Search This Blog

Monday, October 25, 2021

Observable universe

From Wikipedia, the free encyclopedia
 
 
Observable universe
Observable Universe with Measurements 01.png
Visualization of the whole observable universe. The scale is such that the fine grains represent collections of large numbers of superclusters. The Virgo Supercluster—home of Milky Way—is marked at the center, but is too small to be seen.
Diameter8.8×1026 m or 880 Ym (28.5 Gpc or 93 Gly)
Volume3.566×1080 m3
Mass (ordinary matter)1.5×1053 kg
Density (of total energy)9.9×10−27 kg/m3 (equivalent to 6 protons per cubic meter of space)
Age13.799±0.021 billion years
Average temperature2.72548 K
Contents

The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these objects has had time to reach the Solar System and Earth since the beginning of the cosmological expansion. There may be 2 trillion galaxies in the observable universe, although that number has recently been estimated at only several hundred billion based on new data from New Horizons. Assuming the universe is isotropic, the distance to the edge of the observable universe is roughly the same in every direction. That is, the observable universe has a spherical volume (a ball) centered on the observer. Every location in the universe has its own observable universe, which may or may not overlap with the one centered on Earth.

The word observable in this sense does not refer to the capability of modern technology to detect light or other information from an object, or whether there is anything to be detected. It refers to the physical limit created by the speed of light itself. No signal can travel faster than light, hence there is a maximum distance (called the particle horizon) beyond which nothing can be detected, as the signals could not have reached us yet. Sometimes astrophysicists distinguish between the visible universe, which includes only signals emitted since recombination (when hydrogen atoms were formed from protons and electrons and photons were emitted)—and the observable universe, which includes signals since the beginning of the cosmological expansion (the Big Bang in traditional physical cosmology, the end of the inflationary epoch in modern cosmology).

According to calculations, the current comoving distance—proper distance, which takes into account that the universe has expanded since the light was emitted—to particles from which the cosmic microwave background radiation (CMBR) was emitted, which represents the radius of the visible universe, is about 14.0 billion parsecs (about 45.7 billion light-years), while the comoving distance to the edge of the observable universe is about 14.3 billion parsecs (about 46.6 billion light-years), about 2% larger. The radius of the observable universe is therefore estimated to be about 46.5 billion light-years and its diameter about 28.5 gigaparsecs (93 billion light-years, or 8.8×1026 metres or 2.89×1027 feet), which equals 880 yottametres. Using the critical density and the diameter of the observable universe, the total mass of ordinary matter in the universe can be calculated to be about 1.5 × 1053 kg. In November 2018, astronomers reported that the extragalactic background light (EBL) amounted to 4 × 1084 photons.

As the universe's expansion is accelerating, all currently observable objects, outside our local supercluster, will eventually appear to freeze in time, while emitting progressively redder and fainter light. For instance, objects with the current redshift z from 5 to 10 will remain observable for no more than 4–6 billion years. In addition, light emitted by objects currently situated beyond a certain comoving distance (currently about 19 billion parsecs) will never reach Earth.

The universe versus the observable universe

The size of the whole universe is unknown, and it might be infinite in extent. Some parts of the universe are too far away for the light emitted since the Big Bang to have had enough time to reach Earth or space-based instruments, and therefore lie outside the observable universe. In the future, light from distant galaxies will have had more time to travel, so additional regions will become observable. However, owing to Hubble's law, regions sufficiently distant from the Earth are expanding away from it faster than the speed of light (special relativity prevents nearby objects in the same local region from moving faster than the speed of light with respect to each other, but there is no such constraint for distant objects when the space between them is expanding; see uses of the proper distance for a discussion) and furthermore the expansion rate appears to be accelerating owing to dark energy.

Assuming dark energy remains constant (an unchanging cosmological constant), so that the expansion rate of the universe continues to accelerate, there is a "future visibility limit" beyond which objects will never enter our observable universe at any time in the infinite future, because light emitted by objects outside that limit could never reach the Earth. (A subtlety is that, because the Hubble parameter is decreasing with time, there can be cases where a galaxy that is receding from the Earth just a bit faster than light does emit a signal that reaches the Earth eventually.) This future visibility limit is calculated at a comoving distance of 19 billion parsecs (62 billion light-years), assuming the universe will keep expanding forever, which implies the number of galaxies that we can ever theoretically observe in the infinite future (leaving aside the issue that some may be impossible to observe in practice due to redshift, as discussed in the following paragraph) is only larger than the number currently observable by a factor of 2.36.[note 2]

Artist's logarithmic scale conception of the observable universe with the Solar System at the center, inner and outer planets, Kuiper belt, Oort cloud, Alpha Centauri, Perseus Arm, Milky Way galaxy, Andromeda Galaxy, nearby galaxies, Cosmic web, Cosmic microwave radiation and the Big Bang's invisible plasma on the edge. Celestial bodies appear enlarged to appreciate their shapes.

