Search This Blog

Monday, July 11, 2022

Organisms at high altitude

From Wikipedia, the free encyclopedia
 
An Alpine chough in flight at 3,900 m (12,800 ft)

Organisms can live at high altitude, either on land, in water, or while flying. Decreased oxygen availability and decreased temperature make life at such altitudes challenging, though many species have been successfully adapted via considerable physiological changes. As opposed to short-term acclimatisation (immediate physiological response to changing environment), high-altitude adaptation means irreversible, evolved physiological responses to high-altitude environments, associated with heritable behavioural and genetic changes. Among animals, only few mammals (such as yaks, ibexes, Tibetan gazelles, vicunas, llamas, mountain goats, etc.) and certain birds are known to have completely adapted to high-altitude environments.

Human populations such as some Tibetans, South Americans and Ethiopians live in the otherwise uninhabitable high mountains of the Himalayas, Andes and Ethiopian Highlands respectively. The adaptation of humans to high altitude is an example of natural selection in action.

High-altitude adaptations provide examples of convergent evolution, with adaptations occurring simultaneously on three continents. Tibetan humans and Tibetan domestic dogs share a genetic mutation in EPAS1, but it has not been seen in Andean humans.

Invertebrates

Tardigrades live over the entire world, including the high Himalayas. Tardigrades are also able to survive temperatures of close to absolute zero (−273 °C (−459 °F)), temperatures as high as 151 °C (304 °F), radiation that would kill other animals, and almost a decade without water. Since 2007, tardigrades have also returned alive from studies in which they have been exposed to the vacuum of outer space in low Earth orbit.

Other invertebrates with high-altitude habitats are Euophrys omnisuperstes, a spider that lives in the Himalaya range at altitudes of up to 6,700 m (22,000 ft); it feeds on stray insects that are blown up the mountain by the wind. The springtail Hypogastrura nivicola (one of several insects called snow fleas) also lives in the Himalayas. It is active in the dead of winter, its blood containing a compound similar to antifreeze. Some allow themselves to become dehydrated instead, preventing the formation of ice crystals within their body.

Insects can fly and kite at very high altitude. Flies are common in the Himalaya up to 6,300 m (20,700 ft). Bumble bees were discovered on Mount Everest at more than 5,600 m (18,400 ft) above sea level. In subsequent tests, bumblebees were still able to fly in a flight chamber which recreated the thinner air of 9,000 m (30,000 ft).

Ballooning is a term used for the mechanical kiting that many spiders, especially small species such as Erigone atra, as well as certain mites and some caterpillars use to disperse through the air. Some spiders have been detected in atmospheric data balloons collecting air samples at slightly less than 5 km (16000 ft) above sea level. It is the most common way for spiders to pioneer isolated islands and mountaintops.

Fish

Naked carp in Lake Qinghai at 3,205 m (10,515 ft)

Fish at high altitudes have a lower metabolic rate, as has been shown in highland westslope cutthroat trout when compared to introduced lowland rainbow trout in the Oldman River basin. There is also a general trend of smaller body sizes and lower species richness at high altitudes observed in aquatic invertebrates, likely due to lower oxygen partial pressures. These factors may decrease productivity in high altitude habitats, meaning there will be less energy available for consumption, growth, and activity, which provides an advantage to fish with lower metabolic demands.

The naked carp from Lake Qinghai, like other members of the carp family, can use gill remodelling to increase oxygen uptake in hypoxic environments. The response of naked carp to cold and low-oxygen conditions seem to be at least partly mediated by hypoxia-inducible factor 1 (HIF-1). It is unclear whether this is a common characteristic in other high altitude dwelling fish or if gill remodelling and HIF-1 use for cold adaptation are limited to carp.

