can be produced by introducing fluoride ions into curium(III)-containing solutions. The brown tetravalent curium(IV) fluoride (CmF4) on the other hand is only obtained by reacting curium(III) fluoride with molecular fluorine:
A series of ternary fluorides are known of the form A7Cm6F31, where A stands for alkali metal.

The colorless curium(III) chloride (CmCl3) is produced in the reaction of curium(III) hydroxide (Cm(OH)3) with anhydrous hydrogen chloride gas. It can further be converted into other halides, such as curium(III) bromide (colorless to light green) and curium(III) iodide (colorless), by reacting it with the ammonia salt of the corresponding halide at elevated temperature of about 400–450 °C:
An alternative procedure is heating curium oxide to about 600 °C with the corresponding acid (such as hydrobromic for curium bromide). Vapor phase hydrolysis of curium(III) chloride results in curium oxychloride:

Chalcogenides and pnictides

Sulfides, selenides and tellurides of curium have been obtained by treating curium with gaseous sulfur, selenium or tellurium in vacuum at elevated temperature.The pnictides of curium of the type CmX are known for the elements nitrogen, phosphorus, arsenic and antimony. They can be prepared by reacting either curium(III) hydride (CmH3) or metallic curium with these elements at elevated temperatures.

Organocurium compounds and biological aspects

Predicted curocene structure
 
Organometallic complexes analogous to uranocene are known also for other actinides, such as thorium, protactinium, neptunium, plutonium and americium. Molecular orbital theory predicts a stable "curocene" complex (η8-C8H8)2Cm, but it has not been reported experimentally yet.

Formation of the complexes of the type Cm(n-C3H7-BTP)3, where BTP stands for 2,6-di(1,2,4-triazin-3-yl)pyridine, in solutions containing n-C3H7-BTP and Cm3+ ions has been confirmed by EXAFS. Some of these BTP-type complexes selectively interact with curium and therefore are useful in its selective separation from lanthanides and another actinides. Dissolved Cm3+ ions bind with many organic compounds, such as hydroxamic acid, urea, fluorescein and adenosine triphosphate. Many of these compounds are related to biological activity of various microorganisms. The resulting complexes exhibit strong yellow-orange emission under UV light excitation, which is convenient not only for their detection, but also for studying the interactions between the Cm3+ ion and the ligands via changes in the half-life (of the order ~0.1 ms) and spectrum of the fluorescence.

Curium has no biological significance. There are a few reports on biosorption of Cm3+ by bacteria and archaea, however no evidence for incorporation of curium into them.

Applications

Radionuclides

The radiation from curium is so strong that the metal glows purple in the dark.
 
Curium is one of the most radioactive isolable elements. Its two most common isotopes 242Cm and 244Cm are strong alpha emitters (energy 6 MeV); they have relatively short half-lives of 162.8 days and 18.1 years, and produce as much as 120 W/g and 3 W/g of thermal energy, respectively. Therefore, curium can be used in its common oxide form in radioisotope thermoelectric generators like those in spacecraft. This application has been studied for the 244Cm isotope, while 242Cm was abandoned due to its prohibitive price of around 2000 USD/g. 243Cm with a ~30 year half-life and good energy yield of ~1.6 W/g could make a suitable fuel, but it produces significant amounts of harmful gamma and beta radiation from radioactive decay products. Though as an α-emitter, 244Cm requires a much thinner radiation protection shielding, it has a high spontaneous fission rate, and thus the neutron and gamma radiation rate are relatively strong. As compared to a competing thermoelectric generator isotope such as 238Pu, 244Cm emits a 500-fold greater fluence of neutrons, and its higher gamma emission requires a shield that is 20 times thicker — about 2 inches of lead for a 1 kW source, as compared to 0.1 in for 238Pu. Therefore, this application of curium is currently considered impractical.

A more promising application of 242Cm is to produce 238Pu, a more suitable radioisotope for thermoelectric generators such as in cardiac pacemakers. The alternative routes to 238Pu use the (n,γ) reaction of 237Np, or the deuteron bombardment of uranium, which both always produce 236Pu as an undesired by-product — since the latter decays to 232U with strong gamma emission. Curium is also a common starting material for the production of higher transuranic elements and transactinides. Thus, bombardment of 248Cm with neon (22Ne), magnesium (26Mg), or calcium (48Ca) yielded certain isotopes of seaborgium (265Sg), hassium (269Hs and 270Hs), and livermorium (292Lv, 293Lv, and possibly 294Lv). Californium was discovered when a microgram-sized target of curium-242 was irradiated with 35 MeV alpha particles using the 60-inch (150 cm) cyclotron at Berkeley:
242
96
Cm
+ 4
2
He
245
98
Cf
+
1
0
n

Only about 5,000 atoms of californium were produced in this experiment.

