Search This Blog

Friday, January 17, 2020

Indium

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Indium
Indium, 49In
Indium.jpg
Indium
Pronunciation/ˈɪndiəm/ (IN-dee-əm)
Appearancesilvery lustrous gray
Standard atomic weight Ar, std(In)114.818(1)
Indium in the periodic table
Hydrogen
Helium
Lithium Beryllium
Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium
Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium
Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium

Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Ga

In

Tl
cadmiumindiumtin
Atomic number (Z)49
Groupgroup 13 (boron group)
Periodperiod 5
Blockp-block
Element category  Post-transition metal
Electron configuration[Kr] 4d10 5s2 5p1
Electrons per shell2, 8, 18, 18, 3
Physical properties
Phase at STPsolid
Melting point429.7485 K ​(156.5985 °C, ​313.8773 °F)
Boiling point2345 K ​(2072 °C, ​3762 °F)
Density (near r.t.)7.31 g/cm3
when liquid (at m.p.)7.02 g/cm3
Triple point429.7445 K, ​~1 kPa
Heat of fusion3.281 kJ/mol
Heat of vaporization231.8 kJ/mol
Molar heat capacity26.74 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1196 1325 1485 1690 1962 2340
Atomic properties
Oxidation states−5, −2, −1, +1, +2, +3 (an amphoteric oxide)
ElectronegativityPauling scale: 1.78
Ionization energies
  • 1st: 558.3 kJ/mol
  • 2nd: 1820.7 kJ/mol
  • 3rd: 2704 kJ/mol

Atomic radiusempirical: 167 pm
Covalent radius142±5 pm
Van der Waals radius193 pm
Color lines in a spectral range
Spectral lines of indium
Other properties
Natural occurrenceprimordial
Crystal structurebody-centered tetragonal
Body-centered-tetragonal crystal structure for indium
Speed of sound thin rod1215 m/s (at 20 °C)
Thermal expansion32.1 µm/(m·K) (at 25 °C)
Thermal conductivity81.8 W/(m·K)
Electrical resistivity83.7 nΩ·m (at 20 °C)
Magnetic orderingdiamagnetic
Magnetic susceptibility−64.0·10−6 cm3/mol (298 K)
Young's modulus11 GPa
Mohs hardness1.2
Brinell hardness8.8–10.0 MPa
CAS Number7440-74-6
History
DiscoveryFerdinand Reich and Hieronymous Theodor Richter (1863)
First isolationHieronymous Theodor Richter (1864)
Main isotopes of indium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
111In syn 2.8 d ε 111Cd
113In 4.28% stable
115In 95.72% 4.41×1014 y β 115Sn

Indium is a chemical element with the symbol In and atomic number 49. Indium is the softest metal that is not an alkali metal. It is a silvery-white metal that resembles tin in appearance. It is a post-transition metal that makes up 0.21 parts per million of the Earth's crust. Indium has a melting point higher than sodium and gallium, but lower than lithium and tin. Chemically, indium is similar to gallium and thallium, and it is largely intermediate between the two in terms of its properties. Indium was discovered in 1863 by Ferdinand Reich and Hieronymous Theodor Richter by spectroscopic methods. They named it for the indigo blue line in its spectrum. Indium was isolated the next year.

Indium is a minor component in zinc sulfide ores and is produced as a byproduct of zinc refinement. It is most notably used in the semiconductor industry, in low-melting-point metal alloys such as solders, in soft-metal high-vacuum seals, and in the production of transparent conductive coatings of indium tin oxide (ITO) on glass. Indium is considered a technology-critical element.

Indium has no biological role, though its compounds are toxic when injected into the bloodstream. Most occupational exposure is through ingestion, from which indium compounds are not absorbed well, and inhalation, from which they are moderately absorbed.

Properties


Physical

Indium wetting the glass surface of a test tube
 
Indium is a silvery-white, highly ductile post-transition metal with a bright luster. It is so soft (Mohs hardness 1.2) that like sodium, it can be cut with a knife. It also leaves a visible line on paper. It is a member of group 13 on the periodic table and its properties are mostly intermediate between its vertical neighbours gallium and thallium. Like tin, a high-pitched cry is heard when indium is bent – a crackling sound due to crystal twinning. Like gallium, indium is able to wet glass. Like both, indium has a low melting point, 156.60 °C (313.88 °F); higher than its lighter homologue, gallium, but lower than its heavier homologue, thallium, and lower than tin. The boiling point is 2072 °C (3762 °F), higher than that of thallium, but lower than gallium, conversely to the general trend of melting points, but similarly to the trends down the other post-transition metal groups because of the weakness of the metallic bonding with few electrons delocalized.