Mammals

The Himalayan pika lives at altitudes up to 4,200 m (13,800 ft)

Mammals are also known to reside at high altitude and exhibit a striking number of adaptations in terms of morphology, physiology and behaviour. The Tibetan Plateau has very few mammalian species, ranging from wolf, kiang (Tibetan wild ass), goas, chiru (Tibetan antelope), wild yak, snow leopard, Tibetan sand fox, ibex, gazelle, Himalayan brown bear and water buffalo. These mammals can be broadly categorised based on their adaptability in high altitude into two broad groups, namely eurybarc and stenobarc. Those that can survive a wide range of high-altitude regions are eurybarc and include yak, ibex, Tibetan gazelle of the Himalayas and vicuñas llamas of the Andes. Stenobarc animals are those with lesser ability to endure a range of differences in altitude, such as rabbits, mountain goats, sheep, and cats. Among domesticated animals, yaks are perhaps the highest dwelling animals. The wild herbivores of the Himalayas such as the Himalayan tahr, markhor and chamois are of particular interest because of their ecological versatility and tolerance.

Rodents

A number of rodents live at high altitude, including deer mice, guinea pigs, and rats. Several mechanisms help them survive these harsh conditions, including altered genetics of the hemoglobin gene in guinea pigs and deer mice. Deer mice use a high percentage of fats as metabolic fuel to retain carbohydrates for small bursts of energy.

Other physiological changes that occur in rodents at high altitude include increased breathing rate and altered morphology of the lungs and heart, allowing more efficient gas exchange and delivery. Lungs of high-altitude mice are larger, with more capillaries, and their hearts have a heavier right ventricle (the latter applies to rats too), which pumps blood to the lungs.

At high altitudes, some rodents even shift their thermal neutral zone so they may maintain normal basal metabolic rate at colder temperatures.

The deer mouse

The deer mouse (Peromyscus maniculatus) is the best studied species, other than humans, in terms of high-altitude adaptation. The deer mice native to Andes highlands (up to 3,000 m (9,800 ft)) are found to have relatively low hemoglobin content. Measurement of food intake, gut mass, and cardiopulmonary organ mass indicated proportional increases in mice living at high altitudes, which in turn show that life at high altitudes demands higher levels of energy. Variations in the globin genes (α and β-globin) seem to be the basis for increased oxygen-affinity of the hemoglobin and faster transport of oxygen. Structural comparisons show that in contrast to normal hemoglobin, the deer mouse hemoglobin lacks the hydrogen bond between α1Trp14 in the A helix and α1Thr67 in the E helix owing to the Thr67Ala substitution, and there is a unique hydrogen bond at the α1β1 interface between residues α1Cys34 and β1Ser128. The Peruvian native species of mice (Phyllotis andium and Phyllotis xanthopygus) have adapted to the high Andes by using proportionately more carbohydrates and have higher oxidative capacities of cardiac muscles compared to closely related native species residing at low-altitudes (100–300 m (330–980 ft)), (Phyllotis amicus and Phyllotis limatus). This shows that highland mice have evolved a metabolic process to economise oxygen usage for physical activities in the hypoxic conditions.

Yaks

Domestic yak at Yamdrok Lake
 

Among domesticated animals, yaks (Bos grunniens) are the highest dwelling animals of the world, living at 3,000–5,000 m (9,800–16,400 ft). The yak is the most important domesticated animal for Tibet highlanders in Qinghai Province of China, as the primary source of milk, meat and fertilizer. Unlike other yak or cattle species, which suffer from hypoxia in the Tibetan Plateau, the Tibetan domestic yaks thrive only at high altitude, and not in lowlands. Their physiology is well-adapted to high altitudes, with proportionately larger lungs and heart than other cattle, as well as greater capacity for transporting oxygen through their blood. In yaks, hypoxia-inducible factor 1 (HIF-1) has high expression in the brain, lung and kidney, showing that it plays an important role in the adaptation to low oxygen environment. On 1 July 2012 the complete genomic sequence and analyses of a female domestic yak was announced, providing important insights into understanding mammalian divergence and adaptation at high altitude. Distinct gene expansions related to sensory perception and energy metabolism were identified. In addition, researchers also found an enrichment of protein domains related to the extracellular environment and hypoxic stress that had undergone positive selection and rapid evolution. For example, they found three genes that may play important roles in regulating the bodyʼs response to hypoxia, and five genes that were related to the optimisation of the energy from the food scarcity in the extreme plateau. One gene known to be involved in regulating response to low oxygen levels, ADAM17, is also found in human Tibetan highlanders.

