Search This Blog

Tuesday, March 30, 2021

Human spaceflight

From Wikipedia, the free encyclopedia

Apollo 11 astronaut Buzz Aldrin on the Moon, 1969
 
Voskhod 2 cosmonaut Alexei Leonov, first in open space, 1965 

Gemini 4 astronaut Ed White in open space, 1965
 
International Space Station crewmember Tracy Caldwell Dyson views the Earth, 2010

Human spaceflight (also referred to as manned spaceflight or crewed spaceflight) is spaceflight with a crew or passengers aboard a spacecraft, the spacecraft being operated directly by the onboard human crew. Spacecraft can also be remotely operated from ground stations on Earth, or autonomously, without any direct human involvement. People trained for spaceflight are called astronauts, cosmonauts, or taikonauts; and non-professionals are referred to as spaceflight participants.

The first human in space was Yuri Gagarin, who flew the Vostok 1 spacecraft, which was launched by the Soviet Union on 12 April 1961 as part of the Vostok program. Humans traveled to the Moon nine times between 1968 and 1972 as part of the United States Apollo program, and have had a continuous presence in space for 20 years and 147 days on the International Space Station (ISS).

To date, Russia, the United States, and China are the only countries with public or commercial human spaceflight-capable programs. Non-governmental spaceflight companies have been working to develop human space programs of their own, e.g. for space tourism or commercial in-space research. The first private human spaceflight launch was a suborbital flight on SpaceShipOne on June 21, 2004. The first commercial orbital crew launch was by SpaceX in May 2020, transporting, under government contract, astronauts to the ISS.

History

Cold War era

Replica of the Vostok space capsule, which carried the first human into orbit
 
Mercury space capsule, which carried the first Americans into orbit
 
North American X-15, hypersonic rocket-powered aircraft, which reached the edge of space
 
Neil Armstrong, the first human to land and walk on the Moon, July 1969.

Human spaceflight capability was first developed during the Cold War between the United States and the Soviet Union (USSR). These nations developed intercontinental ballistic missiles for the delivery of nuclear weapons, producing rockets large enough to be adapted to carry the first artificial satellites into low Earth orbit.

After the first satellites were launched in 1957 and 1958 by the Soviet Union, the US began work on Project Mercury, with the aim of launching men into orbit. The USSR was secretly pursuing the Vostok program to accomplish the same thing, and launched the first human into space, the cosmonaut Yuri Gagarin, who, on 12 April 1961, was launched aboard Vostok 1 on a Vostok 3KA rocket and completed a single orbit. On 5 May 1961, the US launched its first astronaut, Alan Shepard, on a suborbital flight aboard Freedom 7 on a Mercury-Redstone rocket. Unlike Gagarin, Shepard manually controlled his spacecraft's attitude. On 20 February 1962, John Glenn became the first American in orbit, aboard Friendship 7 on a Mercury-Atlas rocket. The USSR launched five more cosmonauts in Vostok capsules, including the first woman in space, Valentina Tereshkova aboard Vostok 6, on 16 June 1963. Through 1963, the US launched a total of two astronauts in suborbital flights and four into orbit. The US also made two North American X-15 flights (90 and 91, piloted by Joseph A. Walker) that exceeded the Kármán line, the internationally recognized 100 kilometres (62 mi) altitude used by the Fédération Aéronautique Internationale (FAI) to denote the edge of space.

In 1961, US President John F. Kennedy raised the stakes of the Space Race by setting the goal of landing a man on the Moon and returning him safely to Earth by the end of the 1960s. That same year, the US began the Apollo program of launching three-man capsules atop the Saturn family of launch vehicles to accomplish this; and, in 1962, began Project Gemini, which, in 1965 and 1966, flew 10 missions with two-man crews launched by Titan II rockets, Gemini's objective being to support Apollo by developing American orbital spaceflight experience and techniques to be used during the Moon mission.

Meanwhile, the USSR remained silent about their intentions to send humans to the Moon, and proceeded to stretch the limits of their single-pilot Vostok capsule by adapting it to a two or three-person Voskhod capsule to compete with Gemini. They were able to launch two orbital flights in 1964 and 1965 and achieved the first spacewalk, performed by Alexei Leonov on Voskhod 2 on 8 March 1965. However, the Voskhod did not have Gemini's capability to maneuver in orbit, and the program was terminated. The US Gemini flights did not achieve the first spacewalk, but overcame the early Soviet lead by performing several spacewalks, solving the problem of astronaut fatigue caused by compensating for the lack of gravity, demonstrating the ability of humans to endure two weeks in space, and performing the first space rendezvous and docking of spacecraft.

The US succeeded in developing the Saturn V rocket necessary to send the Apollo spacecraft to the Moon, and sent Frank Borman, James Lovell, and William Anders into 10 orbits around the Moon in Apollo 8 in December 1968. In July 1969, Apollo 11 accomplished Kennedy's goal by landing Neil Armstrong and Buzz Aldrin on the Moon on 21 July and returning them safely on 24 July, along with Command Module pilot Michael Collins. Through 1972, a total of six Apollo missions landed 12 men to walk on the Moon, half of which drove electric powered vehicles on the surface. The crew of Apollo 13Jim Lovell, Jack Swigert, and Fred Haise—survived a catastrophic in-flight spacecraft failure, orbited the Moon without landing, and returned safely to Earth.

Soyuz, most serial spacecraft
 
Salyut 1, first crewed space station, with docked Soyuz spacecraft

Meanwhile, the USSR secretly pursued crewed lunar orbiting and landing programs. They successfully developed the three-person Soyuz spacecraft for use in the lunar programs, but failed to develop the N1 rocket necessary for a human landing, discontinuing their lunar programs in 1974. Upon losing the Moon race they concentrated on the development of space stations, using the Soyuz as a ferry to take cosmonauts to and from the stations. They started with a series of Salyut sortie stations from 1971 to 1986.

Post-Apollo era

Artist's rendering of an Apollo CSM is about to dock with a Soyuz spacecraft.

In 1969, Nixon appointed his vice president, Spiro Agnew, to head a Space Task Group to recommend follow-on human spaceflight programs after Apollo. The group proposed an ambitious Space Transportation System based on a reusable Space Shuttle, which consisted of a winged, internally fueled orbiter stage burning liquid hydrogen, launched with a similar, but larger kerosene-fueled booster stage, each equipped with airbreathing jet engines for powered return to a runway at the Kennedy Space Center launch site. Other components of the system included a permanent, modular space station; reusable space tug; and nuclear interplanetary ferry, leading to a human expedition to Mars as early as 1986 or as late as 2000, depending on the level of funding allocated. However, Nixon knew the American political climate would not support congressional funding for such an ambition, and killed proposals for all but the Shuttle, possibly to be followed by the space station. Plans for the Shuttle were scaled back to reduce development risk, cost, and time, replacing the piloted fly back booster with two reusable solid rocket boosters, and the smaller orbiter would use an expendable external propellant tank to feed its hydrogen-fueled main engines. The orbiter would have to make unpowered landings.

Space Shuttle orbiter, first crewed orbital spaceplane

In 1973, the US launched the Skylab sortie space station and inhabited it for 171 days with three crews ferried aboard Apollo spacecraft. During that time, President Richard Nixon and Soviet general secretary Leonid Brezhnev were negotiating an easing of Cold War tensions known as détente. As part of this, they negotiated the Apollo-Soyuz program, in which an Apollo spacecraft carrying a special docking adapter module rendezvoused and docked with Soyuz 19 in 1975. The American and Russian crews shook hands in space, but the purpose of the flight was purely symbolic.

The two nations continued to compete rather than cooperate in space, as the US turned to developing the Space Shuttle and planning the space station, which was dubbed Freedom. The USSR launched three Almaz military sortie stations from 1973 to 1977, disguised as Salyuts. They followed Salyut with the development of Mir, the first modular, semi-permanent space station, the construction of which took place from 1986 to 1996. Mir orbited at an altitude of 354 kilometers (191 nautical miles), at an orbital inclination of 51.6°. It was occupied for 4,592 days and made a controlled reentry in 2001.

The Space Shuttle started flying in 1981, but the US Congress failed to approve sufficient funds to make Space Station Freedom a reality. A fleet of four shuttles was built: Columbia, Challenger, Discovery, and Atlantis. A fifth shuttle, Endeavour, was built to replace Challenger, which was destroyed in an accident during launch that killed 7 astronauts on 28 January 1986. From 1983 to 1998, twenty-two Shuttle flights carried components for a European Space Agency sortie space station called Spacelab in the Shuttle payload bay.

Buran-class orbiter, copy of the Space Shuttle orbiter

The USSR copied the US's reusable Space Shuttle orbiter, which they called Buran-class orbiter or simply Buran, which was designed to be launched into orbit by the expendable Energia rocket, and capable of robotic orbital flight and landing. Unlike the Space Shuttle, Buran had no main rocket engines, but like the Space Shuttle orbiter it used smaller rocket engines to perform its final orbital insertion. A single uncrewed orbital test flight took place in November 1988. A second test flight was planned by 1993, but the program was canceled due to lack of funding and the dissolution of the Soviet Union in 1991. Two more orbiters were never completed, and the one that performed the uncrewed flight was destroyed in a hangar roof collapse in May 2002.

US / Russian cooperation

International Space Station, assembled in orbit by US and Russia

The dissolution of the Soviet Union in 1991 brought an end to the Cold War and opened the door to true cooperation between the US and Russia. The Soviet Soyuz and Mir programs were taken over by the Russian Federal Space Agency, now known as the Roscosmos State Corporation. The Shuttle-Mir Program included American Space Shuttles visiting the Mir space station, Russian cosmonauts flying on the Shuttle, and an American astronaut flying aboard a Soyuz spacecraft for long-duration expeditions aboard Mir.