The density of indium, 7.31 g/cm3, is also greater than gallium, but lower than thallium. Below the critical temperature, 3.41 K, indium becomes a superconductor. Indium crystallizes in the body-centered tetragonal crystal system in the space group I4/mmm (lattice parametersa = 325 pm, c = 495 pm): this is a slightly distorted face-centered cubic structure, where each indium atom has four neighbours at 324 pm distance and eight neighbours slightly further (336 pm). Indium has greater solubility in liquid mercury than any other metal (more than 50 mass percent of indium at 0 °C). Indium displays a ductile viscoplastic response, found to be size-independent in tension and compression. However it does have a size effect in bending and indentation, associated to a length-scale of order 50–100 µm, significantly large when compared with other metals. 

Chemical

Indium has 49 electrons, with an electronic configuration of [Kr]4d105s25p1. In compounds, indium most commonly donates the three outermost electrons to become indium(III), In3+. In some cases, the pair of 5s-electrons are not donated, resulting in indium(I), In+. The stabilization of the monovalent state is attributed to the inert pair effect, in which relativistic effects stabilize the 5s-orbital, observed in heavier elements. Thallium (indium's heavier homolog) shows an even stronger effect, causing oxidation to thallium(I) to be more probable than to thallium(III), whereas gallium (indium's lighter homolog) commonly shows only the +3 oxidation state. Thus, although thallium(III) is a moderately strong oxidizing agent, indium(III) is not, and many indium(I) compounds are powerful reducing agents. While the energy required to include the s-electrons in chemical bonding is lowest for indium among the group 13 metals, bond energies decrease down the group so that by indium, the energy released in forming two additional bonds and attaining the +3 state is not always enough to outweigh the energy needed to involve the 5s-electrons. Indium(I) oxide and hydroxide are more basic and indium(III) oxide and hydroxide are more acidic.

A number of standard electrode potentials, depending on the reaction under study, are reported for indium, reflecting the decreased stability of the +3 oxidation state:

−0.40 In2+ + e ↔ In+
−0.49 In3+ + e ↔ In2+
−0.443 In3+ + 2 e ↔ In+
−0.3382 In3+ + 3 e ↔ In
−0.14 In+ + e ↔ In

Indium metal does not react with water, but it is oxidized by stronger oxidizing agents such as halogens to give indium(III) compounds. It does not form a boride, silicide, or carbide, and the hydride InH3 has at best a transitory existence in ethereal solutions at low temperatures, being unstable enough to spontaneously polymerize without coordination. Indium is rather basic in aqueous solution, showing only slight amphoteric characteristics, and unlike its lighter homologs aluminium and gallium, it is insoluble in aqueous alkaline solutions.

Isotopes

Indium has 39 known isotopes, ranging in mass number from 97 to 135. Only two isotopes occur naturally as primordial nuclides: indium-113, the only stable isotope, and indium-115, which has a half-life of 4.41×1014 years, four orders of magnitude greater than the age of the universe and nearly 30,000 times greater than that of natural thorium. The half-life of 115In is very long because the beta decay to 115Sn is spin-forbidden. Indium-115 makes up 95.7% of all indium. Indium is one of three known elements (the others being tellurium and rhenium) of which the stable isotope is less abundant in nature than the long-lived primordial radioisotopes.

The stablest artificial isotope is indium-111, with a half-life of approximately 2.8 days. All other isotopes have half-lives shorter than 5 hours. Indium also has 47 meta states, among which indium-114m1 (half-life about 49.51 days) is the most stable, more stable than the ground state of any indium isotope other than the primordial. All decay by isomeric transition. The indium isotopes lighter than 115In predominantly decay through electron capture or positron emission to form cadmium isotopes, while the other indium isotopes from 115In and greater predominantly decay through beta-minus decay to form tin isotopes.

Compounds

Indium(III)

InCl3 (structure pictured) is a common compound of indium.
 
Indium(III) oxide, In2O3, forms when indium metal is burned in air or when the hydroxide or nitrate is heated. In2O3 adopts a structure like alumina and is amphoteric, that is able to react with both acids and bases. Indium reacts with water to reproduce soluble indium(III) hydroxide, which is also amphoteric; with alkalis to produce indates(III); and with acids to produce indium(III) salts:
In(OH)3 + 3 HCl → InCl3 + 3 H2O
The analogous sesquichalcogenides with sulfur, selenium, and tellurium are also known. Indium forms the expected trihalides. Chlorination, bromination, and iodination of In produce colorless InCl3, InBr3, and yellow InI3. The compounds are Lewis acids, somewhat akin to the better known aluminium trihalides. Again like the related aluminium compound, InF3 is polymeric.

Direct reaction of indium with the pnictogens produces the gray or semimetallic III–V semiconductors. Many of them slowly decompose in moist air, necessitating careful storage of semiconductor compounds to prevent contact with the atmosphere. Indium nitride is readily attacked by acids and alkalis.