Humans

A Sherpa family

Over 81 million people live permanently at high altitudes (>2,500 m (8,200 ft)) in North, Central and South America, East Africa, and Asia, and have flourished for millennia in the exceptionally high mountains, without any apparent complications. For average human populations, a brief stay at these places can risk mountain sickness. For the native highlanders, there are no adverse effects to staying at high altitude.

The physiological and genetic adaptations in native highlanders involve modification in the oxygen transport system of the blood, especially molecular changes in the structure and functions of hemoglobin, a protein for carrying oxygen in the body. This is to compensate for the low oxygen environment. This adaptation is associated with developmental patterns such as high birth weight, increased lung volumes, increased breathing, and higher resting metabolism.

The genome of Tibetans provided the first clue to the molecular evolution of high-altitude adaptation in 2010. Genes such as EPAS1, PPARA and EGLN1 are found to have significant molecular changes among the Tibetans, and the genes are involved in hemoglobin production. These genes function in concert with transcription factors, hypoxia inducible factors (HIF), which in turn are central mediators of red blood cell production in response to oxygen metabolism. Further, the Tibetans are enriched for genes in the disease class of human reproduction (such as genes from the DAZ, BPY2, CDY, and HLA-DQ and HLA-DR gene clusters) and biological process categories of response to DNA damage stimulus and DNA repair (such as RAD51, RAD52, and MRE11A), which are related to the adaptive traits of high infant birth weight and darker skin tone and, are most likely due to recent local adaptation.

Among the Andeans, there are no significant associations between EPAS1 or EGLN1 and hemoglobin concentration, indicating variation in the pattern of molecular adaptation. However, EGLN1 appears to be the principal signature of evolution, as it shows evidence of positive selection in both Tibetans and Andeans. The adaptive mechanism is different among the Ethiopian highlanders. Genomic analysis of two ethnic groups, Amhara and Oromo, revealed that gene variations associated with hemoglobin differences among Tibetans or other variants at the same gene location do not influence the adaptation in Ethiopians. Instead, several other genes appear to be involved in Ethiopians, including CBARA1, VAV3, ARNT2 and THRB, which are known to play a role in HIF genetic functions.

The EPAS1 mutation in the Tibetan population has been linked to Denisovan-related populations. The Tibetan haplotype is more similar to the Denisovan haplotype than any modern human haplotype. This mutation is seen at a high frequency in the Tibetan population, a low frequency in the Han population and is otherwise only seen in a sequenced Denisovan individual. This mutation must have been present before the Han and Tibetan populations diverged 2750 years ago.

Birds

Rüppell's vulture can fly up to 11.2 km (7.0 mi) above sea level
 

Birds have been especially successful at living at high altitudes. In general, birds have physiological features that are advantageous for high-altitude flight. The respiratory system of birds moves oxygen across the pulmonary surface during both inhalation and exhalation, making it more efficient than that of mammals. In addition, the air circulates in one direction through the parabronchioles in the lungs. Parabronchioles are oriented perpendicularly to the pulmonary arteries, forming a cross-current gas exchanger. This arrangement allows for more oxygen to be extracted compared to mammalian concurrent gas exchange; as oxygen diffuses down its concentration gradient and the air gradually becomes more deoxygenated, the pulmonary arteries are still able to extract oxygen. Birds also have a high capacity for oxygen delivery to the tissues because they have larger hearts and cardiac stroke volume compared to mammals of similar body size. Additionally, they have increased vascularization in their flight muscle due to increased branching of the capillaries and small muscle fibres (which increases surface-area-to-volume ratio). These two features facilitate oxygen diffusion from the blood to muscle, allowing flight to be sustained during environmental hypoxia. Birds' hearts and brains, which are very sensitive to arterial hypoxia, are more vascularized compared to those of mammals. The bar-headed goose (Anser indicus) is an iconic high-flyer that surmounts the Himalayas during migration, and serves as a model system for derived physiological adaptations for high-altitude flight. Rüppell's vultures, whooper swans, alpine chough, and common cranes all have flown more than 8 km (26,000 ft) above sea level.