Alpha-particle X-ray spectrometer of a Mars exploration rover

X-ray spectrometer

The most practical application of 244Cm — though rather limited in total volume — is as α-particle source in the alpha particle X-ray spectrometers (APXS). These instruments were installed on the Sojourner, Mars, Mars 96, Mars Exploration Rovers and Philae comet lander, as well as the Mars Science Laboratory to analyze the composition and structure of the rocks on the surface of planet Mars. APXS was also used in the Surveyor 5–7 moon probes but with a 242Cm source.

An elaborated APXS setup is equipped with a sensor head containing six curium sources having the total radioactive decay rate of several tens of millicuries (roughly a gigabecquerel). The sources are collimated on the sample, and the energy spectra of the alpha particles and protons scattered from the sample are analyzed (the proton analysis is implemented only in some spectrometers). These spectra contain quantitative information on all major elements in the samples except for hydrogen, helium and lithium.

Safety

Owing to its high radioactivity, curium and its compounds must be handled in appropriate laboratories under special arrangements. Whereas curium itself mostly emits α-particles which are absorbed by thin layers of common materials, some of its decay products emit significant fractions of beta and gamma radiation, which require a more elaborate protection. If consumed, curium is excreted within a few days and only 0.05% is absorbed in the blood. From there, about 45% goes to the liver, 45% to the bones, and the remaining 10% is excreted. In the bone, curium accumulates on the inside of the interfaces to the bone marrow and does not significantly redistribute with time; its radiation destroys bone marrow and thus stops red blood cell creation. The biological half-life of curium is about 20 years in the liver and 50 years in the bones. Curium is absorbed in the body much more strongly via inhalation, and the allowed total dose of 244Cm in soluble form is 0.3 μC. Intravenous injection of 242Cm and 244Cm containing solutions to rats increased the incidence of bone tumor, and inhalation promoted pulmonary and liver cancer.

Curium isotopes are inevitably present in spent nuclear fuel with a concentration of about 20 g/tonne. Among them, the 245Cm–248Cm isotopes have decay times of thousands of years and need to be removed to neutralize the fuel for disposal. The associated procedure involves several steps, where curium is first separated and then converted by neutron bombardment in special reactors to short-lived nuclides. This procedure, nuclear transmutation, while well documented for other elements, is still being developed for curium.

Fermium

From Wikipedia, the free encyclopedia

Fermium,  100Fm
Fermium
Pronunciation/ˈfɜːrmiəm/ (FUR-mee-əm)
Mass number257 (most stable isotope)
Fermium in the periodic table
Hydrogen
Helium
Lithium Beryllium
Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium
Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium
Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium

Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Er

Fm

(Upq)
einsteiniumfermiummendelevium
Atomic number (Z)100
Groupgroup n/a
Periodperiod 7
Blockf-block
Element category  actinide
Electron configuration[Rn] 5f12 7s2
Electrons per shell
2, 8, 18, 32, 30, 8, 2
Physical properties
Phase at STPunknown phase (predicted)
Melting point1800 K ​(1527 °C, ​2781 °F) (predicted)
Density (near r.t.)9.7(1) g/cm3 (predicted)
Atomic properties
Oxidation states+2, +3
ElectronegativityPauling scale: 1.3
Ionization energies
  • 1st: 627 kJ/mol
  • (estimated)
Other properties
Natural occurrencesynthetic
Crystal structureface-centered cubic (fcc)
Face-centered cubic crystal structure for fermium

(predicted)
CAS Number7440-72-4
History
Namingafter Enrico Fermi
DiscoveryLawrence Berkeley National Laboratory (1952)
Main isotopes of fermium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
252Fm syn 25.39 h SF
α 248Cf
253Fm syn 3 d ε 253Es
α 249Cf
255Fm syn 20.07 h SF
α 251Cf
257Fm syn 100.5 d α 253Cf
SF

Fermium is a synthetic element with symbol Fm and atomic number 100. It is an actinide and the heaviest element that can be formed by neutron bombardment of lighter elements, and hence the last element that can be prepared in macroscopic quantities, although pure fermium metal has not yet been prepared. A total of 19 isotopes are known, with 257Fm being the longest-lived with a half-life of 100.5 days.