In 1993, President Bill Clinton secured Russia's cooperation in converting the planned Space Station Freedom into the International Space Station (ISS). Construction of the station began in 1998. The station orbits at an altitude of 409 kilometers (221 nmi) and an orbital inclination of 51.65°. Several of the Space Shuttle's 135 orbital flights were to help assemble, supply, and crew the ISS. Russia has built half of the International Space Station and has continued its cooperation with the US.

China

Shenzhou, first non-USSR and non-USA spacecraft

After Russia's launch of Sputnik 1 in 1957, Chairman Mao Zedong intended to place a Chinese satellite in orbit by 1959 to celebrate the 10th anniversary of the founding of the People's Republic of China (PRC). However, China did not successfully launch its first satellite until 24 April 1970. On 14 July 1967, Mao and Premier Zhou Enlai decided that the PRC should not be left behind, and started China's own human spaceflight program. However, the first attempt, the Shuguang spacecraft, which was copied from the US Gemini craft, was canceled on 13 May 1972.

China later designed the Shenzhou spacecraft, which resembled the Russian Soyuz, and became the third nation to achieve independent human spaceflight capability by launching Yang Liwei on a 21-hour flight aboard Shenzhou 5 on 15 October 2003. China launched the Tiangong-1 space station on 29 September 2011, and two sortie missions to it: Shenzhou 9 16–29 June 2012, with China's first female astronaut Liu Yang; and Shenzhou 10, 13–26 June 2013. The station was retired on 21 March 2016 and reentered Earth's atmosphere on 2 April 2018, burning up with small fragments impacting the Pacific Ocean. Tiangong-1's successor Tiangong-2 was launched in September 2016. Tiangong-2 hosted a crew of two—Jing Haipeng and Chen Dong—for 30 days. On 22 April 2017, the Tianzhou 1 cargo spacecraft docked with the station, which was later deorbited, in July 2019, burning up over the Pacific.

Abandoned programs of other nations

The European Space Agency began development of the Hermes shuttle spaceplane in 1987, to be launched on the Ariane 5 expendable launch vehicle. It was intended to dock with the European Columbus space station. The projects were canceled in 1992, when it became clear that neither cost nor performance goals could be achieved. No Hermes shuttles were ever built. The Columbus space station was reconfigured as the European module of the same name on the International Space Station.

Japan (NASDA) began development of the HOPE-X experimental shuttle spaceplane in the 1980s, to be launched on its H-IIA expendable launch vehicle. A string of failures in 1998 led to funding reductions, and the project's cancellation in 2003 in favor of participation in the International Space Station program through the Kibō Japanese Experiment Module and H-II Transfer Vehicle cargo spacecraft. As an alternative to HOPE-X, NASDA in 2001 proposed the Fuji crew capsule for independent or ISS flights, but the project did not proceed to the contracting stage.

From 1993 to 1997, the Japanese Rocket Society , Kawasaki Heavy Industries, and Mitsubishi Heavy Industries worked on the proposed Kankoh-maru vertical-takeoff-and-landing single-stage-to-orbit reusable launch system. In 2005, this system was proposed for space tourism.

According to a press release from the Iraqi News Agency dated 5 December 1989, there was only one test of the Al-Abid space launcher, which Iraq intended to use to develop its own crewed space facilities by the end of the century. These plans were put to an end by the Gulf War of 1991 and the economic hardships that followed.

United States "Shuttle gap"

STS-135 (July 2011), the final human spaceflight of the United States until 2018
 
VSS Unity Flight VP-03 December 2018, the first human spaceflight from the United States since STS-135

Under the Bush administration, the Constellation program included plans for retiring the Space Shuttle program and replacing it with the capability for spaceflight beyond low Earth orbit. In the 2011 United States federal budget, the Obama administration canceled Constellation for being over budget and behind schedule while not innovating and investing in critical new technologies. As part of the Artemis program, NASA is developing the Orion spacecraft to be launched by the Space Launch System. Under the Commercial Crew Development plan, NASA will rely on transportation services provided by the private sector to reach low Earth orbit, such as SpaceX Dragon 2, Sierra Nevada Corporation's Dream Chaser, or the Boeing Starliner. The period between the retirement of the Space Shuttle in 2011 and the first launch into space of SpaceShipTwo Flight VP-03 on 13 December 2018 is similar to the gap between the end of Apollo in 1975 and the first Space Shuttle flight in 1981, and is referred to by a presidential Blue Ribbon Committee as the U.S. human spaceflight gap.

Commercial private spaceflight

SpaceShipOne, first private sub-orbital spaceplane
 
Crew Dragon, first private orbital spacecraft

Since the early 2000s, a variety of private spaceflight ventures have been undertaken. Several of the companies—including Blue Origin, SpaceX, Virgin Galactic, and Sierra Nevada—have plans to advance human spaceflight. As of 2016, all four of those companies have development programs to fly commercial passengers.

A commercial suborbital spacecraft aimed at the space tourism market is being developed by Virgin Galactic. Called SpaceshipTwo, it reached space in December 2018.

Blue Origin has begun a multi-year test program of their New Shepard vehicle and has carried out 11 successful uncrewed test flights in 2015–2019. Blue Origin planned to fly with humans in 2019.

SpaceX and Boeing are both developing passenger-capable orbital space capsules as of 2020, with SpaceX carrying NASA astronauts to the International Space Station on board a Crew Dragon spacecraft on a Falcon 9 Block 5 launch vehicle. Boeing will be doing the same with their CST-100 launched on a United Launch Alliance Atlas V launch vehicle. Development funding for these orbital-capable technologies has been provided by a mix of government and private funds, with SpaceX providing a greater portion of total development funding for this human-carrying capability from private investment. There have been no public announcements of commercial offerings for orbital flights from either company, although both companies are planning some flights with their own private, non-NASA, astronauts on board.

Passenger travel via spacecraft

Over the decades, a number of spacecraft have been proposed for spaceliner passenger travel. Somewhat analogous to travel by airliner after the middle of the 20th century, these vehicles are proposed to transport large numbers of passengers to destinations in space, or on Earth via suborbital spaceflights. To date, none of these concepts have been built, although a few vehicles that carry fewer than 10 persons are currently in the test flight phase of their development process.

One large spaceliner concept currently in early development is the SpaceX Starship, which, in addition to replacing the Falcon 9 and Falcon Heavy launch vehicles in the legacy Earth-orbit market after 2020, has been proposed by SpaceX for long-distance commercial travel on Earth, flying 100+ people suborbitally between two points in under one hour, also known as "Earth-to-Earth".

Small spaceplane or small capsule suborbital spacecraft have been under development for the past decade or so; as of 2017, at least one of each type is under development. Both Virgin Galactic and Blue Origin have craft in active development: the SpaceShipTwo spaceplane and the New Shepard capsule, respectively. Both would carry approximately a half-dozen passengers up to space for a brief time of zero gravity before returning to the launch location. XCOR Aerospace had been developing the Lynx single-passenger spaceplane since the 2000s, but development was halted in 2017.

Human representation and participation

Participation and representation of humanity in space has been an issue ever since the first phase of space exploration. Some rights of non-spacefaring countries have been secured through international space law, declaring space the "province of all mankind", though the sharing of space by all humanity is sometimes criticized as imperialist and lacking. In addition to the lack of international inclusion, the inclusion of women and people of color has also been lacking. To make spaceflight more inclusive, organizations such as the Justspace Alliance and IAU-featured Inclusive Astronomy have been formed in recent years.

Women

The first woman to ever enter space was Valentina Tereshkova. She flew in 1963, but it was not until the 1980s that another woman entered space again. At the time, all astronauts were required to be military test pilots; and women were not able to enter this career, which is one reason for the delay in allowing women to join space crews. After the rules were changed, Svetlana Savitskaya became the second woman to enter space; she was also from the Soviet Union. Sally Ride became the next woman to enter space and the first woman to enter space through the United States program.

Since then, eleven other countries have allowed women astronauts. The first all-female space walk occurred in 2018, by Christina Koch and Jessica Meir. These two women had both participated in separate space walks with NASA. The first woman to go to the moon is planned for 2024.

Despite these developments women are still underrepresented among astronauts and especially cosmonauts. Issues that block potential applicants from the programs, and limit the space missions they are able to go on, are, for example:

  • agencies limiting women to half as much time in space than men, due to suppositions that women are at greater potential risk for cancer.
  • a lack of space suits sized appropriately for female astronauts.