Adaptation to high altitude has fascinated ornithologists for decades, but only a small proportion of high-altitude species have been studied. In Tibet, few birds are found (28 endemic species), including cranes, vultures, hawks, jays and geese. The Andes is quite rich in bird diversity. The Andean condor, the largest bird of its kind in the Western Hemisphere, occurs throughout much of the Andes but generally in very low densities; species of tinamous (notably members of the genus Nothoprocta), Andean goose, giant coot, Andean flicker, diademed sandpiper-plover, miners, sierra-finches and diuca-finches are also found in the highlands.

Cinnamon teal

Male cinnamon teal

Evidence for adaptation is best investigated among the Andean birds. The water fowls and cinnamon teal (Anas cyanoptera) are found to have undergone significant molecular modifications. It is now known that the α-hemoglobin subunit gene is highly structured between elevations among cinnamon teal populations, which involves almost entirely a single non-synonymous amino acid substitution at position 9 of the protein, with asparagine present almost exclusively within the low-elevation species, and serine in the high-elevation species. This implies important functional consequences for oxygen affinity. In addition, there is strong divergence in body size in the Andes and adjacent lowlands. These changes have shaped distinct morphological and genetic divergence within South American cinnamon teal populations.

Ground tits

In 2013, the molecular mechanism of high-altitude adaptation was elucidated in the Tibetan ground tit (Pseudopodoces humilis) using a draft genome sequence. Gene family expansion and positively selected gene analysis revealed genes that were related to cardiac function in the ground tit. Some of the genes identified to have positive selection include ADRBK1 and HSD17B7, which are involved in the adrenaline response and steroid hormone biosynthesis. Thus, the strengthened hormonal system is an adaptation strategy of this bird.

Other animals

Alpine Tibet hosts a limited diversity of animal species, among which snakes are common. A notable species is the Himalayan jumping spider, which can live at over 6,500 m (21,300 ft) of elevation. There are only two endemic reptiles and ten endemic amphibians in the Tibetan highlands. Gloydius himalayanus is perhaps the geographically highest living snake in the world, living at as high as 4,900 m (16,100 ft) in the Himalayas.

Plants

Cushion plant Donatia novae-zelandiae, Tasmania

Many different plant species live in the high-altitude environment. These include perennial grasses, sedges, forbs, cushion plants, mosses, and lichens. High-altitude plants must adapt to the harsh conditions of their environment, which include low temperatures, dryness, ultraviolet radiation, and a short growing season. Trees cannot grow at high altitude, because of cold temperature or lack of available moisture. The lack of trees causes an ecotone, or boundary, that is obvious to observers. This boundary is known as the tree line.

The highest-altitude plant species is a moss that grows at 6,480 m (21,260 ft) on Mount Everest. The sandwort Arenaria bryophylla is the highest flowering plant in the world, occurring as high as 6,180 m (20,280 ft).

SQL

From Wikipedia, the free encyclopedia

SQL (Structured Query Language)
ParadigmDeclarative
FamilyQuery language
Designed byDonald D. Chamberlin
Raymond F. Boyce
DeveloperISO/IEC JTC 1 (Joint Technical Committee 1) / SC 32 (Subcommittee 32) / WG 3 (Working Group 3)
First appeared1974

Stable release
SQL:2016 / December 2016
Typing disciplineStatic, strong
OSCross-platform
Websitewww.iso.org/standard/63555.html
Major implementations
Many
Dialects
Influenced by
Datalog
Influenced
CQL, LINQ, SPARQL, SOQL, PowerShell, JPQL, jOOQ, N1QL
SQL (file format)
Filename extension
.sql
Internet media type
application/sql
Developed byISO/IEC
Initial release1986
Type of formatDatabase
StandardISO/IEC 9075
Open format?Yes
Websitewww.iso.org/standard/63555.html

SQL (/ˌɛsˌkjuːˈɛl/ Structured Query Language) is a domain-specific language used in programming and designed for managing data held in a relational database management system (RDBMS), or for stream processing in a relational data stream management system (RDSMS). It is particularly useful in handling structured data, i.e. data incorporating relations among entities and variables. SQL offers two main advantages over older read–write APIs such as ISAM or VSAM. Firstly, it introduced the concept of accessing many records with one single command. Secondly, it eliminates the need to specify how to reach a record, e.g. with or without an index.