Though, in principle, more galaxies will become observable in the future, in practice, an increasing number of galaxies will become extremely redshifted due to ongoing expansion; so much so that they will seem to disappear from view and become invisible. An additional subtlety is that a galaxy at a given comoving distance is defined to lie within the "observable universe" if we can receive signals emitted by the galaxy at any age in its past history (say, a signal sent from the galaxy only 500 million years after the Big Bang), but because of the universe's expansion, there may be some later age at which a signal sent from the same galaxy can never reach the Earth at any point in the infinite future (so, for example, we might never see what the galaxy looked like 10 billion years after the Big Bang), even though it remains at the same comoving distance (comoving distance is defined to be constant with time—unlike proper distance, which is used to define recession velocity due to the expansion of space), which is less than the comoving radius of the observable universe. This fact can be used to define a type of cosmic event horizon whose distance from the Earth changes over time. For example, the current distance to this horizon is about 16 billion light-years, meaning that a signal from an event happening at present can eventually reach the Earth in the future if the event is less than 16 billion light-years away, but the signal will never reach the Earth if the event is more than 16 billion light-years away.

Both popular and professional research articles in cosmology often use the term "universe" to mean "observable universe". This can be justified on the grounds that we can never know anything by direct experimentation about any part of the universe that is causally disconnected from the Earth, although many credible theories require a total universe much larger than the observable universe. No evidence exists to suggest that the boundary of the observable universe constitutes a boundary on the universe as a whole, nor do any of the mainstream cosmological models propose that the universe has any physical boundary in the first place, though some models propose it could be finite but unbounded, like a higher-dimensional analogue of the 2D surface of a sphere that is finite in area but has no edge.

It is plausible that the galaxies within our observable universe represent only a minuscule fraction of the galaxies in the universe. According to the theory of cosmic inflation initially introduced by its founders, Alan Guth and D. Kazanas, if it is assumed that inflation began about 10−37 seconds after the Big Bang, then with the plausible assumption that the size of the universe before the inflation occurred was approximately equal to the speed of light times its age, that would suggest that at present the entire universe's size is at least 3 × 1023 (1.5 × 1034 light-years) times the radius of the observable universe.

If the universe is finite but unbounded, it is also possible that the universe is smaller than the observable universe. In this case, what we take to be very distant galaxies may actually be duplicate images of nearby galaxies, formed by light that has circumnavigated the universe. It is difficult to test this hypothesis experimentally because different images of a galaxy would show different eras in its history, and consequently might appear quite different. Bielewicz et al. claim to establish a lower bound of 27.9 gigaparsecs (91 billion light-years) on the diameter of the last scattering surface (since this is only a lower bound, since the whole universe is possibly much larger, even infinite). This value is based on matching-circle analysis of the WMAP 7 year data. This approach has been disputed.

Size

Hubble Ultra-Deep Field image of a region of the observable universe (equivalent sky area size shown in bottom left corner), near the constellation Fornax. Each spot is a galaxy, consisting of billions of stars. The light from the smallest, most redshifted galaxies originated nearly 14 billion years ago.

The comoving distance from Earth to the edge of the observable universe is about 14.26 gigaparsecs (46.5 billion light-years or 4.40×1026 m) in any direction. The observable universe is thus a sphere with a diameter of about 28.5 gigaparsecs (93 billion light-years or 8.8×1026 m). Assuming that space is roughly flat (in the sense of being a Euclidean space), this size corresponds to a comoving volume of about 1.22×104 Gpc3 (4.22×105 Gly3 or 3.57×1080 m3).

The figures quoted above are distances now (in cosmological time), not distances at the time the light was emitted. For example, the cosmic microwave background radiation that we see right now was emitted at the time of photon decoupling, estimated to have occurred about 380,000 years after the Big Bang, which occurred around 13.8 billion years ago. This radiation was emitted by matter that has, in the intervening time, mostly condensed into galaxies, and those galaxies are now calculated to be about 46 billion light-years from us. To estimate the distance to that matter at the time the light was emitted, we may first note that according to the Friedmann–Lemaître–Robertson–Walker metric, which is used to model the expanding universe, if at the present time we receive light with a redshift of z, then the scale factor at the time the light was originally emitted is given by

.

WMAP nine-year results combined with other measurements give the redshift of photon decoupling as z = 1091.64±0.47, which implies that the scale factor at the time of photon decoupling would be 11092.64. So if the matter that originally emitted the oldest cosmic microwave background (CMBR) photons has a present distance of 46 billion light-years, then at the time of decoupling when the photons were originally emitted, the distance would have been only about 42 million light-years.

The light-travel distance to the edge of the observable universe is the age of the Universe divided by the speed of light, 13.8 billion light years. This is the distance that a photon emitted shortly after the Big Bang, such as one from the cosmic microwave background, has travelled to reach observers on Earth. Because spacetime is curved, corresponding to the expansion of space, this distance does not correspond to the true distance at any moment in time.

Large-scale structure

Galaxy clusters, like RXC J0142.9+4438, are the nodes of the cosmic web that permeates the entire Universe.
 