Indium(I)

Indium(I) compounds are not common. The chloride, bromide, and iodide are deeply colored, unlike the parent trihalides from which they are prepared. The fluoride is known only as an unstable gaseous compound. Indium(I) oxide black powder is produced when indium(III) oxide decomposes upon heating to 700 °C.

Other oxidation states

Less frequently, indium forms compounds in oxidation state +2 and even fractional oxidation states. Usually such materials feature In–In bonding, most notably in the halides In2X4 and [In2X6]2−, and various subchalcogenides such as In4Se3. Several other compounds are known to combine indium(I) and indium(III), such as InI6(InIIICl6)Cl3, InI5(InIIIBr4)2(InIIIBr6), InIInIIIBr4.

Organoindium compounds

Organoindium compounds feature In–C bonds. Most are In(III) derivatives, but cyclopentadienylindium(I) is an exception. It was the first known organoindium(I) compound, and is polymeric, consisting of zigzag chains of alternating indium atoms and cyclopentadienyl complexes. Perhaps the best-known organoindium compound is trimethylindium, In(CH3)3, used to prepare certain semiconducting materials.

History

In 1863, the German chemists Ferdinand Reich and Hieronymous Theodor Richter were testing ores from the mines around Freiberg, Saxony. They dissolved the minerals pyrite, arsenopyrite, galena and sphalerite in hydrochloric acid and distilled raw zinc chloride. Reich, who was color-blind, employed Richter as an assistant for detecting the colored spectral lines. Knowing that ores from that region sometimes contain thallium, they searched for the green thallium emission spectrum lines. Instead, they found a bright blue line. Because that blue line did not match any known element, they hypothesized a new element was present in the minerals. They named the element indium, from the indigo color seen in its spectrum, after the Latin indicum, meaning 'of India'.

Richter went on to isolate the metal in 1864. An ingot of 0.5 kg (1.1 lb) was presented at the World Fair 1867. Reich and Richter later fell out when the latter claimed to be the sole discoverer.

Occurrence

yellow squares with red and blue arrows
The s-process acting in the range from silver to antimony
 
Indium is created by the long-lasting (up to thousands of years) s-process (slow neutron capture) in low-to-medium-mass stars (range in mass between 0.6 and 10 solar masses). When a silver-109 atom captures a neutron, it transmutes into silver-110, which then undergoes beta decay to become cadmium-110. Capturing further neutrons, it becomes cadmium-115, which decays to indium-115 by another beta decay. This explains why the radioactive isotope is more abundant than the stable one.[41] The stable indium isotope, indium-113, is one of the p-nuclei, the origin of which is not fully understood; although indium-113 is known to be made directly in the s- and r-processes (rapid neutron capture), and also as the daughter of very long-lived cadmium-113, which has a half-life of about eight quadrillion years, this cannot account for all indium-113.

Indium is the 68th most abundant element in Earth's crust at approximately 50 ppb. This is similar to the crustal abundance of silver, bismuth and mercury. It very rarely forms its own minerals, or occurs in elemental form. Fewer than 10 indium minerals such as roquesite (CuInS2) are known, and none occur at sufficient concentrations for economic extraction. Instead, indium is usually a trace constituent of more common ore minerals, such as sphalerite and chalcopyrite. From these, it can be extracted as a by-product during smelting. While the enrichment of indium in these deposits is high relative to its crustal abundance, it is insufficient, at current prices, to support extraction of indium as the main product.

Different estimates exist of the amounts of indium contained within the ores of other metals. However, these amounts are not extractable without mining of the host materials (see Production and availability). Thus, the availability of indium is fundamentally determined by the rate at which these ores are extracted, and not their absolute amount. This is an aspect that is often forgotten in the current debate, e.g. by the Graedel group at Yale in their criticality assessments, explaining the paradoxically low depletion times some studies cite.

Production and availability

World production trend
 
Indium is produced exclusively as a by-product during the processing of the ores of other metals. Its main source material are sulfidic zinc ores, where it is mostly hosted by sphalerite. Minor amounts are probably also extracted from sulfidic copper ores. During the roast-leach-electrowinning process of zinc smelting, indium accumulates in the iron-rich residues. From these, it can be extracted in different ways. It may also be recovered directly from the process solutions. Further purification is done by electrolysis. The exact process varies with the mode of operation of the smelter.

Its by-product status means that indium production is constrained by the amount of sulfidic zinc (and copper) ores extracted each year. Therefore, its availability needs to be discussed in terms of supply potential. The supply potential of a by-product is defined as that amount which is economically extractable from its host materials per year under current market conditions (i.e. technology and price). Reserves and resources are not relevant for by-products, since they cannot be extracted independently from the main-products. Recent estimates put the supply potential of indium at a minimum of 1,300 t/yr from sulfidic zinc ores and 20 t/yr from sulfidic copper ores. These figures are significantly greater than current production (655 t in 2016). Thus, major future increases in the by-product production of indium will be possible without significant increases in production costs or price. The average indium price in 2016 was US$240/kg, down from US$705/kg in 2014.