Originally based upon relational algebra and tuple relational calculus, SQL consists of many types of statements, which may be informally classed as sublanguages, commonly: a data query language (DQL), a data definition language (DDL), a data control language (DCL), and a data manipulation language (DML). The scope of SQL includes data query, data manipulation (insert, update and delete), data definition (schema creation and modification), and data access control. Although SQL is essentially a declarative language (4GL), it also includes procedural elements.

SQL was one of the first commercial languages to use Edgar F. Codd’s relational model. The model was described in his influential 1970 paper, "A Relational Model of Data for Large Shared Data Banks". Despite not entirely adhering to the relational model as described by Codd, it became the most widely used database language.

SQL became a standard of the American National Standards Institute (ANSI) in 1986 and of the International Organization for Standardization (ISO) in 1987. Since then, the standard has been revised to include a larger set of features. Despite the existence of standards, most SQL code requires at least some changes before being ported to different database systems.

History

SQL was initially developed at IBM by Donald D. Chamberlin and Raymond F. Boyce after learning about the relational model from Edgar F. Codd in the early 1970s. This version, initially called SEQUEL (Structured English Query Language), was designed to manipulate and retrieve data stored in IBM's original quasirelational database management system, System R, which a group at IBM San Jose Research Laboratory had developed during the 1970s.

Chamberlin and Boyce's first attempt at a relational database language was SQUARE (Specifying Queries in A Relational Environment), but it was difficult to use due to subscript/superscript notation. After moving to the San Jose Research Laboratory in 1973, they began work on a sequel to SQUARE. The name SEQUEL was later changed to SQL (dropping the vowels) because "SEQUEL" was a trademark of the UK-based Hawker Siddeley Dynamics Engineering Limited company. The label SQL later became the acronym for Structured Query Language.

After testing SQL at customer test sites to determine the usefulness and practicality of the system, IBM began developing commercial products based on their System R prototype, including System/38, SQL/DS, and IBM Db2, which were commercially available in 1979, 1981, and 1983, respectively.

In the late 1970s, Relational Software, Inc. (now Oracle Corporation) saw the potential of the concepts described by Codd, Chamberlin, and Boyce, and developed their own SQL-based RDBMS with aspirations of selling it to the U.S. Navy, Central Intelligence Agency, and other U.S. government agencies. In June 1979, Relational Software introduced one of the first commercially available implementations of SQL, Oracle V2 (Version2) for VAX computers.

By 1986, ANSI and ISO standard groups officially adopted the standard "Database Language SQL" language definition. New versions of the standard were published in 1989, 1992, 1996, 1999, 2003, 2006, 2008, 2011, and most recently, 2016.

Syntax

A chart showing several of the SQL language elements comprising a single statement

The SQL language is subdivided into several language elements, including:

  • Clauses, which are constituent components of statements and queries. (In some cases, these are optional.)
  • Expressions, which can produce either scalar values, or tables consisting of columns and rows of data
  • Predicates, which specify conditions that can be evaluated to SQL three-valued logic (3VL) (true/false/unknown) or Boolean truth values and are used to limit the effects of statements and queries, or to change program flow.
  • Queries, which retrieve the data based on specific criteria. This is an important element of SQL.
  • Statements, which may have a persistent effect on schemata and data, or may control transactions, program flow, connections, sessions, or diagnostics.
    • SQL statements also include the semicolon (";") statement terminator. Though not required on every platform, it is defined as a standard part of the SQL grammar.
  • Insignificant whitespace is generally ignored in SQL statements and queries, making it easier to format SQL code for readability.