Video of a cosmological simulation of the local universe, showing large-scale structure of clusters of galaxies and dark matter

Sky surveys and mappings of the various wavelength bands of electromagnetic radiation (in particular 21-cm emission) have yielded much information on the content and character of the universe's structure. The organization of structure appears to follow a hierarchical model with organization up to the scale of superclusters and filaments. Larger than this (at scales between 30 and 200 megaparsecs), there seems to be no continued structure, a phenomenon that has been referred to as the End of Greatness.

Walls, filaments, nodes, and voids

Map of the cosmic web generated from a slime mould-inspired algorithm
 

The organization of structure arguably begins at the stellar level, though most cosmologists rarely address astrophysics on that scale. Stars are organized into galaxies, which in turn form galaxy groups, galaxy clusters, superclusters, sheets, walls and filaments, which are separated by immense voids, creating a vast foam-like structure sometimes called the "cosmic web". Prior to 1989, it was commonly assumed that virialized galaxy clusters were the largest structures in existence, and that they were distributed more or less uniformly throughout the universe in every direction. However, since the early 1980s, more and more structures have been discovered. In 1983, Adrian Webster identified the Webster LQG, a large quasar group consisting of 5 quasars. The discovery was the first identification of a large-scale structure, and has expanded the information about the known grouping of matter in the universe.

In 1987, Robert Brent Tully identified the Pisces–Cetus Supercluster Complex, the galaxy filament in which the Milky Way resides. It is about 1 billion light-years across. That same year, an unusually large region with a much lower than average distribution of galaxies was discovered, the Giant Void, which measures 1.3 billion light-years across. Based on redshift survey data, in 1989 Margaret Geller and John Huchra discovered the "Great Wall", a sheet of galaxies more than 500 million light-years long and 200 million light-years wide, but only 15 million light-years thick. The existence of this structure escaped notice for so long because it requires locating the position of galaxies in three dimensions, which involves combining location information about the galaxies with distance information from redshifts. Two years later, astronomers Roger G. Clowes and Luis E. Campusano discovered the Clowes–Campusano LQG, a large quasar group measuring two billion light-years at its widest point which was the largest known structure in the universe at the time of its announcement. In April 2003, another large-scale structure was discovered, the Sloan Great Wall. In August 2007, a possible supervoid was detected in the constellation Eridanus. It coincides with the 'CMB cold spot', a cold region in the microwave sky that is highly improbable under the currently favored cosmological model. This supervoid could cause the cold spot, but to do so it would have to be improbably big, possibly a billion light-years across, almost as big as the Giant Void mentioned above.

Unsolved problem in physics:

The largest structures in the universe are larger than expected. Are these actual structures or random density fluctuations?

Computer simulated image of an area of space more than 50 million light-years across, presenting a possible large-scale distribution of light sources in the universe—precise relative contributions of galaxies and quasars are unclear.

Another large-scale structure is the SSA22 Protocluster, a collection of galaxies and enormous gas bubbles that measures about 200 million light-years across.

In 2011, a large quasar group was discovered, U1.11, measuring about 2.5 billion light-years across. On January 11, 2013, another large quasar group, the Huge-LQG, was discovered, which was measured to be four billion light-years across, the largest known structure in the universe at that time. In November 2013, astronomers discovered the Hercules–Corona Borealis Great Wall, an even bigger structure twice as large as the former. It was defined by the mapping of gamma-ray bursts.

In 2021, the American Astronomical Society announced the detection of the Giant Arc; a crescent-shaped string of galaxies that span 3.3 billion light years in length, located 9.2 billion light years from Earth in the constellation Boötes from observations captured by the Sloan Digital Sky Survey.

End of Greatness

The End of Greatness is an observational scale discovered at roughly 100 Mpc (roughly 300 million light-years) where the lumpiness seen in the large-scale structure of the universe is homogenized and isotropized in accordance with the Cosmological Principle. At this scale, no pseudo-random fractalness is apparent. The superclusters and filaments seen in smaller surveys are randomized to the extent that the smooth distribution of the universe is visually apparent. It was not until the redshift surveys of the 1990s were completed that this scale could accurately be observed.

Observations

"Panoramic view of the entire near-infrared sky reveals the distribution of galaxies beyond the Milky Way. The image is derived from the 2MASS Extended Source Catalog (XSC)—more than 1.5 million galaxies, and the Point Source Catalog (PSC)—nearly 0.5 billion Milky Way stars. The galaxies are color-coded by 'redshift' obtained from the UGC, CfA, Tully NBGC, LCRS, 2dF, 6dFGS, and SDSS surveys (and from various observations compiled by the NASA Extragalactic Database), or photo-metrically deduced from the K band (2.2 μm). Blue are the nearest sources (z < 0.01); green are at moderate distances (0.01 < z < 0.04) and red are the most distant sources that 2MASS resolves (0.04 < z < 0.1). The map is projected with an equal area Aitoff in the Galactic system (Milky Way at center)."