China is a leading producer of indium (290 tonnes in 2016), followed by South Korea (195 t), Japan (70 t) and Canada (65 t). The Teck Resources refinery in Trail, British Columbia, is a large single-source indium producer, with an output of 32.5 tonnes in 2005, 41.8 tonnes in 2004 and 36.1 tonnes in 2003. 

The primary consumption of indium worldwide is LCD production. Demand rose rapidly from the late 1990s to 2010 with the popularity of LCD computer monitors and television sets, which now account for 50% of indium consumption. Increased manufacturing efficiency and recycling (especially in Japan) maintain a balance between demand and supply. According to the UNEP, indium's end-of-life recycling rate is less than 1%.

Applications

A magnified image of an LCD screen showing RGB pixels. Individual transistors are seen as white dots in the bottom part.
 
In 1924, indium was found to have a valued property of stabilizing non-ferrous metals, and that became the first significant use for the element. The first large-scale application for indium was coating bearings in high-performance aircraft engines during World War II, to protect against damage and corrosion; this is no longer a major use of the element. New uses were found in fusible alloys, solders, and electronics. In the 1950s, tiny beads of indium were used for the emitters and collectors of PNP alloy-junction transistors. In the middle and late 1980s, the development of indium phosphide semiconductors and indium tin oxide thin films for liquid-crystal displays (LCD) aroused much interest. By 1992, the thin-film application had become the largest end use.

Indium(III) oxide and indium tin oxide (ITO) are used as a transparent conductive coating on glass substrates in electroluminescent panels. Indium tin oxide is used as a light filter in low-pressure sodium-vapor lamps. The infrared radiation is reflected back into the lamp, which increases the temperature within the tube and improves the performance of the lamp.

Indium has many semiconductor-related applications. Some indium compounds, such as indium antimonide and indium phosphide, are semiconductors with useful properties: one precursor is usually trimethylindium (TMI), which is also used as the semiconductor dopant in II–VI compound semiconductors. InAs and InSb are used for low-temperature transistors and InP for high-temperature transistors. The compound semiconductors InGaN and InGaP are used in light-emitting diodes (LEDs) and laser diodes. Indium is used in photovoltaics as the semiconductor copper indium gallium selenide (CIGS), also called CIGS solar cells, a type of second-generation thin-film solar cell. Indium is used in PNP bipolar junction transistors with germanium: when soldered at low temperature, indium does not stress the germanium.

Ductile indium wire

Indium wire is used as a vacuum seal and a thermal conductor in cryogenics and ultra-high-vacuum applications, in such manufacturing applications as gaskets that deform to fill gaps. Indium is an ingredient in the gallium–indium–tin alloy galinstan, which is liquid at room temperature and replaces mercury in some thermometers. Other alloys of indium with bismuth, cadmium, lead, and tin, which have higher but still low melting points (between 50 and 100 °C), are used in fire sprinkler systems and heat regulators.

Indium is one of many substitutes for mercury in alkaline batteries to prevent the zinc from corroding and releasing hydrogen gas. Indium is added to some dental amalgam alloys to decrease the surface tension of the mercury and allow for less mercury and easier amalgamation.

Indium's high neutron-capture cross-section for thermal neutrons makes it suitable for use in control rods for nuclear reactors, typically in an alloy of 80% silver, 15% indium, and 5% cadmium. In nuclear engineering, the (n,n') reactions of 113In and 115In are used to determine magnitudes of neutron fluxes.

In 2009, Professor Mas Subramanian and associates at Oregon State University discovered that indium can be combined with yttrium and manganese to form an intensely blue, non-toxic, inert, fade-resistant pigment, YInMn blue, the first new blue pigment discovered in 200 years.

Biological role and precautions

Indium
Hazards
GHS pictograms GHS07: Harmful
GHS Signal word Warning
H302, H312, H332, H315, H319, H335
P261, P280, P305+351+338
NFPA 704 (fire diamond)
Flammability code 0: Will not burn. E.g. waterHealth code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformReactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no codeNFPA 704 four-colored diamond
0
2
0
 
Indium has no metabolic role in any organism. In a similar way to aluminium salts, indium(III) ions can be toxic to the kidney when given by injection. Indium tin oxide and indium phosphide harm the pulmonary and immune systems, predominantly through ionic indium, though hydrated indium oxide is more than forty times as toxic when injected, measured by the quantity of indium introduced. Radioactive indium-111 (in very small amounts on a chemical basis) is used in nuclear medicine tests, as a radiotracer to follow the movement of labeled proteins and white blood cells in the body. Indium compounds are mostly not absorbed upon ingestion and are only moderately absorbed on inhalation; they tend to be stored temporarily in the muscles, skin, and bones before being excreted, and the biological half-life of indium is about two weeks in humans.
 