Milestones

By achievement

12 April 1961
Yuri Gagarin was the first human in space and the first in Earth orbit, on Vostok 1.
17 July 1962 or 19 July 1963
Either Robert M. White or Joseph A. Walker (depending on the definition of the space border) was the first to pilot a spaceplane, the North American X-15, on 17 July 1962 (White) or 19 July 1963 (Walker).
18 March 1965
Alexei Leonov was first to walk in space.
15 December 1965
Walter M. Schirra and Tom Stafford were first to perform a space rendezvous, piloting their Gemini 6A spacecraft to achieve station-keeping one foot (30 cm) from Gemini 7 for over 5 hours.
16 March 1966
Neil Armstrong and David Scott were first to rendezvous and dock, piloting their Gemini 8 spacecraft to dock with an uncrewed Agena Target Vehicle.
21–27 December 1968
Frank Borman, Jim Lovell, and William Anders were first to travel beyond low Earth orbit (LEO) and first to orbit the Moon, on the Apollo 8 mission, which orbited the Moon ten times before returning to Earth.
20 July 1969
Neil Armstrong and Buzz Aldrin were first to land on the Moon, during Apollo 11.
Longest time in space
Valeri Polyakov performed the longest single spaceflight, from 8 January 1994 to 22 March 1995 (437 days, 17 hours, 58 minutes, and 16 seconds). Gennady Padalka has spent the most total time in space on multiple missions, 879 days.
Longest-duration crewed space station
The International Space Station has the longest period of continuous human presence in space, 2 November 2000 to present (20 years and 147 days). This record was previously held by Mir, from Soyuz TM-8 on 5 September 1989 to the Soyuz TM-29 on 28 August 1999, a span of 3,644 days (almost 10 years).

By nationality or sex

12 April 1961
Yuri Gagarin became the first Soviet and the first human to reach space, on Vostok 1.
5 May 1961
Alan Shepard became the first American to reach space, on Freedom 7.
20 February 1962
John Glenn became the first American to orbit the Earth.
16 June 1963
Valentina Tereshkova became the first woman to go into space and to orbit the Earth.
2 March 1978
Vladimír Remek, a Czechoslovakian, became the first non-American and non-Soviet in space, as part of the Interkosmos program.
2 April 1984
Rakesh Sharma, became the first Indian citizen to reach Earth's orbit.
25 July 1984
Svetlana Savitskaya became the first woman to walk in space.
15 October 2003
Yang Liwei became the first Chinese in space and to orbit the Earth, on Shenzhou 5.
18 October 2019
Christina Koch and Jessica Meir conducted the first woman-only walk in space.

Sally Ride became the first American woman in space, in 1983. Eileen Collins was the first female Shuttle pilot, and with Shuttle mission STS-93 in 1999 she became the first woman to command a U.S. spacecraft.

For many years, only the USSR (later Russia) and the United States were the only countries whose astronauts flew in space. That ended with the 1978 flight of Vladimir Remek. As of 2010, citizens from 38 nations (including space tourists) have flown in space aboard Soviet, American, Russian, and Chinese spacecraft.

Space programs

Human spaceflight programs have been conducted by the Soviet Union–Russian Federation, the United States, Mainland China, and by American private spaceflight companies.

  Currently have human spaceflight programs.
  Confirmed and dated plans for human spaceflight programs.
  Confirmed plans for human spaceflight programs.
  Plans for human spaceflight on the simplest form (suborbital spaceflight, etc.).
  Plans for human spaceflight on the extreme form (space stations, etc.).
  Once had official plans for human spaceflight programs, but have since been abandoned.

Current programs

The following space vehicles and spaceports are currently used for launching human spaceflights:

The following space stations are currently maintained in Earth orbit for human occupation:

  • International Space Station (US, ESA, JAXA, CSA and Russia) assembled in orbit: altitude 409 kilometers (221 nautical miles), 51.65° orbital inclination; crews transported by Soyuz or Crew Dragon spacecraft

Most of the time, the only humans in space are those aboard the ISS, whose crew of up to 7 spends up to six months at a time in low Earth orbit.

Numerous private companies attempted human spaceflight programs in an effort to win the $10 million Ansari X Prize. The first private human spaceflight took place on 21 June 2004, when SpaceShipOne conducted a suborbital flight. SpaceShipOne captured the prize on 4 October 2004, when it accomplished two consecutive flights within one week.

NASA and ESA use the term "human spaceflight" to refer to their programs of launching people into space. These endeavors have also been referred to as "manned space missions", though because of gender specificity this is no longer official parlance according to NASA style guides.

Planned future programs

Under the Indian Human Spaceflight Program, India is planning to send humans into space on its orbital vehicle Gaganyaan before August 2022. The Indian Space Research Organisation (ISRO) began work on this project in 2006. The initial objective is to carry a crew of two or three to low Earth orbit (LEO) for a 3-to-7-day flight in a spacecraft on a GSLV Mk III rocket and return them safely for a water landing at a predefined landing zone. On 15 August 2018, Indian Prime Minister Narendra Modi, declared India will independently send humans into space before the 75th anniversary of independence in 2022. In 2019, ISRO revealed plans for a space station by 2030, followed by a crewed lunar mission. The program envisages the development of a fully-autonomous orbital vehicle capable of carrying 2 or 3 crew members to an about 300 km (190 mi) low Earth orbit and bringing them safely back home.

Since 2008, the Japan Aerospace Exploration Agency has developed the H-II Transfer Vehicle cargo-spacecraft-based crewed spacecraft and Kibō Japanese Experiment Module–based small space laboratory.

NASA is developing a plan to land humans on Mars by the 2030s. The first step will begin with Artemis 1 in 2021, sending an uncrewed Orion spacecraft to a distant retrograde orbit around the Moon and returning it to Earth after a 25-day mission.

Several other countries and space agencies have announced and begun human spaceflight programs using natively developed equipment and technology, including Japan (JAXA), Iran (ISA), and North Korea (NADA). The plans for the Iranian crewed spacecraft are for a small spacecraft and space laboratory. North Korea's space program has plans for crewed spacecraft and small shuttle systems.

National spacefaring attempts

This section lists all nations which have attempted human spaceflight programs. This should not to be confused with nations with citizens who have traveled into space, including space tourists, flown or intending to fly by a foreign country's or non-domestic private company's space systems – who are not counted in this list toward their country's national spacefaring attempts.


Nation/Organization Space agency Term(s) for space traveler First launched astronaut Date Spacecraft Launcher Type
 Union of Soviet Socialist Republics
(1922–1991)
Soviet space program
(OKB-1 Design Bureau)
космонавт (same word in:) (in Russian and Ukrainian)
kosmonavt
cosmonaut
Ғарышкер(in Kazakh)
Yuri Gagarin 12 April 1961 Vostok spacecraft Vostok Orbital
 United States National Aeronautics and Space Administration (NASA) astronaut
spaceflight participant
Alan Shepard (suborbital) 5 May 1961 Mercury spacecraft Redstone Suborbital
 United States National Aeronautics and Space Administration (NASA) astronaut
spaceflight participant
John Glenn (orbital) 20 February 1962 Mercury spacecraft Atlas LV-3B Orbital
 People's Republic of China Space program of the People's Republic of China 宇航员  (Chinese)
yǔhángyuán
航天员  (Chinese)
hángtiānyuán
... 1973 (abandoned) Shuguang Long March 2A Orbital
 People's Republic of China Space program of the People's Republic of China 宇航员  (Chinese)
yǔhángyuán
航天员  (Chinese)
hángtiānyuán
... 1981 (abandoned) Piloted FSW Long March 2 Orbital
ESA logo simple.svg European Space Agency CNES / European Space Agency (ESA) spationaute (in French)
astronaut
... 1992 (abandoned) Hermes Ariane V Orbital
 Russia
Roscosmos
космонавт (in Russian)
kosmonavt
cosmonaut
Alexander Viktorenko, Alexander Kaleri 17 March 1992 Soyuz TM-14 to MIR Soyuz-U2 Orbital
Iraq Ba'athist Iraq
(1968–2003)
... رجل فضاء  (Arabic)
rajul faḍāʼ
رائد فضاء  (Arabic)
rāʼid faḍāʼ
ملاح فضائي  (Arabic)
mallāḥ faḍāʼiy
... 2001 (abandoned) ... Tammouz 2 or 3 N/A
 Japan National Space Development Agency of Japan (NASDA) 宇宙飛行士  (Japanese)
uchūhikōshi or
アストロノート
asutoronoto
... 2003 (abandoned) HOPE H-II Orbital
 People's Republic of China China National Space Administration (CNSA) 宇航员  (Chinese)
yǔhángyuán
航天员  (Chinese)
hángtiānyuán
taikonaut (太空人; tàikōng rén)
Yang Liwei 15 October 2003 Shenzhou spacecraft Long March 2F Orbital
 Japan Japanese Rocket Society  Kawasaki Heavy Industries and Mitsubishi Heavy Industries 宇宙飛行士  (Japanese)
uchūhikōshi or
アストロノート
asutoronoto
... 2000s (abandoned) Kankoh-maru Kankoh-maru Orbital
 Japan Japan Aerospace Exploration Agency (JAXA) 宇宙飛行士  (Japanese)
uchūhikōshi or
アストロノート
asutoronoto
... 2003 (abandoned) Fuji H-II Orbital
 India Indian Space Research Organisation (ISRO) Vyomanaut
 (in Sanskrit)
... 2022 Gaganyaan GSLV Mk III Orbital

[33][34]

ESA logo simple.svg European Space Agency European Space Agency (ESA) astronaut ... 2020 (concept approved in 2009; but full development not begun) CSTS, ARV phase-2 Ariane V Orbital
 Japan Japan Aerospace Exploration Agency (JAXA) 宇宙飛行士  (Japanese)
uchūhikōshi or
アストロノート
asutoronoto
... TBD HTV-based spacecraft H3 Orbital
 Iran Iranian Space Agency (ISA) ... ... 2019 (on hold) ISA spacecraft TBD Orbital
 North Korea National Aerospace Development Administration (NADA) ... ... 2020s NADA spacecraft Unha 9 Orbital
 Denmark Copenhagen Suborbitals astronaut ... 2020s Tycho Brahe SPICA Suborbital
 Romania ARCAspace astronaut ... 2020s IAR 111 - Suborbital