It was discovered in the debris of the first hydrogen bomb explosion in 1952, and named after Enrico Fermi, one of the pioneers of nuclear physics. Its chemistry is typical for the late actinides, with a preponderance of the +3 oxidation state but also an accessible +2 oxidation state. Owing to the small amounts of produced fermium and all of its isotopes having relatively short half-lives, there are currently no uses for it outside basic scientific research.

Discovery

Fermium was first observed in the fallout from the Ivy Mike nuclear test.
 
The element was named after Enrico Fermi.
 
The element was discovered by a team headed by Albert Ghiorso.
 
Fermium was first discovered in the fallout from the 'Ivy Mike' nuclear test (1 November 1952), the first successful test of a hydrogen bomb. Initial examination of the debris from the explosion had shown the production of a new isotope of plutonium, 244
94
Pu
: this could only have formed by the absorption of six neutrons by a uranium-238 nucleus followed by two β decays. At the time, the absorption of neutrons by a heavy nucleus was thought to be a rare process, but the identification of 244
94
Pu
raised the possibility that still more neutrons could have been absorbed by the uranium nuclei, leading to new elements.

Element 99 (einsteinium) was quickly discovered on filter papers which had been flown through the cloud from the explosion (the same sampling technique that had been used to discover 244
94
Pu
). It was then identified in December 1952 by Albert Ghiorso and co-workers at the University of California at Berkeley. They discovered the isotope 253Es (half-life 20.5 days) that was made by the capture of 15 neutrons by uranium-238 nuclei – which then underwent seven successive beta decays:

Some 238U atoms, however, could capture another amount of neutrons (most likely, 16 or 17). 

The discovery of fermium (Z = 100) required more material, as the yield was expected to be at least an order of magnitude lower than that of element 99, and so contaminated coral from the Enewetak atoll (where the test had taken place) was shipped to the University of California Radiation Laboratory in Berkeley, California, for processing and analysis. About two months after the test, a new component was isolated emitting high-energy α-particles (7.1 MeV) with a half-life of about a day. With such a short half-life, it could only arise from the β decay of an isotope of einsteinium, and so had to be an isotope of the new element 100: it was quickly identified as 255Fm (t = 20.07(7) hours).

The discovery of the new elements, and the new data on neutron capture, was initially kept secret on the orders of the U.S. military until 1955 due to Cold War tensions. Nevertheless, the Berkeley team was able to prepare elements 99 and 100 by civilian means, through the neutron bombardment of plutonium-239, and published this work in 1954 with the disclaimer that it was not the first studies that had been carried out on the elements. The "Ivy Mike" studies were declassified and published in 1955.

The Berkeley team had been worried that another group might discover lighter isotopes of element 100 through ion-bombardment techniques before they could publish their classified research, and this proved to be the case. A group at the Nobel Institute for Physics in Stockholm independently discovered the element, producing an isotope later confirmed to be 250Fm (t1/2 = 30 minutes) by bombarding a 238
92
U
target with oxygen-16 ions, and published their work in May 1954. Nevertheless, the priority of the Berkeley team was generally recognized, and with it the prerogative to name the new element in honour of the recently deceased Enrico Fermi, the developer of the first artificial self-sustained nuclear reactor.

Isotopes

Decay pathway of fermium-257
 
There are 20 isotopes of fermium listed in NUBASE 2016, with atomic weights of 241 to 260,[Note 1] of which 257Fm is the longest-lived with a half-life of 100.5 days. 253Fm has a half-life of 3 days, while 251Fm of 5.3 h, 252Fm of 25.4 h, 254Fm of 3.2 h, 255Fm of 20.1 h, and 256Fm of 2.6 hours. All the remaining ones have half-lives ranging from 30 minutes to less than a millisecond. The neutron-capture product of fermium-257, 258Fm, undergoes spontaneous fission with a half-life of just 370(14) microseconds; 259Fm and 260Fm are also unstable with respect to spontaneous fission (t1/2 = 1.5(3) s and 4 ms respectively). This means that neutron capture cannot be used to create nuclides with a mass number greater than 257, unless carried out in a nuclear explosion. As 257Fm is an α-emitter, decaying to 253Cf, and no known fermium isotopes undergo beta minus decay to the next element, mendelevium, fermium is also the last element that can be prepared by a neutron-capture process. Because of this impediment in forming heavier isotopes, these short-lived isotopes 258-260Fm constitute the so-called "fermium gap."