People can be exposed to indium in the workplace by inhalation, ingestion, skin contact, and eye contact. The National Institute for Occupational Safety and Health has set a recommended exposure limit (REL) of 0.1 mg/m3 over an eight-hour workday.

Doping (semiconductor)

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Doping_(semiconductor)
 
In semiconductor production, doping is the intentional introduction of impurities into an intrinsic semiconductor for the purpose of modulating its electrical, optical and structural properties. The doped material is referred to as an extrinsic semiconductor. A semiconductor doped to such high levels that it acts more like a conductor than a semiconductor is referred to as a degenerate semiconductor.

In the context of phosphors and scintillators, doping is better known as activation. Doping is also used to control the color in some pigments.

History

The effects of semiconductor doping were long known empirically in such devices as crystal radio detectors and selenium rectifiers. For instance, in 1885 Shelford Bidwell, and in 1930 the German scientist Bernhard Gudden, each independently reported that the properties of semiconductors were due to the impurities contained within them. The doping process was formally first developed by John Robert Woodyard working at Sperry Gyroscope Company during World War II, with a US Patent issued in 1950. The demands of his work on radar denied Woodyard the opportunity to pursue research on semiconductor doping. 

Similar work was performed at Bell Labs by Gordon K. Teal and Morgan Sparks, with a US Patent issued in 1953.

Woodyard's prior patent proved to be the grounds of extensive litigation by Sperry Rand .

Carrier concentration

The concentration of the dopant used affects many electrical properties. Most important is the material's charge carrier concentration. In an intrinsic semiconductor under thermal equilibrium, the concentrations of electrons and holes are equivalent. That is,
In a non-intrinsic semiconductor under thermal equilibrium, the relation becomes (for low doping):
where n0 is the concentration of conducting electrons, p0 is the conducting hole concentration, and ni is the material's intrinsic carrier concentration. The intrinsic carrier concentration varies between materials and is dependent on temperature. Silicon's ni, for example, is roughly 1.08×1010 cm−3 at 300 kelvins, about room temperature.

In general, increased doping leads to increased conductivity due to the higher concentration of carriers. Degenerate (very highly doped) semiconductors have conductivity levels comparable to metals and are often used in integrated circuits as a replacement for metal. Often superscript plus and minus symbols are used to denote relative doping concentration in semiconductors. For example, n+ denotes an n-type semiconductor with a high, often degenerate, doping concentration. Similarly, p would indicate a very lightly doped p-type material. Even degenerate levels of doping imply low concentrations of impurities with respect to the base semiconductor. In intrinsic crystalline silicon, there are approximately 5×1022 atoms/cm3. Doping concentration for silicon semiconductors may range anywhere from 1013 cm−3 to 1018 cm−3. Doping concentration above about 1018 cm−3 is considered degenerate at room temperature. Degenerately doped silicon contains a proportion of impurity to silicon on the order of parts per thousand. This proportion may be reduced to parts per billion in very lightly doped silicon. Typical concentration values fall somewhere in this range and are tailored to produce the desired properties in the device that the semiconductor is intended for. 

Effect on band structure

Band diagram of PN junction operation in forward bias mode showing reducing depletion width. Both p and n junctions are doped at a 1×1015/cm3 doping level, leading to built-in potential of ~0.59 V. Reducing depletion width can be inferred from the shrinking charge profile, as fewer dopants are exposed with increasing forward bias.
 
Doping a semiconductor in a good crystal introduces allowed energy states within the band gap, but very close to the energy band that corresponds to the dopant type. In other words, electron donor impurities create states near the conduction band while electron acceptor impurities create states near the valence band. The gap between these energy states and the nearest energy band is usually referred to as dopant-site bonding energy or EB and is relatively small. For example, the EB for boron in silicon bulk is 0.045 eV, compared with silicon's band gap of about 1.12 eV. Because EB is so small, room temperature is hot enough to thermally ionize practically all of the dopant atoms and create free charge carriers in the conduction or valence bands.

Dopants also have the important effect of shifting the energy bands relative to the Fermi level. The energy band that corresponds with the dopant with the greatest concentration ends up closer to the Fermi level. Since the Fermi level must remain constant in a system in thermodynamic equilibrium, stacking layers of materials with different properties leads to many useful electrical properties induced by band bending, if the interfaces can be made cleanly enough. For example, the p-n junction's properties are due to the band bending that happens as a result of the necessity to line up the bands in contacting regions of p-type and n-type material. This effect is shown in a band diagram. The band diagram typically indicates the variation in the valence band and conduction band edges versus some spatial dimension, often denoted x. The Fermi level is also usually indicated in the diagram. Sometimes the intrinsic Fermi level, Ei, which is the Fermi level in the absence of doping, is shown. These diagrams are useful in explaining the operation of many kinds of semiconductor devices.