Tiangong-2Tiangong-1ISSSkylabMirSalyut 7Salyut 6Salyut 5Salyut 4Salyut 3Salyut 1Shenzhou programShenzhou 11Shenzhou 10Shenzhou 9Shenzhou 7Shenzhou 6Shenzhou 5SpaceShipOneSpaceShipOne flight 17PSpaceShipOne flight 16PSpaceShipOne flight 15PSpace Shuttle AtlantisSTS-135STS-132STS-129STS-125STS-122STS-117STS-115STS-112STS-110STS-104STS-98STS-106STS-101STS-86STS-84STS-81STS-79STS-76STS-74STS-71STS-66STS-46STS-45STS-44STS-43STS-37STS-38STS-36STS-34STS-30STS-27STS-61-BSTS-51-JX-15X-15 Flight 91X-15 Flight 90Space Shuttle DiscoverySTS-133STS-131STS-128STS-119STS-124STS-120STS-116STS-121STS-114STS-105STS-102STS-92STS-103STS-96STS-95STS-91STS-85STS-82STS-70STS-63STS-64STS-60STS-51STS-56STS-53STS-42STS-48STS-39STS-41STS-31STS-33STS-29STS-26STS-51-ISTS-51-GSTS-51-DSTS-51-CSTS-51-ASTS-41-DApollo ProgramApollo-Soyuz Test ProjectApollo 17Apollo 16Apollo 15Apollo 14Apollo 13Apollo 12Apollo 11Apollo 10Apollo 9Apollo 8Apollo 7Space Shuttle EndeavourSTS-134STS-130STS-127STS-126STS-123STS-118STS-113STS-111STS-108STS-100STS-97STS-99STS-88STS-89STS-77STS-72STS-69STS-67STS-68STS-59STS-61STS-57STS-54STS-47STS-49Space Shuttle ChallengerSTS-51-LSTS-61-ASTS-51-FSTS-51-BSTS-41-GSTS-41-CSTS-41-BSTS-8STS-7STS-6Project GeminiGemini XIIGemini XIGemini XGemini IX-AGemini VIIIGemini VI-AGemini VIIGemini VGemini IVGemini IIIGemini 2Gemini 1Dragon 2SpaceX Crew-1Crew Dragon Demo-2Space Shuttle ColumbiaSTS-107STS-109STS-93STS-90STS-87STS-94STS-83STS-80STS-78STS-75STS-73STS-65STS-62STS-58STS-55STS-52STS-50STS-40STS-35STS-32STS-28STS-61-CSTS-9STS-5STS-4STS-3STS-2STS-1SkylabSkylab 4Skylab 3Skylab 2Project MercuryMercury-Atlas 9Mercury-Atlas 8Mercury-Atlas 7Mercury-Atlas 6Mercury-Redstone 4Mercury-Redstone 3Soyuz programmeSoyuz MS-17Soyuz MS-16Soyuz MS-15Soyuz MS-13Soyuz MS-12Soyuz MS-11Soyuz MS-09Soyuz MS-08Soyuz MS-07Soyuz MS-06Soyuz MS-05Soyuz MS-04Soyuz MS-03Soyuz MS-02Soyuz MS-01Soyuz TMA-20MSoyuz TMA-19MSoyuz TMA-18MSoyuz TMA-17MSoyuz TMA-16MSoyuz TMA-15MSoyuz TMA-14MSoyuz TMA-13MSoyuz TMA-12MSoyuz TMA-11MSoyuz TMA-10MSoyuz TMA-09MSoyuz TMA-08MSoyuz TMA-07MSoyuz TMA-06MSoyuz TMA-05MSoyuz TMA-04MSoyuz TMA-03MSoyuz TMA-22Soyuz TMA-02MSoyuz TMA-21Soyuz TMA-20Soyuz TMA-01MSoyuz TMA-19Soyuz TMA-18Soyuz TMA-17Soyuz TMA-16Soyuz TMA-15Soyuz TMA-14Soyuz TMA-13Soyuz TMA-12Soyuz TMA-11Soyuz TMA-10Soyuz TMA-9Soyuz TMA-8Soyuz TMA-7Soyuz TMA-6Soyuz TMA-5Soyuz TMA-4Soyuz TMA-3Soyuz TMA-2Soyuz TMA-1Soyuz TM-34Soyuz TM-33Soyuz TM-32Soyuz TM-31Soyuz TM-30Soyuz TM-29Soyuz TM-28Soyuz TM-27Soyuz TM-26Soyuz TM-25Soyuz TM-24Soyuz TM-23Soyuz TM-22Soyuz TM-21Soyuz TM-20Soyuz TM-19Soyuz TM-18Soyuz TM-17Soyuz TM-16Soyuz TM-15Soyuz TM-14Soyuz TM-13Soyuz TM-12Soyuz TM-11Soyuz TM-10Soyuz TM-9Soyuz TM-8Soyuz TM-7Soyuz TM-6Soyuz TM-5Soyuz TM-4Soyuz TM-3Soyuz TM-2Soyuz T-15Soyuz T-14Soyuz T-13Soyuz T-12Soyuz T-11Soyuz T-10Soyuz T-10-1Soyuz T-9Soyuz T-8Soyuz T-7Soyuz T-6Soyuz T-5Soyuz 40Soyuz 39Soyuz T-4Soyuz T-3Soyuz 38Soyuz 37Soyuz T-2Soyuz 36Soyuz 35Soyuz 34Soyuz 33Soyuz 32Soyuz 31Soyuz 30Soyuz 29Soyuz 28Soyuz 27Soyuz 26Soyuz 25Soyuz 24Soyuz 23Soyuz 22Soyuz 21Soyuz 19Soyuz 18Soyuz 18aSoyuz 17Soyuz 16Soyuz 15Soyuz 14Soyuz 13Soyuz 12Soyuz 11Soyuz 10Soyuz 9Soyuz 8Soyuz 7Soyuz 6Soyuz 5Soyuz 4Soyuz 3Soyuz 1Voskhod programmeVostok programme
Chen Dong (astronaut)Jing HaipengWang YapingZhang XiaoguangNie HaishengLiu YangLiu WangJing HaipengKathleen RubinsTakuya OnishiAnatoli IvanishinJeffrey WilliamsOleg SkripochkaAleksey OvchininTimothy PeakeTimothy KopraYuri MalenchenkoAidyn AimbetovAndreas MogensenSergey VolkovKjell N. LindgrenKimiya YuiOleg KononenkoScott KellyMikhail KorniyenkoGennady PadalkaTerry W. VirtsSamantha CristoforettiAnton ShkaplerovBarry E. WilmoreYelena SerovaAleksandr SamokutyayevAlexander GerstGregory R. WisemanMaksim SurayevSteven R. SwansonOleg ArtemyevAleksandr SkvortsovKoichi WakataRichard A. MastracchioMikhail TyurinMichael S. HopkinsSergey RyazanskyOleg KotovLuca ParmitanoKaren L. NybergFyodor YurchikhinChristopher J. CassidyAleksandr MisurkinPavel VinogradovThomas H. MarshburRoman RomanenkoChris HadfieldEvgeny TarelkinOleg NovitskiyKevin A. FordAkihiko HoshideYuri MalenchenkoSunita L. WilliamsSergei RevinGennady PadalkaJoseph M. AcabaDonald PettitAndré KuipersOleg KononenkoDaniel C. BurbankAnatoli IvanishinAnton ShkaplerovSatoshi FurukawaMichael E. FossumSergey Alexandrovich VolkovRonald J. GaranAleksandr SamokutyayevAndrei BorisenkoPaolo NespoliCatherine G. ColemanDimitri KondratyevOleg SkripochkaAleksandr KaleriScott Kelly (astronaut)Fyodor YurchikhinShannon WalkerDouglas H. WheelockTracy Caldwell DysonMikhail KorniyenkoAleksandr Skvortsov (cosmonaut)Soichi NoguchiTimothy CreamerOleg KotovMaksim SurayevJeffrey WilliamsNicole StottRobert ThirskRoman RomanenkoFrank De WinneTimothy KopraMichael R. BarrattGennady PadalkaKoichi WakataSandra MagnusYuri LonchakovMichael FinckeGregory ChamitoffOleg KononenkoSergey VolkovGarrett ReismanLéopold EyhartsDaniel TaniYuri MalenchenkoPeggy WhitsonClayton AndersonOleg KotovFyodor YurchikhinSunita WilliamsMikhail TyurinMichael Lopez-AlegriaThomas ReiterJeffrey WilliamsPavel VinogradovValery TokarevWilliam McArthurJohn PhilipsSergei KrikalevSalizhan SharipovLeroy ChiaoMichael FinckeGennady PadalkaAlexander KaleriMichael FoaleEdward LuYuri MalenchenkoDonald PettitNikolai BudarinKenneth BowersoxSergei TreshchevPeggy WhitsonValery KorzunCarl WalzDaniel BurschYury OnufrienkoVladimir DezhurovMikhail TyurinFrank CulbertsonJames VossSusan HelmsYuri UsachevYuri GidzenkoSergei KrikalevWilliam ShepherdAleksandr KaleriSergei ZalyotinJean-Pierre HaigneréViktor AfanasyevSergei AvdeyevGennady PadalkaNikolai BudarinTalgat MusabayevAndrew ThomasDavid WolfPavel VinogradovAnatoly SolovyevMichael FoaleAleksandr LazutkinVasili TsibliyevJerry LinengerJohn BlahaAleksandr KaleriValery KorzunShannon LucidYury UsachevYuri OnufrienkoThomas ReiterSergei AvdeyevYuri GidzenkoNikolai BudarinAnatoly SolovyevNorman ThagardGennady StrekalovVladimir DezhurovYelena KondakovaAleksandr ViktorenkoTalgat MusabayevYuri MalenchenkoValeri PolyakovYury UsachevViktor AfanasyevAleksandr SerebrovVasili TsibliyevAleksandr PoleshchukGennadi ManakovSergei AvdeyevAnatoly SolovyevAleksandr KaleriAleksandr ViktorenkoAleksandr VolkovSergei KrikalevAnatoly ArtsebarskyMusa ManarovViktor AfanasyevGennady StrekalovGennadi ManakovAleksandr BalandinAnatoly SolovyevAleksandr SerebrovAleksandr ViktorenkoSergei KrikalevAleksandr VolkovValeri PolyakovAleksandr Panayotov AleksandrovMusa ManarovVladimir TitovAleksandr AleksandrovYuri RomanenkoAleksandr LaveykinVladimir SolovyovLeonid KizimVladimir SolovyovLeonid KizimAlexander VolkovVladimir VasyutinVladimir DzhanibekovViktor SavinykhOleg AtkovVladimir SolovyovLeonid KizimAleksandr Pavlovich AleksandrovVladimir LyakhovValentin LebedevAnatoli BerezovoyViktor SavinykhVladimir KovalyonokValery RyuminLeonid PopovGeorgi Ivanov (cosmonaut)Valery RyuminVladimir LyankhovAleksandr IvanchenkovVladimir KovalyonokGerogi GrenchoYuri RomanenkoYuri GlazkovViktor GorbatkoVitali ZholobovBoris VolynovVitali SevastyanovPyotr KlimukAleksei GubarevGeorgi GrechkoPavel PopovichYuri ArtyukhinEdward GibsonWilliam PogueGerald CarrOwen GarriotJack LousmaAlan BeanJoeseph KerwinPaul WeitzPete ConradVladislav VolkovViktor PatsayevGeorgi Dobrovolski