Another indicator of large-scale structure is the 'Lyman-alpha forest'. This is a collection of absorption lines that appear in the spectra of light from quasars, which are interpreted as indicating the existence of huge thin sheets of intergalactic (mostly hydrogen) gas. These sheets appear to collapse into filaments, which can feed galaxies as they grow where filaments either cross or are overdense. An early direct evidence for this cosmic web of gas was the 2019 detection, by astronomers from the RIKEN Cluster for Pioneering Research in Japan and Durham University in the U.K., of light from the very brightest part of this web, surrounding and illuminated by a cluster of forming galaxies, acting as cosmic flashlights for intercluster medium hydrogen fluorescence via Lyman-alpha emissions.

In 2021, an international team, headed by Roland Bacon from the Centre de Recherche Astrophysique de Lyon, reported the first observation of diffuse extended Lyman-alpha emission from redshift 3.1 to 4.5 that traced several cosmic web filaments on scales of 2.5−4 cMpc, in filamentary environments outside massive structures typical of web nodes.

Some caution is required in describing structures on a cosmic scale because things are often different from how they appear. Gravitational lensing (bending of light by gravitation) can make an image appear to originate in a different direction from its real source. This is caused when foreground objects (such as galaxies) curve surrounding spacetime (as predicted by general relativity), and deflect passing light rays. Rather usefully, strong gravitational lensing can sometimes magnify distant galaxies, making them easier to detect. Weak lensing (gravitational shear) by the intervening universe in general also subtly changes the observed large-scale structure.

The large-scale structure of the universe also looks different if one only uses redshift to measure distances to galaxies. For example, galaxies behind a galaxy cluster are attracted to it, and so fall towards it, and so are slightly blueshifted (compared to how they would be if there were no cluster) On the near side, things are slightly redshifted. Thus, the environment of the cluster looks somewhat squashed if using redshifts to measure distance. An opposite effect works on the galaxies already within a cluster: the galaxies have some random motion around the cluster center, and when these random motions are converted to redshifts, the cluster appears elongated. This creates a "finger of God"—the illusion of a long chain of galaxies pointed at the Earth.

Cosmography of Earth's cosmic neighborhood

At the centre of the Hydra-Centaurus Supercluster, a gravitational anomaly called the Great Attractor affects the motion of galaxies over a region hundreds of millions of light-years across. These galaxies are all redshifted, in accordance with Hubble's law. This indicates that they are receding from us and from each other, but the variations in their redshift are sufficient to reveal the existence of a concentration of mass equivalent to tens of thousands of galaxies.

The Great Attractor, discovered in 1986, lies at a distance of between 150 million and 250 million light-years (250 million is the most recent estimate), in the direction of the Hydra and Centaurus constellations. In its vicinity there is a preponderance of large old galaxies, many of which are colliding with their neighbours, or radiating large amounts of radio waves.

In 1987, astronomer R. Brent Tully of the University of Hawaii's Institute of Astronomy identified what he called the Pisces–Cetus Supercluster Complex, a structure one billion light-years long and 150 million light-years across in which, he claimed, the Local Supercluster was embedded.

Mass of ordinary matter

The mass of the observable universe is often quoted as 1050 tonnes or 1053 kg. In this context, mass refers to ordinary matter and includes the interstellar medium (ISM) and the intergalactic medium (IGM). However, it excludes dark matter and dark energy. This quoted value for the mass of ordinary matter in the universe can be estimated based on critical density. The calculations are for the observable universe only as the volume of the whole is unknown and may be infinite.

Estimates based on critical density

Critical density is the energy density for which the universe is flat. If there is no dark energy, it is also the density for which the expansion of the universe is poised between continued expansion and collapse. From the Friedmann equations, the value for critical density, is:

where G is the gravitational constant and H = H0 is the present value of the Hubble constant. The value for H0, due to the European Space Agency's Planck Telescope, is H0 = 67.15 kilometres per second per megaparsec. This gives a critical density of 0.85×10−26 kg/m3 (commonly quoted as about 5 hydrogen atoms per cubic metre). This density includes four significant types of energy/mass: ordinary matter (4.8%), neutrinos (0.1%), cold dark matter (26.8%), and dark energy (68.3%). Although neutrinos are Standard Model particles, they are listed separately because they are ultra-relativistic and hence behave like radiation rather than like matter. The density of ordinary matter, as measured by Planck, is 4.8% of the total critical density or 4.08×10−28 kg/m3. To convert this density to mass we must multiply by volume, a value based on the radius of the "observable universe". Since the universe has been expanding for 13.8 billion years, the comoving distance (radius) is now about 46.6 billion light-years. Thus, volume (4/3πr3) equals 3.58×1080 m3 and the mass of ordinary matter equals density (4.08×10−28 kg/m3) times volume (3.58×1080 m3) or 1.46×1053 kg.

Matter content—number of atoms

Assuming the mass of ordinary matter is about 1.45×1053 kg as discussed above, and assuming all atoms are hydrogen atoms (which are about 74% of all atoms in our galaxy by mass, see Abundance of the chemical elements), the estimated total number of atoms in the observable universe is obtained by dividing the mass of ordinary matter by the mass of a hydrogen atom (1.45×1053 kg divided by 1.67×10−27 kg). The result is approximately 1080 hydrogen atoms, also known as the Eddington number.