Procedural extensions

SQL is designed for a specific purpose: to query data contained in a relational database. SQL is a set-based, declarative programming language, not an imperative programming language like C or BASIC. However, extensions to Standard SQL add procedural programming language functionality, such as control-of-flow constructs. These include:

Source Abbreviation Full name
ANSI/ISO Standard SQL/PSM SQL/Persistent Stored Modules
Interbase / Firebird PSQL Procedural SQL
IBM Db2 SQL PL SQL Procedural Language (implements SQL/PSM)
IBM Informix SPL Stored Procedural Language
IBM Netezza NZPLSQL (based on Postgres PL/pgSQL)
Invantive PSQL Invantive Procedural SQL (implements SQL/PSM and PL/SQL)
MariaDB SQL/PSM, PL/SQL SQL/Persistent Stored Module (implements SQL/PSM), Procedural Language/SQL (based on Ada)
Microsoft / Sybase T-SQL Transact-SQL
Mimer SQL SQL/PSM SQL/Persistent Stored Module (implements SQL/PSM)
MySQL SQL/PSM SQL/Persistent Stored Module (implements SQL/PSM)
MonetDB SQL/PSM SQL/Persistent Stored Module (implements SQL/PSM)
NuoDB SSP Starkey Stored Procedures
Oracle PL/SQL Procedural Language/SQL (based on Ada)
PostgreSQL PL/pgSQL Procedural Language/PostgreSQL Structured Query Language (based on reduced PL/SQL)
SAP R/3 ABAP Advanced Business Application Programming
SAP HANA SQLScript SQLScript
Sybase Watcom-SQL SQL Anywhere Watcom-SQL Dialect
Teradata SPL Stored Procedural Language

In addition to the standard SQL/PSM extensions and proprietary SQL extensions, procedural and object-oriented programmability is available on many SQL platforms via DBMS integration with other languages. The SQL standard defines SQL/JRT extensions (SQL Routines and Types for the Java Programming Language) to support Java code in SQL databases. Microsoft SQL Server 2005 uses the SQLCLR (SQL Server Common Language Runtime) to host managed .NET assemblies in the database, while prior versions of SQL Server were restricted to unmanaged extended stored procedures primarily written in C. PostgreSQL lets users write functions in a wide variety of languages—including Perl, Python, Tcl, JavaScript (PL/V8) and C.

Interoperability and standardization

Overview

SQL implementations are incompatible between vendors and do not necessarily completely follow standards. In particular, date and time syntax, string concatenation, NULLs, and comparison case sensitivity vary from vendor to vendor. Particular exceptions are PostgreSQL and Mimer SQL which strive for standards compliance, though PostgreSQL does not adhere to the standard in all cases. For example, the folding of unquoted names to lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names should be folded to upper case. Thus, Foo should be equivalent to FOO not foo according to the standard.

Popular implementations of SQL commonly omit support for basic features of Standard SQL, such as the DATE or TIME data types. The most obvious such examples, and incidentally the most popular commercial and proprietary SQL DBMSs, are Oracle (whose DATE behaves as DATETIME, and lacks a TIME type) and MS SQL Server (before the 2008 version). As a result, SQL code can rarely be ported between database systems without modifications.

Reasons for incompatibility

Several reasons for this lack of portability between database systems include:

  • The complexity and size of the SQL standard means that most implementers do not support the entire standard.
  • The standard does not specify database behavior in several important areas (e.g. indices, file storage...), leaving implementations to decide how to behave.
  • The SQL standard precisely specifies the syntax that a conforming database system must implement. However, the standard's specification of the semantics of language constructs is less well-defined, leading to ambiguity.
  • Many database vendors have large existing customer bases; where the newer version of the SQL standard conflicts with the prior behavior of the vendor's database, the vendor may be unwilling to break backward compatibility.
  • Little commercial incentive exists for vendors to make changing database suppliers easier (see vendor lock-in).
  • Users evaluating database software tend to place other factors such as performance higher in their priorities than standards conformance.

Standardization history

SQL was adopted as a standard by the ANSI in 1986 as SQL-86 and the ISO in 1987. It is maintained by ISO/IEC JTC 1, Information technology, Subcommittee SC 32, Data management and interchange.