Safety concerns

There are two main sources of hazard in space flight: those due to the hostile space environment, and those due to possible equipment malfunctions. Addressing these issues is of great important for NASA and other space agencies before conducting the first extended crewed missions to destinations such as Mars.

Environmental hazards

Planners of human spaceflight missions face a number of safety concerns.

Life support

The basic needs for breathable air and drinkable water are addressed by the life support system of the spacecraft.

Medical issues

Astronauts may not be able to quickly return to Earth or receive medical supplies, equipment, or personnel if a medical emergency occurs. The astronauts may have to rely for long periods on limited resources and medical advice from the ground.

The possibility of blindness and of bone loss have been associated with human space flight.

On 31 December 2012, a NASA-supported study reported that spaceflight may harm the brains of astronauts and accelerate the onset of Alzheimer's disease.

In October 2015, the NASA Office of Inspector General issued a health hazards report related to space exploration, which included the potential hazards of a human mission to Mars.

On 2 November 2017, scientists reported, based on MRI studies, that significant changes in the position and structure of the brain have been found in astronauts who have taken trips in space. Astronauts on longer space trips were affected by greater brain changes.

Researchers in 2018 reported, after detecting the presence on the International Space Station (ISS) of five Enterobacter bugandensis bacterial strains, none pathogenic to humans, that microorganisms on ISS should be carefully monitored to assure a healthy environment for astronauts.

In March 2019, NASA reported that latent viruses in humans may be activated during space missions, possibly adding more risk to astronauts in future deep-space missions.

Microgravity
The effects of microgravity on fluid distribution around the body (greatly exaggerated).

Medical data from astronauts in low Earth orbits for long periods, dating back to the 1970s, show several adverse effects of a microgravity environment: loss of bone density, decreased muscle strength and endurance, postural instability, and reductions in aerobic capacity. Over time these deconditioning effects can impair astronauts' performance or increase their risk of injury.

In a weightless environment, astronauts put almost no weight on the back muscles or leg muscles used for standing up, which causes the muscles to weaken and get smaller. Astronauts can lose up to twenty per cent of their muscle mass on spaceflights lasting five to eleven days. The consequent loss of strength could be a serious problem in case of a landing emergency. Upon returning to Earth from long-duration flights, astronauts are considerably weakened and are not allowed to drive a car for twenty-one days.

Astronauts experiencing weightlessness will often lose their orientation, get motion sickness, and lose their sense of direction as their bodies try to get used to a weightless environment. When they get back to Earth, they have to readjust and may have problems standing up, focusing their gaze, walking, and turning. Importantly, those motor disturbances only get worse the longer the exposure to weightlessness. These changes can affect the ability to perform tasks required for approach and landing, docking, remote manipulation, and emergencies that may occur while landing.

In addition, after long space flight missions, male astronauts may experience severe eyesight problems, which may be a major concern for future deep space flight missions, including a crewed mission to the planet Mars. Long space flights can also alter a space traveler's eye movements.

Radiation
Comparison of Radiation Doses – includes the amount detected on the trip from Earth to Mars by the RAD on the MSL (2011–2013).

Without proper shielding, the crews of missions beyond low Earth orbit might be at risk from high-energy protons emitted by solar flares and associated solar particle events (SPEs). Lawrence Townsend of the University of Tennessee and others have studied the overall most powerful solar storm ever recorded. The flare was seen by the British astronomer Richard Carrington in September 1859. Radiation doses astronauts would receive from a Carrington-type storm could cause acute radiation sickness and possibly even death. Another storm that could have inflicted a lethal radiation dose on astronauts outside Earth's protective magnetosphere occurred during the Space Age, shortly after Apollo 16 landed and before Apollo 17 launched. This solar storm of August 1972 would likely have caused acute illness, at least.

Another type of radiation, galactic cosmic rays, presents further challenges to human spaceflight beyond low Earth orbit.

There is also some scientific concern that extended spaceflight might slow down the body's ability to protect itself against diseases, resulting in a weakened immune system and the activation of dormant viruses in the body. Radiation can cause both short- and long-term consequences to the bone marrow stem cells from which blood and immune-system cells are created. Because the interior of a spacecraft is so small, a weakened immune system and more active viruses in the body can lead to a fast spread of infection.

Isolation

During long missions, astronauts are isolated and confined in small spaces. Depression, anxiety, cabin fever, and other psychological problems may occur more than for an average person and could impact the crew's safety and mission success. NASA spends millions of dollars on psychological treatments for astronauts and former astronauts. To date, there is no way to prevent or reduce mental problems caused by extended periods of stay in space.

Due to these mental disorders, the efficiency of astronauts' work is impaired; and sometimes they are brought back to Earth, incurring the expense of their mission being aborted. A Russian expedition to space in 1976 was returned to Earth after the cosmonauts reported a strong odor that resulted in a fear of fluid leakage; but after a thorough investigation, it became clear that there was no leakage or technical malfunction. It was concluded by NASA that the cosmonauts most likely had hallucinated the smell.

It is possible that the mental health of astronauts can be affected by the changes in the sensory systems while in prolonged space travel.

Sensory systems

During astronauts' spaceflight, they are in an extreme environment. This, and the fact that little change is taking place in the environment, will result in the weakening of sensory input to the astronauts' seven senses.

  • Hearing – In the space station and spacecraft there are no noises from the outside, as there is no medium that can transmit sound waves. Although there are other team members who can talk to each other, their voices become familiar and do not stimulate the sense of hearing as much. Mechanical noises become familiar, as well.
  • Sight – Because of weightlessness, the body's liquids attain an equilibrium that is different from what it is on the Earth. For this reason, an astronaut's face swells and presses on the eyes; and therefore their vision is impaired. The landscape surrounding the astronauts is constant, which lessens visual stimulations. Due to cosmic rays, astronauts may see flashes.
  • Smell – The space station has a permanent odor described as the smell of gunpowder. Due to the zero gravity, the bodily fluids rise to the face and prevent the sinuses from drying up, which dulls the sense of smell.
  • Taste – The sense of taste is directly affected by the sense of smell and therefore when the sense of smell is dulled, the sense of taste is also. The astronauts' food is bland, and there are only certain foods that can be eaten. The food comes only once every few months, when supplies arrive, and there is little or no variety.
  • Touch – There are almost no stimulating changes in physical contact. There is almost no human physical contact during the journey.
  • The vestibular system (motion and equilibrium system) – Due to the lack of gravity, all the movements required of the astronauts are changed, and the vestibular system is damaged by the extreme change.
  • The proprioception system (the sense of the relative position of one's own parts of the body and strength of effort being employed in movement) – As a result of weightlessness, few forces are exerted on the astronauts' muscles; and there is less stimulus to this system.

Equipment hazards

Space flight requires much higher velocities than ground or air transportation, and consequently requires the use of high energy density propellants for launch, and the dissipation of large amounts of energy, usually as heat, for safe reentry through the Earth's atmosphere.

Launch

There was no practical way for the Space Shuttle Challenger's crew to safely abort before the vehicle's violent disintegration.

Since rockets have the potential for fire or explosive destruction, space capsules generally employ some sort of launch escape system, consisting either of a tower-mounted solid-fuel rocket to quickly carry the capsule away from the launch vehicle (employed on Mercury, Apollo, and Soyuz, the escape tower being discarded at some point after launch, at a point where an abort can be performed using the spacecraft's engines), or else ejection seats (employed on Vostok and Gemini) to carry astronauts out of the capsule and away for individual parachute landings.