Production

Elution: chromatographic separation of Fm(100), Es(99), Cf, Bk, Cm and Am
 
Fermium is produced by the bombardment of lighter actinides with neutrons in a nuclear reactor. Fermium-257 is the heaviest isotope that is obtained via neutron capture, and can only be produced in picogram quantities. The major source is the 85 MW High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory in Tennessee, USA, which is dedicated to the production of transcurium (Z > 96) elements. Lower mass fermium isotopes are available in greater quantities, however, these isotopes (254 and 255) are very short lived. In a "typical processing campaign" at Oak Ridge, tens of grams of curium are irradiated to produce decigram quantities of californium, milligram quantities of berkelium and einsteinium and picogram quantities of fermium. However, nanogram quantities of fermium can be prepared for specific experiments. The quantities of fermium produced in 20–200 kiloton thermonuclear explosions is believed to be of the order of milligrams, although it is mixed in with a huge quantity of debris; 4.0 picograms of 257Fm was recovered from 10 kilograms of debris from the "Hutch" test (16 July 1969). The Hutch experiment produced an estimated total of 250 micrograms of 257Fm. 

After production, the fermium must be separated from other actinides and from lanthanide fission products. This is usually achieved by ion-exchange chromatography, with the standard process using a cation exchanger such as Dowex 50 or TEVA eluted with a solution of ammonium α-hydroxyisobutyrate. Smaller cations form more stable complexes with the α-hydroxyisobutyrate anion, and so are preferentially eluted from the column. A rapid fractional crystallization method has also been described.

Although the most stable isotope of fermium is 257Fm, with a half-life of 100.5 days, most studies are conducted on 255Fm (t1/2 = 20.07(7) hours), since this isotope can be easily isolated as required as the decay product of 255Es (t1/2 = 39.8(12) days).

Synthesis in nuclear explosions

The analysis of the debris at the 10-megaton Ivy Mike nuclear test was a part of long-term project, one of the goals of which was studying the efficiency of production of transuranium elements in high-power nuclear explosions. The motivation for these experiments was as follows: synthesis of such elements from uranium requires multiple neutron capture. The probability of such events increases with the neutron flux, and nuclear explosions are the most powerful neutron sources, providing densities of the order 1023 neutrons/cm2 within a microsecond, i.e. about 1029 neutrons/(cm2·s). In comparison, the flux of the HFIR reactor is 5×1015 neutrons/(cm2·s). A dedicated laboratory was set up right at Enewetak Atoll for preliminary analysis of debris, as some isotopes could have decayed by the time the debris samples reached the U.S. The laboratory was receiving samples for analysis, as soon as possible, from airplanes equipped with paper filters which flew over the atoll after the tests. Whereas it was hoped to discover new chemical elements heavier than fermium, those were not found after a series of megaton explosions conducted between 1954 and 1956 at the atoll.

Estimated yield of transuranium elements in the U.S. nuclear tests Hutch and Cyclamen.
 
The atmospheric results were supplemented by the underground test data accumulated in the 1960s at the Nevada Test Site, as it was hoped that powerful explosions conducted in confined space might result in improved yields and heavier isotopes. Apart from traditional uranium charges, combinations of uranium with americium and thorium have been tried, as well as a mixed plutonium-neptunium charge. They were less successful in terms of yield that was attributed to stronger losses of heavy isotopes due to enhanced fission rates in heavy-element charges. Isolation of the products was found to be rather problematic, as the explosions were spreading debris through melting and vaporizing rocks under the great depth of 300–600 meters, and drilling to such depth in order to extract the products was both slow and inefficient in terms of collected volumes.