Most distant objects

The most distant astronomical object identified (as at 2016) is a galaxy classified GN-z11. In 2009, a gamma ray burst, GRB 090423, was found to have a redshift of 8.2, which indicates that the collapsing star that caused it exploded when the universe was only 630 million years old. The burst happened approximately 13 billion years ago, so a distance of about 13 billion light-years was widely quoted in the media (or sometimes a more precise figure of 13.035 billion light-years), though this would be the "light travel distance" rather than the "proper distance" used in both Hubble's law and in defining the size of the observable universe (cosmologist Ned Wright argues against the common use of light travel distance in astronomical press releases on this page, and at the bottom of the page offers online calculators that can be used to calculate the current proper distance to a distant object in a flat universe based on either the redshift z or the light travel time). The proper distance for a redshift of 8.2 would be about 9.2 Gpc, or about 30 billion light-years. Another record-holder for most distant object is a galaxy observed through and located beyond Abell 2218, also with a light travel distance of approximately 13 billion light-years from Earth, with observations from the Hubble telescope indicating a redshift between 6.6 and 7.1, and observations from Keck telescopes indicating a redshift towards the upper end of this range, around 7. The galaxy's light now observable on Earth would have begun to emanate from its source about 750 million years after the Big Bang.

Horizons

The limit of observability in our universe is set by a set of cosmological horizons which limit—based on various physical constraints—the extent to which we can obtain information about various events in the universe. The most famous horizon is the particle horizon which sets a limit on the precise distance that can be seen due to the finite age of the universe. Additional horizons are associated with the possible future extent of observations (larger than the particle horizon owing to the expansion of space), an "optical horizon" at the surface of last scattering, and associated horizons with the surface of last scattering for neutrinos and gravitational waves.

Steady-state model

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Steady-state_model

In cosmology, the steady-state model is an alternative to the Big Bang theory of evolution of the universe. In the steady-state model, the density of matter in the expanding universe remains unchanged due to a continuous creation of matter, thus adhering to the perfect cosmological principle, a principle that asserts that the observable universe is practically the same at any time and any place.

While the steady-state model enjoyed some minority support in the scientific mainstream until the mid-20th century, it is now rejected by the vast majority of cosmologists, astrophysicists and astronomers, as the observational evidence points to a hot Big Bang cosmology with a finite age of the universe, which the steady-state model does not predict.

History

In the 13th century, Siger of Brabant authored the thesis The Eternity of the World, which argued that there was no first man, and no first specimen of any particular: the physical universe is thus without any first beginning, and therefore eternal. Siger's views were condemned by the pope in 1277.

Cosmological expansion was originally discovered through observations by Edwin Hubble. Theoretical calculations also showed that the static universe as modeled by Einstein (1917) was unstable. The modern Big Bang theory is one in which the universe has a finite age and has evolved over time through cooling, expansion, and the formation of structures through gravitational collapse.

The steady-state model asserts that although the universe is expanding, it nevertheless does not change its appearance over time (the perfect cosmological principle); the universe has no beginning and no end. This required that matter be continually created in order to keep the universe's density from decreasing. Influential papers on steady-state cosmologies were published by Hermann Bondi, Thomas Gold, and Fred Hoyle in 1948. Similar models had been proposed earlier by William Duncan MacMillan, among others.

It is now known that Albert Einstein considered a steady-state model of the expanding universe, as indicated in a 1931 manuscript, many years before Hoyle, Bondi and Gold. However, he quickly abandoned the idea.

Observational tests

Counts of radio sources

Problems with the steady-state model began to emerge in the 1950s and 60s, when observations began to support the idea that the universe was in fact changing: bright radio sources (quasars and radio galaxies) were found only at large distances (therefore could have existed only in the distant past), not in closer galaxies. Whereas the Big Bang theory predicted as much, the steady-state model predicted that such objects would be found throughout the universe, including close to our own galaxy. By 1961, statistical tests based on radio-source surveys had ruled out the steady-state model in the minds of most cosmologists, although some proponents of the steady state insisted that the radio data were suspect.

Cosmic microwave background

For most cosmologists, the definitive refutation of the steady-state model came with the discovery of the cosmic microwave background radiation in 1964, which was predicted by the Big Bang theory. The steady-state model explained microwave background radiation as the result of light from ancient stars that has been scattered by galactic dust. However, the cosmic microwave background level is very even in all directions, making it difficult to explain how it could be generated by numerous point sources, and the microwave background radiation shows no evidence of characteristics such as polarization that are normally associated with scattering. Furthermore, its spectrum is so close to that of an ideal black body that it could hardly be formed by the superposition of contributions from a multitude of dust clumps at different temperatures as well as at different redshifts. Steven Weinberg wrote in 1972,

The steady state model does not appear to agree with the observed dL versus z relation or with source counts ... In a sense, this disagreement is a credit to the model; alone among all cosmologies, the steady state model makes such definite predictions that it can be disproved even with the limited observational evidence at our disposal. The steady state model is so attractive that many of its adherents still retain hope that the evidence against it will eventually disappear as observations improve. However, if the cosmic microwave radiation ... is really black-body radiation, it will be difficult to doubt that the universe has evolved from a hotter denser early stage.