Such a launch escape system is not always practical for multiple-crew-member vehicles (particularly spaceplanes), depending on location of egress hatch(es). When the single-hatch Vostok capsule was modified to become the 2 or 3-person Voskhod, the single-cosmonaut ejection seat could not be used, and no escape tower system was added. The two Voskhod flights in 1964 and 1965 avoided launch mishaps. The Space Shuttle carried ejection seats and escape hatches for its pilot and copilot in early flights; but these could not be used for passengers who sat below the flight deck on later flights, and so were discontinued.

There have been only two in-flight launch aborts of a crewed flight. The first occurred on Soyuz 18a on 5 April 1975. The abort occurred after the launch escape system had been jettisoned when the launch vehicle's spent second stage failed to separate before the third stage ignited and the vehicle strayed off course. The crew finally managed to separate the spacecraft, firing its engines to pull it away from the errant rocket, both cosmonauts landing safely. The second occurred on 11 October 2018 with the launch of Soyuz MS-10. Again, both crew members survived.

In the first use of a launch escape system on the launchpad, before the start of a crewed flight, happened during the planned Soyuz T-10a launch on 26 September 1983, which was aborted by a launch vehicle fire 90 seconds before liftoff. Both cosmonauts aboard landed safely.

The only crew fatality during launch occurred on 28 January 1986, when the Space Shuttle Challenger broke apart 73 seconds after liftoff, due to failure of a solid rocket booster seal, which caused the failure of the external fuel tank, resulting in explosion of the fuel and separation of the boosters. All seven crew members were killed.

Extravehicular activity

Despite the ever-present risks related to mechanical failures while working in open space, no spacewalking astronaut has ever been lost. There is a requirement for spacewalking astronauts to use tethers and sometimes supplementary anchors. If those fail, a spacewalking astronaut would most probably float away impelled by forces that were acting on the astronaut at the time of breaking loose. Such an astronaut would possibly be spinning, as kicking and flailing would be of no use. At the right angle and velocity, the astronaut might even re-enter the Earth's atmosphere and burn up. NASA has protocols for such situations: astronauts would be wearing an emergency jetpack that would automatically counter any tumbling. NASA's plan states that astronauts should then take manual control of the jetpack and fly back to safety.

However, if the jetpack's 3 pounds (1.4 kg) of fuel runs out, and if there is no other astronaut in close proximity to help, or if the air lock is irreparably damaged, the outcome would certainly be fatal. At this time, there is no spacecraft to save an astronaut floating in space, as the only one with a rescue-ready air-locked compartment — the Space Shuttle — retired 9 years ago. There is approximately a litre of water available via straw in an astronaut's helmet. The astronaut would wait roughly 7.5 hours for breathable air to run out before dying of suffocation.

Reentry and landing

The single pilot of Soyuz 1, Vladimir Komarov, was killed when his capsule's parachutes failed during an emergency landing on 24 April 1967, causing the capsule to crash.

On 1 February 2003, the crew of seven aboard the Space Shuttle Columbia were killed on reentry after completing a successful mission in space. A wing-leading-edge reinforced carbon-carbon heat shield had been damaged by a piece of frozen external tank foam insulation that had broken off and struck the wing during launch. Hot reentry gasses entered and destroyed the wing structure, leading to the breakup of the orbiter vehicle.

Artificial atmosphere

There are two basic choices for an artificial atmosphere: either an Earth-like mixture of oxygen and an inert gas such as nitrogen or helium, or pure oxygen, which can be used at lower than standard atmospheric pressure. A nitrogen–oxygen mixture is used in the International Space Station and Soyuz spacecraft, while low-pressure pure oxygen is commonly used in space suits for extravehicular activity.

The use of a gas mixture carries the risk of decompression sickness (commonly known as "the bends") when transitioning to or from the pure oxygen space suit environment. There have been instances of injury and fatalities caused by suffocation in the presence of too much nitrogen and not enough oxygen.

  • In 1960, McDonnell Aircraft test pilot G.B. North passed out and was seriously injured when testing a Mercury cabin–space suit atmosphere system in a vacuum chamber, due to nitrogen-rich air leaking from the cabin into his space suit feed. This incident led NASA to decide on a pure oxygen atmosphere for the Mercury, Gemini, and Apollo spacecraft.
  • In 1981, three pad workers were killed by a nitrogen-rich atmosphere in the aft engine compartment of the Space Shuttle Columbia at the Kennedy Space Center Launch Complex 39.
  • In 1995, two pad workers were similarly killed by a nitrogen leak in a confined area of the Ariane 5 launch pad at Guiana Space Centre.

A pure oxygen atmosphere carries the risk of fire. The original design of the Apollo spacecraft used pure oxygen at greater than atmospheric pressure prior to launch. An electrical fire started in the cabin of Apollo 1 during a ground test at Cape Kennedy Air Force Station Launch Complex 34 on 27 January 1967, and spread rapidly. The high pressure, increased by the fire, prevented removal of the plug door hatch cover in time to rescue the crew. All three astronauts—Gus Grissom, Ed White, and Roger Chaffee—were killed. This led NASA to use a nitrogen–oxygen atmosphere before launch, and low pressure pure oxygen only in space.

Reliability

The March 1966 Gemini 8 mission was aborted in orbit when an attitude control system thruster stuck in the on position, sending the craft into a dangerous spin that threatened the lives of Neil Armstrong and David Scott. Armstrong had to shut the control system off and use the reentry control system to stop the spin. The craft made an emergency reentry and the astronauts landed safely. The most probable cause was determined to be an electrical short due to a static electricity discharge, which caused the thruster to remain powered even when switched off. The control system was modified to put each thruster on its own isolated circuit.

The third lunar landing expedition, Apollo 13, in April 1970, was aborted and the lives of the crew—James Lovell, Jack Swigert, and Fred Haise—were threatened after the failure of a cryogenic liquid oxygen tank en route to the Moon. The tank burst when electrical power was applied to internal stirring fans in the tank, causing the immediate loss of all of its contents, and also damaging the second tank, causing the gradual loss of its remaining oxygen over a period of 130 minutes. This in turn caused loss of electrical power provided by fuel cells to the command spacecraft. The crew managed to return to Earth safely by using the lunar landing craft as a "life boat". The tank failure was determined to be caused by two mistakes: the tank's drain fitting had been damaged when it was dropped during factory testing, necessitating the use of its internal heaters to boil out the oxygen after a pre-launch test; which in turn damaged the fan wiring's electrical insulation because the thermostats on the heaters did not meet the required voltage rating due to a vendor miscommunication.

The crew of Soyuz 11 were killed on 30 June 1971 by a combination of mechanical malfunctions; the crew were asphyxiated due to cabin decompression following separation of their descent capsule from the service module. A cabin ventilation valve had been jolted open at an altitude of 168 kilometres (104 mi) by the stronger-than-expected shock of explosive separation bolts, which were designed to fire sequentially, but in fact had fired simultaneously. The loss of pressure became fatal within about 30 seconds.

Fatality risk

As of December 2015, 23 crew members have died in accidents aboard spacecraft. Over 100 others have died in accidents during activity directly related to spaceflight or testing.

 

Space tourism

From Wikipedia, the free encyclopedia

The first space tourist, Dennis Tito (left) aboard the ISS

Space tourism is human space travel for recreational purposes. There are several different types of space tourism, including orbital, suborbital and lunar space tourism. To date, orbital space tourism has been performed only by the Russian Space Agency. Work also continues towards developing suborbital space tourism vehicles. This is being done by aerospace companies like Blue Origin and Virgin Galactic. In addition, SpaceX (an aerospace manufacturer) announced in 2018 that they are planning on sending space tourists, including Yusaku Maezawa, on a free-return trajectory around the Moon on the Starship.

During the period from 2001 to 2009, 7 space tourists made 8 space flights aboard a Russian Soyuz spacecraft brokered by Space Adventures to the International Space Station. The publicized price was in the range of US$20–25 million per trip. Some space tourists have signed contracts with third parties to conduct certain research activities while in orbit. By 2007, space tourism was thought to be one of the earliest markets that would emerge for commercial spaceflight. Space Adventures is the only company that has sent paying passengers to space. In conjunction with the Roscosmos and RSC Energia, Space Adventures facilitated the flights for all of the world's first private space explorers. The first three participants paid in excess of $20 million (USD) each for their 10-day visit to the ISS.

Russia halted orbital space tourism in 2010 due to the increase in the International Space Station crew size, using the seats for expedition crews that would previously have been sold to paying spaceflight participants. Orbital tourist flights were set to resume in 2015 but the one planned was postponed indefinitely and none have occurred since 2009.

On June 7, 2019, NASA announced that starting in 2020, the organization aims to start allowing private astronauts to go on the International Space Station, with the use of SpaceX's Crew Dragon spacecraft and Boeing Starliner spacecraft for public astronauts, which is planned to be priced at 35,000 USD per day for one astronaut and an estimated 50 million USD for the ride there and back.

Precursors

The Soviet space program was successful in broadening the pool of cosmonauts. The Soviet Intercosmos program included cosmonauts selected from Warsaw Pact member countries (Czechoslovakia, Poland, East Germany, Bulgaria, Hungary, Romania) and later from allies of the USSR (Cuba, Mongolia, Vietnam) and non-aligned countries (India, Syria, Afghanistan). Most of these cosmonauts received full training for their missions and were treated as equals, but were generally given shorter flights than Soviet cosmonauts. The European Space Agency (ESA) also took advantage of the program.