Relationship to carrier concentration (low doping)

For low levels of doping, the relevant energy states are populated sparsely by electrons (conduction band) or holes (valence band). It is possible to write simple expressions for the electron and hole carrier concentrations, by ignoring Pauli exclusion (via Maxwell–Boltzmann statistics):
where EF is the Fermi level, EC is the minimum energy of the conduction band, and EV is the maximum energy of the valence band. These are related to the value of the intrinsic concentration via[7]
an expression which is independent of the doping level, since ECEV (the band gap) does not change with doping. 

The concentration factors NC(T) and NV(T) are given by
where me* and mh* are the density of states effective masses of electrons and holes, respectively, quantities that are roughly constant over temperature.

Techniques of doping and synthesis

The synthesis of n-type semiconductors may involve the use of vapor-phase epitaxy. In vapor-phase epitaxy, a gas containing the negative dopant is passed over the substrate wafer. In the case of n-type GaAs doping, hydrogen sulfide is passed over the gallium arsenide, and sulfur is incorporated into the structure. This process is characterized by a constant concentration of sulfur on the surface. In the case of semiconductors in general, only a very thin layer of the wafer needs to be doped in order to obtain the desired electronic properties. The reaction conditions typically range from 600 to 800 °C for the n-doping with group VI elements, and the time is typically 6–12 hours depending on the temperature. 

Process

Some dopants are added as the (usually silicon) boule is grown, giving each wafer an almost uniform initial doping. To define circuit elements, selected areas — typically controlled by photolithography — are further doped by such processes as diffusion and ion implantation, the latter method being more popular in large production runs because of increased controllability.

Small numbers of dopant atoms can change the ability of a semiconductor to conduct electricity. When on the order of one dopant atom is added per 100 million atoms, the doping is said to be low or light. When many more dopant atoms are added, on the order of one per ten thousand atoms, the doping is referred to as high or heavy. This is often shown as n+ for n-type doping or p+ for p-type doping.

Dopant elements


Group IV semiconductors

(Note: When discussing periodic table groups, semiconductor physicists always use an older notation, not the current IUPAC group notation. For example, the carbon group is called "Group IV", not "Group 14".) 

For the Group IV semiconductors such as diamond, silicon, germanium, silicon carbide, and silicon germanium, the most common dopants are acceptors from Group III or donors from Group V elements. Boron, arsenic, phosphorus, and occasionally gallium are used to dope silicon. Boron is the p-type dopant of choice for silicon integrated circuit production because it diffuses at a rate that makes junction depths easily controllable. Phosphorus is typically used for bulk-doping of silicon wafers, while arsenic is used to diffuse junctions, because it diffuses more slowly than phosphorus and is thus more controllable.

By doping pure silicon with Group V elements such as phosphorus, extra valence electrons are added that become unbonded from individual atoms and allow the compound to be an electrically conductive n-type semiconductor. Doping with Group III elements, which are missing the fourth valence electron, creates "broken bonds" (holes) in the silicon lattice that are free to move. The result is an electrically conductive p-type semiconductor. In this context, a Group V element is said to behave as an electron donor, and a group III element as an acceptor. This is a key concept in the physics of a diode

A very heavily doped semiconductor behaves more like a good conductor (metal) and thus exhibits more linear positive thermal coefficient. Such effect is used for instance in sensistors. Lower dosage of doping is used in other types (NTC or PTC) thermistors