Since this discovery, the Big Bang theory has been considered to provide the best explanation of the origin of the universe. In most astrophysical publications, the Big Bang is implicitly accepted and is used as the basis of more complete theories.

Quasi-steady state

Quasi-steady-state cosmology (QSS) was proposed in 1993 by Fred Hoyle, Geoffrey Burbidge, and Jayant V. Narlikar as a new incarnation of the steady-state ideas meant to explain additional features unaccounted for in the initial proposal. The model suggests pockets of creation occurring over time within the universe, sometimes referred to as minibangs, mini-creation events, or little bangs. After the observation of an accelerating universe, further modifications of the model were made. The Planck particle is a hypothetical black hole whose Schwarzschild radius is approximately the same as its Compton wavelength; the evaporation of such a particle has been evoked as the source of light elements in an expanding steady-state universe.

Astrophysicist and cosmologist Ned Wright has pointed out flaws in the model. These first comments were soon rebutted by the proponents. Wright and other mainstream cosmologists reviewing QSS have pointed out new flaws and discrepancies with observations left unexplained by proponents.

Cosmological principle

From Wikipedia, the free encyclopedia

In modern physical cosmology, the cosmological principle is the notion that the spatial distribution of matter in the universe is homogeneous and isotropic when viewed on a large enough scale, since the forces are expected to act uniformly throughout the universe, and should, therefore, produce no observable irregularities in the large-scale structuring over the course of evolution of the matter field that was initially laid down by the Big Bang.

Definition

Astronomer William Keel explains:

The cosmological principle is usually stated formally as 'Viewed on a sufficiently large scale, the properties of the universe are the same for all observers.' This amounts to the strongly philosophical statement that the part of the universe which we can see is a fair sample, and that the same physical laws apply throughout. In essence, this in a sense says that the universe is knowable and is playing fair with scientists.

The cosmological principle depends on a definition of "observer," and contains an implicit qualification and two testable consequences.

"Observers" means any observer at any location in the universe, not simply any human observer at any location on Earth: as Andrew Liddle puts it, "the cosmological principle [means that] the universe looks the same whoever and wherever you are."

The qualification is that variation in physical structures can be overlooked, provided this does not imperil the uniformity of conclusions drawn from observation: the Sun is different from the Earth, our galaxy is different from a black hole, some galaxies advance toward rather than recede from us, and the universe has a "foamy" texture of galaxy clusters and voids, but none of these different structures appears to violate the basic laws of physics.

The two testable structural consequences of the cosmological principle are homogeneity and isotropy. Homogeneity means that the same observational evidence is available to observers at different locations in the universe ("the part of the universe which we can see is a fair sample"). Isotropy means that the same observational evidence is available by looking in any direction in the universe ("the same physical laws apply throughout"). The principles are distinct but closely related, because a universe that appears isotropic from any two (for a spherical geometry, three) locations must also be homogeneous.

Origin

The cosmological principle is first clearly asserted in the Philosophiæ Naturalis Principia Mathematica (1687) of Isaac Newton. In contrast to earlier classical or medieval cosmologies, in which Earth rested at the center of universe, Newton conceptualized the Earth as a sphere in orbital motion around the Sun within an empty space that extended uniformly in all directions to immeasurably large distances. He then showed, through a series of mathematical proofs on detailed observational data of the motions of planets and comets, that their motions could be explained by a single principle of "universal gravitation" that applied as well to the orbits of the Galilean moons around Jupiter, the Moon around the Earth, the Earth around the Sun, and to falling bodies on Earth. That is, he asserted the equivalent material nature of all bodies within the Solar System, the identical nature of the Sun and distant stars and thus the uniform extension of the physical laws of motion to a great distance beyond the observational location of Earth itself.

Implications

Observations show that more distant galaxies are closer together and have lower content of chemical elements heavier than lithium. Applying the cosmological principle, this suggests that heavier elements were not created in the Big Bang but were produced by nucleosynthesis in giant stars and expelled across a series of supernovae explosions and new star formation from the supernovae remnants, which means heavier elements would accumulate over time. Another observation is that the furthest galaxies (earlier time) are often more fragmentary, interacting and unusually shaped than local galaxies (recent time), suggesting evolution in galaxy structure as well.

A related implication of the cosmological principle is that the largest discrete structures in the universe are in mechanical equilibrium. Homogeneity and isotropy of matter at the largest scales would suggest that the largest discrete structures are parts of a single indiscrete form, like the crumbs which make up the interior of a cake. At extreme cosmological distances, the property of mechanical equilibrium in surfaces lateral to the line of sight can be empirically tested; however, under the assumption of the cosmological principle, it cannot be detected parallel to the line of sight.