The US space shuttle program included payload Specialist positions which were usually filled by representatives of companies or institutions managing a specific payload on that mission. These payload specialists did not receive the same training as professional NASA astronauts and were not employed by NASA. In 1983, Ulf Merbold from ESA and Byron Lichtenberg from MIT (engineer and Air Force fighter pilot) were the first payload specialists to fly on the Space Shuttle, on mission STS-9.

In 1984, Charles D. Walker became the first non-government astronaut to fly, with his employer McDonnell Douglas paying US$40,000 (equivalent to $98,437 in 2019) for his flight. NASA was also eager to prove its capability to Congressional sponsors. During the 1970s, Shuttle prime contractor Rockwell International studied a $200–300 million removable cabin that could fit into the Shuttle's cargo bay. The cabin could carry up to 74 passengers into orbit for up to three days. Space Habitation Design Associates proposed, in 1983, a cabin for 72 passengers in the bay. Passengers were located in six sections, each with windows and its own loading ramp, and with seats in different configurations for launch and landing. Another proposal was based on the Spacelab habitation modules, which provided 32 seats in the payload bay in addition to those in the cockpit area. A 1985 presentation to the National Space Society stated that, although flying tourists in the cabin would cost $1 to 1.5 million per passenger without government subsidy, within 15 years 30,000 people a year would pay US$25,000 (equivalent to $59,429 in 2019) each to fly in space on new spacecraft. The presentation also forecast flights to lunar orbit within 30 years and visits to the lunar surface within 50 years.

As the shuttle program expanded in the early 1980s, NASA began a Space Flight Participant program to allow citizens without scientific or governmental roles to fly. Christa McAuliffe was chosen as the first Teacher in Space in July 1985 from 11,400 applicants. 1,700 applied for the Journalist in Space program. An Artist in Space program was considered, and NASA expected that after McAuliffe's flight two to three civilians a year would fly on the shuttle. After McAuliffe was killed in the Challenger disaster in January 1986, the programs were canceled. McAuliffe's backup, Barbara Morgan, eventually got hired in 1998 as a professional astronaut and flew on STS-118 as a mission specialist. A second journalist-in-space program, in which NASA green-lighted Miles O'Brien to fly on the space shuttle, was scheduled to be announced in 2003. That program was canceled in the wake of the Columbia disaster on STS-107 and subsequent emphasis on finishing the International Space Station before retiring the Space Shuttle.

Initially, senior figures at NASA strongly opposed space tourism on principle; from the beginning of the ISS expeditions, NASA stated it was not interested in accommodating paying guests. The Subcommittee on Space and Aeronautics Committee on Science of the House of Representatives held in June 2001 revealed the shifting attitude of NASA towards paying space tourists wanting to travel to the ISS in its statement on the hearing's purpose:

"Review the issues and opportunities for flying nonprofessional astronauts in space, the appropriate government role for supporting the nascent space tourism industry, use of the Shuttle and Space Station for Tourism, safety and training criteria for space tourists, and the potential commercial market for space tourism."

The subcommittee report was interested in evaluating Dennis Tito's extensive training and his experience in space as a nonprofessional astronaut.

With the realities of the post-Perestroika economy in Russia, its space industry was especially starved for cash. The Tokyo Broadcasting System (TBS) offered to pay for one of its reporters to fly on a mission. Toyohiro Akiyama was flown in 1990 to Mir with the eighth crew and returned a week later with the seventh crew. Cost estimates vary from $10 million up to $37 million. Akiyama gave a daily TV broadcast from orbit and also performed scientific experiments for Russian and Japanese companies.

In 1991, British chemist Helen Sharman was selected from a pool of 13,000 applicants to be the first Briton in space. The program was known as Project Juno and was a cooperative arrangement between the Soviet Union and a group of British companies. The Project Juno consortium failed to raise the funds required, and the program was almost canceled. Reportedly Mikhail Gorbachev ordered it to proceed under Soviet expense in the interests of international relations, but in the absence of Western underwriting, less expensive experiments were substituted for those in the original plans. Sharman flew aboard Soyuz TM-12 to Mir and returned aboard Soyuz TM-11.

Sub-orbital space tourism

Successful projects

  • Scaled Composites won the $10 million X Prize in October 2004 with SpaceShipOne, as the first private company to reach and surpass an altitude of 100 km (62 mi) twice within two weeks. The altitude is beyond the Kármán Line, the arbitrarily defined boundary of space. The first flight was flown by Michael Melvill in June 2004, to a height of 100 km (62 mi), making him the first commercial astronaut. The prize-winning flight was flown by Brian Binnie, which reached a height of 112.0 km (69.6 mi), breaking the X-15 record.

Ongoing projects

  • Virgin Galactic aspires to be the first to offer regular suborbital spaceflights to paying passengers, aboard a fleet of five SpaceShipTwo-class spaceplanes. The first of these spaceplanes, VSS Enterprise, was intended to commence its first commercial flights in 2015, and tickets were on sale at a price of $200,000 (later raised to $250,000). However, the company suffered a considerable setback when the Enterprise broke up over the Mojave Desert during a test flight in October 2014. Over 700 tickets had been sold prior to the accident. A second spaceplane, VSS Unity, has begun testing.
  • As of 2018, Blue Origin is developing the New Shepard reusable suborbital launch system specifically to enable short-duration space tourism. Blue Origin plans to ferry a maximum of six persons on a brief journey to space on board the New Shepard. The capsule is attached to the top portion of an 18-meter rocket. The rocket reached 66 miles during a test flight on April 29, 2018. This was the eighth test flight of the New Shepard as part of its entire developmental program. Blue Origin has not yet started selling tickets for this flight carrying passengers.

Canceled projects

  • Armadillo Aerospace was developing a two-seat vertical takeoff and landing (VTOL) rocket called Hyperion, which will be marketed by Space Adventures. Hyperion uses a capsule similar in shape to the Gemini capsule. The vehicle will use a parachute for descent but will probably use retrorockets for final touchdown, according to remarks made by Armadillo Aerospace at the Next Generation Suborbital Researchers Conference in February 2012. The assets of Armadillo Aerospace were sold to Exos Aerospace and while SARGE is continuing to be developed, it is unclear whether Hyperion is still being developed.
  • XCOR Aerospace was developing a suborbital vehicle called Lynx until development was halted in May 2016. The Lynx would take off from a runway under rocket power. Unlike SpaceShipOne and SpaceShipTwo, Lynx would not require a mothership. Lynx was designed for rapid turnaround, which would enable it to fly up to four times per day. Because of this rapid flight rate, Lynx had fewer seats than SpaceShipTwo, carrying only one pilot and one spaceflight participant on each flight. XCOR expected to roll out the first Lynx prototype and begin flight tests in 2015, but as of late 2017, XCOR was unable to complete their prototype development and filed for bankruptcy.
    • Citizens in Space, formerly the Teacher in Space Project, is a project of the United States Rocket Academy. Citizens in Space combines citizen science with citizen space exploration. The goal is to fly citizen-science experiments and citizen explorers (who travel free) who will act as payload operators on suborbital space missions. By 2012, Citizens in Space had acquired a contract for 10 suborbital flights with XCOR Aerospace and expected to acquire additional flights from XCOR and other suborbital spaceflight providers in the future. In 2012 Citizens in Space reported they had begun training three citizen astronaut candidates and would select seven additional candidates over the next 12 to 14 months.
    • Space Expedition Corporation was preparing to use the Lynx for "Space Expedition Curaçao", a commercial flight from Hato Airport on Curaçao, and planned to start commercial flights in 2014. The costs were $95,000 each.
    • Axe Apollo Space Academy promotion of Unilever which planned to provide 23 people suborbital spaceflights on board the Lynx.
  • EADS Astrium, a subsidiary of European aerospace giant EADS, announced its space tourism project in June 2007.

Orbital space tourism

As of 2020, Space Adventures is the only company to have coordinated tourism flights to Earth's orbit. The Virginia-based company has worked with Russia to use its Soyuz spacecraft to fly ultra-wealthy individuals to the International Space Station. The tourists included entrepreneur and space investor Anousheh Ansari and Cirque du Soleil co-founder Guy Laliberté. Those missions were priced at around $20 million each. The space industry could soon be headed for a tourism revolution if SpaceX and Boeing make good on their plans to take tourists to orbit.

Successful projects

Space tourist Mark Shuttleworth

At the end of the 1990s, MirCorp, a private venture that was by then in charge of the space station, began seeking potential space tourists to visit Mir in order to offset some of its maintenance costs. Dennis Tito, an American businessman and former JPL scientist, became their first candidate. When the decision was made to de-orbit Mir, Tito managed to switch his trip to the International Space Station (ISS) aboard a Russian Soyuz spacecraft through a deal between MirCorp and US-based Space Adventures, Ltd. Dennis Tito visited the ISS for seven days in April–May 2001, becoming the world's first "fee-paying" space tourist. Tito paid a reported $20 million for his trip.

Tito was followed in April 2002 by South African Mark Shuttleworth (Soyuz TM-34). The third was Gregory Olsen in October 2005 (Soyuz TMA-7). In February 2003, the Space Shuttle Columbia disintegrated on re-entry into the Earth's atmosphere, killing all seven astronauts aboard. After this disaster, space tourism on the Russian Soyuz program was temporarily put on hold, because Soyuz vehicles became the only available transport to the ISS. After the Shuttle return to service in July 2005, space tourism was resumed. In September 2006, an Iranian American businesswoman named Anousheh Ansari became the fourth space tourist (Soyuz TMA-9).) In April 2007, Charles Simonyi, an American businessman of Hungarian descent, joined their ranks (Soyuz TMA-10). Simonyi became the first repeat space tourist, paying again to fly on Soyuz TMA-14 in March 2009. British-American Richard Garriott became the next space tourist in October 2008 aboard Soyuz TMA-13. As of 2020, Canadian Guy Laliberté is the most recent tourist to visit the ISS, flying in September 2009 aboard Soyuz TMA-16. Originally the third member aboard Soyuz TMA-18M should have been the British singer Sarah Brightman as a space tourist, but on May 13, 2015, she announced she had withdrawn from training.