Silicon dopants

  • Acceptors, p-type
    • Boron is a p-type dopant. Its diffusion rate allows easy control of junction depths. Common in CMOS technology. Can be added by diffusion of diborane gas. The only acceptor with sufficient solubility for efficient emitters in transistors and other applications requiring extremely high dopant concentrations. Boron diffuses about as fast as phosphorus.
    • Aluminium, used for deep p-diffusions. Not popular in VLSI and ULSI. Also a common unintentional impurity.
    • Gallium is a dopant used for long-wavelength infrared photoconduction silicon detectors in the 8–14 µm atmospheric window. Gallium-doped silicon is also promising for solar cells, due to its long minority carrier lifetime with no lifetime degradation; as such it is gaining importance as a replacement of boron doped substrates for solar cell applications.
    • Indium is a dopant used for long-wavelength infrared photoconduction silicon detectors in the 3–5 µm atmospheric window.
  • Donors, n-type
    • Phosphorus is a n-type dopant. It diffuses fast, so is usually used for bulk doping, or for well formation. Used in solar cells. Can be added by diffusion of phosphine gas. Bulk doping can be achieved by nuclear transmutation, by irradiation of pure silicon with neutrons in a nuclear reactor. Phosphorus also traps gold atoms, which otherwise quickly diffuse through silicon and act as recombination centers.
    • Arsenic is a n-type dopant. Its slower diffusion allows using it for diffused junctions. Used for buried layers. Has similar atomic radius to silicon, high concentrations can be achieved. Its diffusivity is about a tenth of phosphorus or boron, so it is used where the dopant should stay in place during subsequent thermal processing. Useful for shallow diffusions where well-controlled abrupt boundary is desired. Preferred dopant in VLSI circuits. Preferred dopant in low resistivity ranges.
    • Antimony is a n-type dopant. It has a small diffusion coefficient. Used for buried layers. Has diffusivity similar to arsenic, is used as its alternative. Its diffusion is virtually purely substitutional, with no interstitials, so it is free of anomalous effects. For this superior property, it is sometimes used in VLSI instead of arsenic. Heavy doping with antimony is important for power devices. Heavily antimony-doped silicon has lower concentration of oxygen impurities; minimal autodoping effects make it suitable for epitaxial substrates.
    • Bismuth is a promising dopant for long-wavelength infrared photoconduction silicon detectors, a viable n-type alternative to the p-type gallium-doped material.
    • Lithium is used for doping silicon for radiation hardened solar cells. The lithium presence anneals defects in the lattice produced by protons and neutrons. Lithium can be introduced to boron-doped p+ silicon, in amounts low enough to maintain the p character of the material, or in large enough amount to counterdope it to low-resistivity n type.
  • Other
    • Germanium can be used for band gap engineering. Germanium layer also inhibits diffusion of boron during the annealing steps, allowing ultrashallow p-MOSFET junctions. Germanium bulk doping suppresses large void defects, increases internal gettering, and improves wafer mechanical strength.
    • Silicon, germanium and xenon can be used as ion beams for pre-amorphization of silicon wafer surfaces. Formation of an amorphous layer beneath the surface allows forming ultrashallow junctions for p-MOSFETs.
    • Nitrogen is important for growing defect-free silicon crystal. Improves mechanical strength of the lattice, increases bulk microdefect generation, suppresses vacancy agglomeration.
    • Gold and platinum are used for minority carrier lifetime control. They are used in some infrared detection applications. Gold introduces a donor level 0.35 eV above the valence band and an acceptor level 0.54 eV below the conduction band. Platinum introduces a donor level also at 0.35 eV above the valence band, but its acceptor level is only 0.26 eV below conduction band; as the acceptor level in n-type silicon is shallower, the space charge generation rate is lower and therefore the leakage current is also lower than for gold doping. At high injection levels platinum performs better for lifetime reduction. Reverse recovery of bipolar devices is more dependent on the low-level lifetime, and its reduction is better performed by gold. Gold provides a good tradeoff between forward voltage drop and reverse recovery time for fast switching bipolar devices, where charge stored in base and collector regions must be minimized. Conversely, in many power transistors a long minority carrier lifetime is required to achieve good gain, and the gold/platinum impurities must be kept low.

Other semiconductors

  • Gallium arsenide
    • n-type: tellurium, sulphur (substituting As), tin, silicon, germanium (substituting Ga)
    • p-type: beryllium, zinc, chromium (substituting Ga), silicon, germanium (substituting As)
  • Gallium phosphide
    • n-type: tellurium, selenium, sulphur (substituting phosphorus)
    • p-type: zinc, magnesium (substituting Ga), tin (substituting P)
  • Gallium nitride, Indium gallium nitride, Aluminium gallium nitride
    • n-type: silicon (substituting Ga), germanium (substituting Ga, better lattice match), carbon (substituting Ga, naturally embedding into MOVPE-grown layers in low concentration)
    • p-type: magnesium (substituting Ga) - challenging due to relatively high ionisation energy above the valence band edge, strong diffusion of interstitial Mg, hydrogen complexes passivating of Mg acceptors and by Mg self-compensation at higher concentrations)
  • Cadmium telluride
    • n-type: indium, aluminium (substituting Cd), chlorine (substituting Te)
    • p-type: phosphorus (substituting Te), lithium, sodium (substituting Cd)
  • Cadmium sulfide
    • n-type: gallium (substituting Cd), iodine, fluorine (substituting S)
    • p-type: lithium, sodium (substituting Cd)

Compensation

In most cases many types of impurities will be present in the resultant doped semiconductor. If an equal number of donors and acceptors are present in the semiconductor, the extra core electrons provided by the former will be used to satisfy the broken bonds due to the latter, so that doping produces no free carriers of either type. This phenomenon is known as compensation, and occurs at the p-n junction in the vast majority of semiconductor devices. Partial compensation, where donors outnumber acceptors or vice versa, allows device makers to repeatedly reverse (invert) the type of a given portion of the material by applying successively higher doses of dopants, so-called counterdoping. Most modern semiconductors are made by successive selective counterdoping steps to create the necessary P and N type areas.