Cosmologists agree that in accordance with observations of distant galaxies, a universe must be non-static if it follows the cosmological principle. In 1923, Alexander Friedmann set out a variant of Albert Einstein's equations of general relativity that describe the dynamics of a homogeneous isotropic universe. Independently, Georges Lemaître derived in 1927 the equations of an expanding universe from the General Relativity equations. Thus, a non-static universe is also implied, independent of observations of distant galaxies, as the result of applying the cosmological principle to general relativity.

Criticism

Karl Popper criticized the cosmological principle on the grounds that it makes "our lack of knowledge a principle of knowing something". He summarized his position as:

the “cosmological principles” were, I fear, dogmas that should not have been proposed.

Observations

Although the universe is inhomogeneous at smaller scales, it is statistically homogeneous on scales larger than 250 million light years. The cosmic microwave background is isotropic, that is to say that its intensity is about the same whichever direction we look at.

However, recent findings have called this view into question. Data from the Planck Mission shows hemispheric bias in 2 respects: one with respect to average temperature (i.e. temperature fluctuations), the second with respect to larger variations in the degree of perturbations (i.e. densities). The European Space Agency (the governing body of the Planck Mission) has concluded that these anisotropies are, in fact, statistically significant and can no longer be ignored.

Inconsistencies

The cosmological principle implies that at a sufficiently large scale, the universe is homogeneous. Based on N-body simulations in a ΛCDM universe, Yadav and his colleagues showed that the spatial distribution of galaxies is statistically homogeneous if averaged over scales 260/h Mpc or more.

A number of observations have been reported to be in conflict with predictions of maximal structure sizes:

  • The Clowes–Campusano LQG, discovered in 1991, has a length of 580 Mpc, and is marginally larger than the consistent scale.
  • The Sloan Great Wall, discovered in 2003, has a length of 423 Mpc, which is only just consistent with the cosmological principle.
  • U1.11, a large quasar group discovered in 2011, has a length of 780 Mpc, and is two times larger than the upper limit of the homogeneity scale.
  • The Huge-LQG, discovered in 2012, is three times longer than, and twice as wide as is predicted possible according to these current models, and so challenges our understanding of the universe on large scales.
  • In November 2013, a new structure 10 billion light years away measuring 2000–3000 Mpc (more than seven times that of the SGW) has been discovered, the Hercules–Corona Borealis Great Wall, putting further doubt on the validity of the cosmological principle.
  • In June 2021, the Giant Arc was discovered, a structure spanning approximately 1000 Mpc. It is located 2820 MPc away and consists of galaxies, galactic clusters, gas, and dust.

However, as pointed out by Seshadri Nadathur in 2013, the existence of structures larger than the homogeneous scale (260/h Mpc by Yadav's estimation) does not necessarily violate the cosmological principle.

While the isotropy of the universe around Earth is confirmed at high significance by studies of the cosmic microwave background temperature maps, its homogeneity over cosmological scales is still a matter of debate.

Cosmic Dipole

As stated above, it is true that the cosmic microwave background provides a snapshot of an isotropic and homogeneous universe. Nevertheless, what is often not advertised is that there is a dipole anisotropy in the cosmic microwave background. The amplitude of the dipole exceeds the amplitudes of the other temperature fluctuations, and for this reason, it is subtracted on the assumption that it is a Doppler effect, or simply due to relative motion. In recent years this assumption has been tested and current results suggest our motion with respect to distant radio galaxies  and quasars  differs from our motion with respect to the cosmic microwave background. The same conclusion has been reached in recent studies of the Hubble diagram of Type Ia supernovae and quasars. This contradicts the cosmological principle and challenges the assumption that the CMB dipole is simply due to relative motion.

This potential misinterpretation of the CMB dipole is hinted at through a number of other observations. First, even within the cosmic microwave background, there are curious directional alignments and an anomalous parity asymmetry  that may have an origin in the CMB dipole. Separately, the CMB dipole direction has emerged as a preferred direction in studies of alignments in quasar polarizations, scaling relations in galaxy clusters, strong lensing time delay, Type Ia supernovae, and quasars & gamma-ray bursts as standard candles. The fact that all these independent observables, based on different physics, are tracking the CMB dipole direction suggests that the Universe is anisotropic in the direction of the CMB dipole.

Perfect cosmological principle

The perfect cosmological principle is an extension of the cosmological principle, and states that the universe is homogeneous and isotropic in space and time. In this view the universe looks the same everywhere (on the large scale), the same as it always has and always will. The perfect cosmological principle underpins Steady State theory and emerges from chaotic inflation theory.

Sunday, October 24, 2021

Scale factor (cosmology)

From Wikipedia, the free encyclopedia

The relative expansion of the universe is parametrized by a dimensionless scale factor . Also known as the cosmic scale factor or sometimes the Robertson Walker scale factor, this is a key parameter of the Friedmann equations.

In the early stages of the Big Bang, most of the energy was in the form of radiation, and that radiation was the dominant influence on the expansion of the universe. Later, with cooling from the expansion the roles of matter and radiation changed and the universe entered a matter-dominated era. Recent results suggest that we have already entered an era dominated by dark energy, but examination of the roles of matter and radiation are most important for understanding the early universe.