Since the Space Shuttle was retired in 2011, Soyuz once again became the only means of accessing the ISS, and so tourism was once again put on hold. On June 7, 2019, NASA announced a plan to open ISS to the space tourism again.

Ongoing projects

  • The Boeing Starliner capsule is being developed as part of the NASA's Commercial Crew Program. Part of the agreement with NASA allows Boeing to sell seats for space tourists. Boeing proposed including one seat per flight for a spaceflight participant at a price that would be competitive with what Roscosmos charges tourists.
  • Bigelow Aerospace plan to extend their successes with the Genesis modules by launching the B330, an expandable habitation module with 330 cubic meters of internal space, aboard a Vulcan rocket. The Vulcan, which is the only rocket under development with sufficient performance and a large enough payload fairing, is contracted to boost BA 330 to low lunar orbit by the end of 2022.
  • Aurora Space Station A United States startup firm, Orion Span announced during the early part of 2018 it plans to launch and position a luxury space hotel to orbit within several years. This project remains in the preliminary stages. Aurora Station, the name of this hotel, will offer guests (maximum of six individuals) 12 days of staying in a pill-shaped space hotel for $9.5 million floating in the unexplored universe. The hotel's cabin measures approximately 43 feet by 14 feet in width. Guests can enjoy non-space food and drinks for a small fee.
  • SpaceX Axiom Space-1 (AX-1): Axiom Space and SpaceX plan to send tourists to the ISS in January 2022 using a Dragon 2 spacecraft.
  • Space Adventures Crew Dragon mission: Space Adventures and SpaceX plan to send up to four tourists to low Earth orbit for a few days in late 2021 or early 2022.

Canceled projects

Tourism beyond Earth orbit

Ongoing projects

  • In February 2017, Elon Musk announced that substantial deposits from two individuals had been received by SpaceX for a Moon loop flight using a free return trajectory and that this could happen as soon as late 2018. Musk said that the cost of the mission would be "comparable" to that of sending an astronaut to the International Space Station, about US$70 million in 2017. In February 2018, Elon Musk announced the Falcon Heavy rocket would not be used for crewed missions. The proposal changed in 2018 to use the Starship launch system instead. In September 2018, Elon Musk revealed the passenger for the trip, Yusaku Maezawa during a livestream. Yusaku Maezawa described the plan for his trip in further detail, dubbed the #dearMoon project, intending to take 6–8 artists with him on the journey to inspire the artists to create new art.
  • Elon Musk said that the Starship will be ready for an unpiloted trip to Mars in 2022. The crewed flight will follow in 2024.
  • Space Adventures Ltd. have announced that they are working on DSE-Alpha, a circumlunar mission to the Moon, with the price per passenger being $100,000,000.

Canceled projects

  • Excalibur Almaz proposed to take three tourists in a flyby around the Moon, using modified Almaz space station modules, in a low-energy trajectory flyby around the Moon. The trip would last around 6 months. However, their equipment was never launched and is to be converted into an educational exhibit.
  • The Golden Spike Company was an American space transport startup active from 2010 to 2013. The company held the objective to offer private commercial space transportation services to the surface of the Moon. The company's website was quietly taken offline in September 2015.
  • The Inspiration Mars Foundation is an American nonprofit organization founded by Dennis Tito that proposed to launch a crewed mission to flyby Mars in January 2018, or 2021 if they missed the first deadline. Their website became defunct by late 2015 but it is archived by the Internet Archive. The Foundation's future plans are unclear.

Legality

Under the Outer Space Treaty signed in 1967, the launch operator's nationality and the launch site's location determine which country is responsible for any damages occurred from a launch.

After valuable resources were detected on the Moon, private companies began to formulate methods to extract the resources. Article II of the Outer Space Treaty dictates that "outer space, including the Moon and other celestial bodies, is not subject to national appropriation by claim of sovereignty, by means of use or occupation, or by any other means". However, countries have the right to freely explore the Moon and any resources collected are property of that country when they return.

United States

In December 2005, the US government released a set of proposed rules for space tourism. These included screening procedures and training for emergency situations, but not health requirements.

Under current US law, any company proposing to launch paying passengers from American soil on a suborbital rocket must receive a license from the Federal Aviation Administration's Office of Commercial Space Transportation (FAA/AST). The licensing process focuses on public safety and safety of property, and the details can be found in the Code of Federal Regulations, Title 14, Chapter III. This is in accordance with the Commercial Space Launch Amendments Act passed by Congress in 2004.

In March 2010, the New Mexico legislature passed the Spaceflight Informed Consent Act. The SICA gives legal protection to companies who provide private space flights in the case of accidental harm or death to individuals. Participants sign an Informed Consent waiver, dictating that spaceflight operators cannot be held liable in the "death of a participant resulting from the inherent risks of space flight activities". Operators are however not covered in the case of gross negligence or willful misconduct.

Criticism and alternatives of the term "space tourist"

Many private space travelers have objected to the term "space tourist", often pointing out that their role went beyond that of an observer, since they also carried out scientific experiments in the course of their journey. Richard Garriott additionally emphasized that his training was identical to the requirements of non-Russian Soyuz crew members, and that teachers and other non-professional astronauts chosen to fly with NASA are called astronauts. He has said that if the distinction has to be made, he would rather be called "private astronaut" than "tourist". Mark Shuttleworth described himself as a "pioneer of commercial space travel". Gregory Olsen prefers "private researcher", and Anousheh Ansari prefers the term "private space explorer". Other space enthusiasts object to the term on similar grounds. Rick Tumlinson of the Space Frontier Foundation, for example, has said: "I hate the word tourist, and I always will ... 'Tourist' is somebody in a flowered shirt with three cameras around his neck." Russian cosmonaut Maksim Surayev told the press in 2009 not to describe Guy Laliberté as a tourist: "It's become fashionable to speak of space tourists. He is not a tourist but a participant in the mission."

"Spaceflight participant" is the official term used by NASA and the Russian Federal Space Agency to distinguish between private space travelers and career astronauts. Tito, Shuttleworth, Olsen, Ansari, and Simonyi were designated as such during their respective space flights. NASA also lists Christa McAuliffe as a spaceflight participant (although she did not pay a fee), apparently due to her non-technical duties aboard the STS-51-L flight.

The US Federal Aviation Administration awards the title of "commercial astronaut" to trained crew members of privately funded spacecraft. The only people currently holding this title are Mike Melvill and Brian Binnie, the pilots of SpaceShipOne in 2004; pilots Mark P. Stucky and Frederick W. Sturckow in 2018, and pilots Dave Mackay, Michael Masucci, and trainer Beth Moses in 2019 aboard SpaceShipTwo on two separate missions.

Attitudes towards space tourism

A web-based survey suggested that over 70% of those surveyed wanted less than or equal to 2 weeks in space; in addition, 88% wanted to spacewalk, of whom 14% would pay a 50% premium for the experience, and 21% wanted a hotel or space station.

The concept has met with some criticism; Günter Verheugen, vice-president of the European Commission, said of the EADS Astrium Space Tourism Project: "It's only for the super-rich, which is against my social convictions".

Environmental effects

A 2010 study published in Geophysical Research Letters raised concerns that the growing commercial spaceflight industry could accelerate global warming. The study, funded by NASA and The Aerospace Corporation, simulated the impact of 1,000 suborbital launches of hybrid rockets from a single location, calculating that this would release a total of 600 tonnes of black carbon into the stratosphere. They found that the resultant layer of soot particles remained relatively localized, with only 20% of the carbon straying into the southern hemisphere, thus creating a strong hemispherical asymmetry. This unbalance would cause the temperature to decrease by about 0.4 °C (0.72 °F) in the tropics and subtropics, whereas the temperature at the poles would increase by between 0.2 and 1 °C (0.36 and 1.80 °F). The ozone layer would also be affected, with the tropics losing up to 1.7% of ozone cover, and the polar regions gaining 5–6%. The researchers stressed that these results should not be taken as "a precise forecast of the climate response to a specific launch rate of a specific rocket type", but as a demonstration of the sensitivity of the atmosphere to the large-scale disruption that commercial space tourism could bring.

Education and advocacy

Several organizations have been formed to promote the space tourism industry, including the Space Tourism Society, Space Future, and HobbySpace. UniGalactic Space Travel Magazine is a bi-monthly educational publication covering space tourism and space exploration developments in companies like SpaceX, Orbital Sciences, Virgin Galactic and organizations like NASA.

Classes in space tourism are currently taught at the Rochester Institute of Technology in New York, and Keio University in Japan.

Economic potential

A 2010 report from the Federal Aviation Administration, titled "The Economic Impact of Commercial Space Transportation on the U. S Economy in 2009", cites studies done by Futron, an aerospace and technology-consulting firm, which predict that space tourism could become a billion-dollar market within 20 years. Eight tourists reached orbit between 2001 and 2009. In 2011 Space Adventures suggested that this number could reach 140 by 2020, but there has yet to be any increase with commercial crewed rockets only just beginning to enter service.

 

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...