Among the nine underground tests, which were carried between 1962 and 1969 and codenamed Anacostia (5.2 kilotons, 1962), Kennebec (<5 1963="" 1964="" 1965="" 1966="" 1969="" 4="" a="" about="" adsorbed="" aircraft="" and="" atomic="" barbel="" behavior="" blast.="" by="" collecting="" cyclamen="" debris="" dependence="" dispersed="" due="" elements.="" entire="" filters="" fission="" for="" had="" higher="" highest="" however="" hutch="" in="" isotopes="" kankakee="" kilotons="" last="" lower="" major="" mass="" most="" number="" odd="" of="" on="" one="" only="" par="" powerful="" practical="" problem="" proposal="" radioactive="" rates.="" saw-tooth="" showed="" span="" style="margin: 0 .15em 0 .25em;" the="" their="" to="" transuranium="" tweed="" values="" vulcan="" was="" with="" yield="">×
1014 of the total amount and collection of tons of corals at Enewetak Atoll increased this fraction by only two orders of magnitude. Extraction of about 500 kilograms of underground rocks 60 days after the Hutch explosion recovered only about 10−7 of the total charge. The amount of transuranium elements in this 500-kg batch was only 30 times higher than in a 0.4 kg rock picked up 7 days after the test. This observation demonstrated the highly nonlinear dependence of the transuranium elements yield on the amount of retrieved radioactive rock. In order to accelerate sample collection after explosion, shafts were drilled at the site not after but before the test, so that explosion would expel radioactive material from the epicenter, through the shafts, to collecting volumes near the surface. This method was tried in the Anacostia and Kennebec tests and instantly provided hundreds kilograms of material, but with actinide concentration 3 times lower than in samples obtained after drilling; whereas such method could have been efficient in scientific studies of short-lived isotopes, it could not improve the overall collection efficiency of the produced actinides.

Although no new elements (apart from einsteinium and fermium) could be detected in the nuclear test debris, and the total yields of transuranium elements were disappointingly low, these tests did provide significantly higher amounts of rare heavy isotopes than previously available in laboratories. So 6×109 atoms of 257Fm could be recovered after the Hutch detonation. They were then used in the studies of thermal-neutron induced fission of 257Fm and in discovery of a new fermium isotope 258Fm. Also, the rare 250Cm isotope was synthesized in large quantities, which is very difficult to produce in nuclear reactors from its progenitor 249Cm – the half-life of 249Cm (64 minutes) is much too short for months-long reactor irradiations, but is very "long" on the explosion timescale.

Natural occurrence

Because of the short half-life of all isotopes of fermium, any primordial fermium, that is fermium that could be present on the Earth during its formation, has decayed by now. Synthesis of fermium from naturally occurring actinides uranium and thorium in the Earth crust requires multiple neutron capture, which is an extremely unlikely event. Therefore, most fermium is produced on Earth in scientific laboratories, high-power nuclear reactors, or in nuclear weapons tests, and is present only within a few months from the time of the synthesis. The transuranic elements from americium to fermium did occur naturally in the natural nuclear fission reactor at Oklo, but no longer do so.

Chemistry

A fermium-ytterbium alloy used for measuring the enthalpy of vaporization of fermium metal
 
The chemistry of fermium has only been studied in solution using tracer techniques, and no solid compounds have been prepared. Under normal conditions, fermium exists in solution as the Fm3+ ion, which has a hydration number of 16.9 and an acid dissociation constant of 1.6×10−4 (pKa = 3.8). Fm3+ forms complexes with a wide variety of organic ligands with hard donor atoms such as oxygen, and these complexes are usually more stable than those of the preceding actinides. It also forms anionic complexes with ligands such as chloride or nitrate and, again, these complexes appear to be more stable than those formed by einsteinium or californium. It is believed that the bonding in the complexes of the later actinides is mostly ionic in character: the Fm3+ ion is expected to be smaller than the preceding An3+ ions because of the higher effective nuclear charge of fermium, and hence fermium would be expected to form shorter and stronger metal–ligand bonds.

Fermium(III) can be fairly easily reduced to fermium(II), for example with samarium(II) chloride, with which fermium(II) coprecipitates. The electrode potential has been estimated to be similar to that of the ytterbium(III)/(II) couple, or about −1.15 V with respect to the standard hydrogen electrode, a value which agrees with theoretical calculations. The Fm2+/Fm0 couple has an electrode potential of −2.37(10) V based on polarographic measurements.

Toxicity

Although few people come in contact with fermium, the International Commission on Radiological Protection has set annual exposure limits for the two most stable isotopes. For fermium-253, the ingestion limit was set at 107 becquerels (1 Bq is equivalent to one decay per second), and the inhalation limit at 105 Bq; for fermium-257, at 105 Bq and 4000 Bq respectively.

Representation of a Lie group

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Representation_of_a_Lie_group...