Until 1996, the National Institute of Standards and Technology (NIST) data-management standards program certified SQL DBMS compliance with the SQL standard. Vendors now self-certify the compliance of their products.

The original standard declared that the official pronunciation for "SQL" was an initialism: /ˌɛsˌkjuːˈɛl/ ("ess cue el"). Regardless, many English-speaking database professionals (including Donald Chamberlin himself) use the acronym-like pronunciation of /ˈskwəl/ ("sequel"), mirroring the language's prerelease development name, "SEQUEL".

The SQL standard has gone through a number of revisions:

Year Name Alias Comments
1986 SQL-86 SQL-87 First formalized by ANSI
1989 SQL-89 FIPS 127-1 Minor revision that added integrity constraints adopted as FIPS 127-1
1992 SQL-92 SQL2, FIPS 127-2 Major revision (ISO 9075), Entry Level SQL-92 adopted as FIPS 127-2
1999 SQL:1999 SQL3 Added regular expression matching, recursive queries (e.g. transitive closure), triggers, support for procedural and control-of-flow statements, nonscalar types (arrays), and some object-oriented features (e.g. structured types), support for embedding SQL in Java (SQL/OLB) and vice versa (SQL/JRT)
2003 SQL:2003
Introduced XML-related features (SQL/XML), window functions, standardized sequences, and columns with autogenerated values (including identity columns)
2006 SQL:2006
ISO/IEC 9075-14:2006 defines ways that SQL can be used with XML. It defines ways of importing and storing XML data in an SQL database, manipulating it within the database, and publishing both XML and conventional SQL data in XML form. In addition, it lets applications integrate queries into their SQL code with XQuery, the XML Query Language published by the World Wide Web Consortium (W3C), to concurrently access ordinary SQL-data and XML documents.
2008 SQL:2008
Legalizes ORDER BY outside cursor definitions. Adds INSTEAD OF triggers, TRUNCATE statement, FETCH clause
2011 SQL:2011
Adds temporal data (PERIOD FOR) (more information at Temporal database#History). Enhancements for window functions and FETCH clause.
2016 SQL:2016
Adds row pattern matching, polymorphic table functions, JSON
2019 SQL:2019
Adds Part 15, multidimensional arrays (MDarray type and operators)

Current standard

The standard is commonly denoted by the pattern: ISO/IEC 9075-n:yyyy Part n: title, or, as a shortcut, ISO/IEC 9075.

ISO/IEC 9075 is complemented by ISO/IEC 13249: SQL Multimedia and Application Packages (SQL/MM), which defines SQL-based interfaces and packages to widely spread applications such as video, audio, and spatial data. Interested parties may purchase SQL standards documents from ISO, IEC, or ANSI. A draft of SQL:2008 is freely available as a zip archive.

Anatomy of SQL Standard

The SQL standard is divided into 10 parts, but with gaps in the numbering due to the withdrawal of outdated parts.