Although compensation can be used to increase or decrease the number of donors or acceptors, the electron and hole mobility is always decreased by compensation because mobility is affected by the sum of the donor and acceptor ions.

Doping in conductive polymers

Conductive polymers can be doped by adding chemical reactants to oxidize, or sometimes reduce, the system so that electrons are pushed into the conducting orbitals within the already potentially conducting system. There are two primary methods of doping a conductive polymer, both of which use an oxidation-reduction (i.e., redox) process.
  1. Chemical doping involves exposing a polymer such as melanin, typically a thin film, to an oxidant such as iodine or bromine. Alternatively, the polymer can be exposed to a reductant; this method is far less common, and typically involves alkali metals.
  2. Electrochemical doping involves suspending a polymer-coated, working electrode in an electrolyte solution in which the polymer is insoluble along with separate counter and reference electrodes. An electric potential difference is created between the electrodes that causes a charge and the appropriate counter ion from the electrolyte to enter the polymer in the form of electron addition (i.e., n-doping) or removal (i.e., p-doping).
N-doping is much less common because the Earth's atmosphere is oxygen-rich, thus creating an oxidizing environment. An electron-rich, n-doped polymer will react immediately with elemental oxygen to de-dope (i.e., reoxidize to the neutral state) the polymer. Thus, chemical n-doping must be performed in an environment of inert gas (e.g., argon). Electrochemical n-doping is far more common in research, because it is easier to exclude oxygen from a solvent in a sealed flask. However, it is unlikely that n-doped conductive polymers are available commercially.

Doping in organic molecular semiconductors

Molecular dopants are preferred in doping molecular semiconductors due to their compatibilities of processing with the host, that is, similar evaporation temperatures or controllable solubility.[24] Additionally, the relatively large sizes of molecular dopants compared with those of metal ion dopants (such as Li+ and Mo6+) are generally beneficial, yielding excellent spatial confinement for use in multilayer structures, such as OLEDs and Organic solar cells. Typical p-type dopants include F4-TCNQ and Mo(tfd)3. However, similar to the problem encountered in doping conductive polymers, air-stable n-dopants suitable for materials with low electron affinity (EA) are still elusive. Recently, photoactivation with a combination of cleavable dimeric dopants, such as [RuCpMes]2, suggests a new path to realize effective n-doping in low-EA materials.

Magnetic doping

Research on magnetic doping has shown that considerable alteration of certain properties such as specific heat may be affected by small concentrations of an impurity; for example, dopant impurities in semiconducting ferromagnetic alloys can generate different properties as first predicted by White, Hogan, Suhl and Nakamura. The inclusion of dopant elements to impart dilute magnetism is of growing significance in the field of Magnetic semiconductors. The presence of disperse ferromagnetic species is key to the functionality of emerging Spintronics, a class of systems that utilise electron spin in addition to charge. Using Density functional theory(DFT) the temperature dependent magnetic behaviour of dopants within a given lattice can be modeled to identify candidate semiconductor systems.

Single dopants in semiconductors

The sensitive dependence of a semiconductor's properties on dopants has provided an extensive range of tunable phenomena to explore and apply to devices. It is possible to identify the effects of a solitary dopant on commercial device performance as well as on the fundamental properties of a semiconductor material. New applications have become available that require the discrete character of a single dopant, such as single-spin devices in the area of quantum information or single-dopant transistors. Dramatic advances in the past decade towards observing, controllably creating and manipulating single dopants, as well as their application in novel devices have allowed opening the new field of solotronics (solitary dopant optoelectronics).

Neutron transmutation doping

Neutron transmutation doping (NTD) is an unusual doping method for special applications. Most commonly, it is used to dope silicon n-type in high-power electronics. It is based on the conversion of the Si-30 isotope into phosphorus atom by neutron absorption as follows:
In practice, the silicon is typically placed near a nuclear reactor to receive the neutrons. As neutrons continue to pass through the silicon, more and more phosphorus atoms are produced by transmutation, and therefore the doping becomes more and more strongly n-type. NTD is a far less common doping method than diffusion or ion implantation, but it has the advantage of creating an extremely uniform dopant distribution.

Modulation doping

Modulation doping is a synthesis technique in which the dopants are spatially separated from the carriers. In this way, carrier-donor scattering is suppressed, allowing very high mobility to be attained.

Introduction to entropy

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Introduct...