Using the dimensionless scale factor to characterize the expansion of the universe, the effective energy densities of radiation and matter scale differently. This leads to a radiation-dominated era in the very early universe but a transition to a matter-dominated era at a later time and, since about 4 billion years ago, a subsequent dark-energy-dominated era.

Detail

Some insight into the expansion can be obtained from a Newtonian expansion model which leads to a simplified version of the Friedmann equation. It relates the proper distance (which can change over time, unlike the comoving distance which is constant and set to today's distance) between a pair of objects, e.g. two galaxy clusters, moving with the Hubble flow in an expanding or contracting FLRW universe at any arbitrary time to their distance at some reference time . The formula for this is:

where is the proper distance at epoch , is the distance at the reference time , usually also referred to as comoving distance, and is the scale factor. Thus, by definition, and .

The scale factor is dimensionless, with counted from the birth of the universe and set to the present age of the universe: giving the current value of as or .

The evolution of the scale factor is a dynamical question, determined by the equations of general relativity, which are presented in the case of a locally isotropic, locally homogeneous universe by the Friedmann equations.

The Hubble parameter is defined:

where the dot represents a time derivative. The Hubble parameter varies with time, not with space, being the Hubble constant the current value.

From the previous equation one can see that , and also that , so combining these gives , and substituting the above definition of the Hubble parameter gives which is just Hubble's law.

Current evidence suggests that the expansion rate of the universe is accelerating, which means that the second derivative of the scale factor is positive, or equivalently that the first derivative is increasing over time. This also implies that any given galaxy recedes from us with increasing speed over time, i.e. for that galaxy is increasing with time. In contrast, the Hubble parameter seems to be decreasing with time, meaning that if we were to look at some fixed distance d and watch a series of different galaxies pass that distance, later galaxies would pass that distance at a smaller velocity than earlier ones.

According to the Friedmann–Lemaître–Robertson–Walker metric which is used to model the expanding universe, if at present time we receive light from a distant object with a redshift of z, then the scale factor at the time the object originally emitted that light is .

Chronology

Radiation-dominated era

After Inflation, and until about 47,000 years after the Big Bang, the dynamics of the early universe were set by radiation (referring generally to the constituents of the universe which moved relativistically, principally photons and neutrinos).

For a radiation-dominated universe the evolution of the scale factor in the Friedmann–Lemaître–Robertson–Walker metric is obtained solving the Friedmann equations:

Matter-dominated era

Between about 47,000 years and 9.8 billion years after the Big Bang, the energy density of matter exceeded both the energy density of radiation and the vacuum energy density.

When the early universe was about 47,000 years old (redshift 3600), mass–energy density surpassed the radiation energy, although the universe remained optically thick to radiation until the universe was about 378,000 years old (redshift 1100). This second moment in time (close to the time of recombination), at which the photons which compose the cosmic microwave background radiation were last scattered, is often mistaken as marking the end of the radiation era.

For a matter-dominated universe the evolution of the scale factor in the Friedmann–Lemaître–Robertson–Walker metric is easily obtained solving the Friedmann equations:

Dark-energy-dominated era

In physical cosmology, the dark-energy-dominated era is proposed as the last of the three phases of the known universe, the other two being the matter-dominated era and the radiation-dominated era. The dark-energy-dominated era began after the matter-dominated era, i.e. when the Universe was about 9.8 billion years old. In the era of cosmic inflation, the Hubble parameter is also thought to be constant, so the expansion law of the dark-energy-dominated era also holds for the inflationary prequel of the big bang.

The cosmological constant is given the symbol Λ, and, considered as a source term in the Einstein field equation, can be viewed as equivalent to a "mass" of empty space, or dark energy. Since this increases with the volume of the universe, the expansion pressure is effectively constant, independent of the scale of the universe, while the other terms decrease with time. Thus, as the density of other forms of matter – dust and radiation – drops to very low concentrations, the cosmological constant (or "dark energy") term will eventually dominate the energy density of the Universe. Recent measurements of the change in Hubble constant with time, based on observations of distant supernovae, show this acceleration in expansion rate, indicating the presence of such dark energy.

For a dark-energy-dominated universe, the evolution of the scale factor in the Friedmann–Lemaître–Robertson–Walker metric is easily obtained solving the Friedmann equations:

Here, the coefficient in the exponential, the Hubble constant, is

This exponential dependence on time makes the spacetime geometry identical to the de Sitter universe, and only holds for a positive sign of the cosmological constant, which is the case according to the currently accepted value of the cosmological constant, Λ, that is approximately 2 · 10−35 s−2. The current density of the observable universe is of the order of 9.44 · 10−27 kg m−3 and the age of the universe is of the order of 13.8 billion years, or 4.358 · 1017 s. The Hubble constant, , is ≈70.88 km s−1 Mpc−1 (The Hubble time is 13.79 billion years).

Inequality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inequality...