  • ISO/IEC 9075-1:2016 Part 1: Framework (SQL/Framework). It provides logical concepts.
  • ISO/IEC 9075-2:2016 Part 2: Foundation (SQL/Foundation). It contains the most central elements of the language and consists of both mandatory and optional features.
  • ISO/IEC 9075-3:2016 Part 3: Call-Level Interface (SQL/CLI). It defines interfacing components (structures, procedures, variable bindings) that can be used to execute SQL statements from applications written in Ada, C respectively C++, COBOL, Fortran, MUMPS, Pascal or PL/I. (For Java see part 10.) SQL/CLI is defined in such a way that SQL statements and SQL/CLI procedure calls are treated as separate from the calling application's source code. Open Database Connectivity is a well-known superset of SQL/CLI. This part of the standard consists solely of mandatory features.
  • ISO/IEC 9075-4:2016 Part 4: Persistent stored modules (SQL/PSM). It standardizes procedural extensions for SQL, including flow of control, condition handling, statement condition signals and resignals, cursors and local variables, and assignment of expressions to variables and parameters. In addition, SQL/PSM formalizes the declaration and maintenance of persistent database language routines (e.g., "stored procedures"). This part of the standard consists solely of optional features.
  • ISO/IEC 9075-9:2016 Part 9: Management of External Data (SQL/MED). It provides extensions to SQL that define foreign-data wrappers and datalink types to allow SQL to manage external data. External data is data that is accessible to, but not managed by, an SQL-based DBMS. This part of the standard consists solely of optional features.
  • ISO/IEC 9075-10:2016 Part 10: Object language bindings (SQL/OLB). It defines the syntax and semantics of SQLJ, which is SQL embedded in Java (see also part 3). The standard also describes mechanisms to ensure binary portability of SQLJ applications and specifies various Java packages and their contained classes. This part of the standard consists solely of optional features. Unlike SQL/OLB JDBC defines an API and is not part of the SQL standard.
  • ISO/IEC 9075-11:2016 Part 11: Information and definition schemas (SQL/Schemata). It defines the Information Schema and Definition Schema, providing a common set of tools to make SQL databases and objects self-describing. These tools include the SQL object identifier, structure and integrity constraints, security and authorization specifications, features and packages of ISO/IEC 9075, support of features provided by SQL-based DBMS implementations, SQL-based DBMS implementation information and sizing items, and the values supported by the DBMS implementations. This part of the standard contains both mandatory and optional features.
  • ISO/IEC 9075-13:2016 Part 13: SQL Routines and types using the Java TM programming language (SQL/JRT). It specifies the ability to invoke static Java methods as routines from within SQL applications ('Java-in-the-database'). It also calls for the ability to use Java classes as SQL structured user-defined types. This part of the standard consists solely of optional features.
  • ISO/IEC 9075-14:2016 Part 14: XML-Related Specifications (SQL/XML). It specifies SQL-based extensions for using XML in conjunction with SQL. The XML data type is introduced, as well as several routines, functions, and XML-to-SQL data type mappings to support manipulation and storage of XML in an SQL database. This part of the standard consists solely of optional features.
  • ISO/IEC 9075-15:2019 Part 15: Multi-dimensional arrays (SQL/MDA). It specifies a multidimensional array type (MDarray) for SQL, along with operations on MDarrays, MDarray slices, MDarray cells, and related features. This part of the standard consists solely of optional features.

Extensions to the ISO/IEC Standard

ISO/IEC 9075 is complemented by ISO/IEC 13249 SQL Multimedia and Application Packages. This closely related but separate standard is developed by the same committee. It defines interfaces and packages based on SQL. The aim is unified access to typical database applications like text, pictures, data mining, or spatial data.

  • ISO/IEC 13249-1:2016 Part 1: Framework
  • ISO/IEC 13249-2:2003 Part 2: Full-Text
  • ISO/IEC 13249-3:2016 Part 3: Spatial
  • ISO/IEC 13249-5:2003 Part 5: Still image
  • ISO/IEC 13249-6:2006 Part 6: Data mining
  • ISO/IEC 13249-7:2013 Part 7: History
  • ISO/IEC 13249-8:xxxx Part 8: Metadata Registry Access MRA (work in progress)

Technical reports

ISO/IEC 9075 is also accompanied by a series of Technical Reports, published as ISO/IEC TR 19075. These Technical Reports explain the justification for and usage of some features of SQL, giving examples where appropriate. The Technical Reports are non-normative; if there is any discrepancy from 9075, the text in 9075 holds. Currently available 19075 Technical Reports are:

  • ISO/IEC TR 19075-1:2011 Part 1: XQuery Regular Expression Support in SQL
  • ISO/IEC TR 19075-2:2015 Part 2: SQL Support for Time-Related Information
  • ISO/IEC TR 19075-3:2015 Part 3: SQL Embedded in Programs using the Java programming language
  • ISO/IEC TR 19075-4:2015 Part 4: SQL with Routines and types using the Java programming language
  • ISO/IEC TR 19075-5:2016 Part 5: Row Pattern Recognition in SQL
  • ISO/IEC TR 19075-6:2017 Part 6: SQL support for JavaScript Object Notation (JSON)
  • ISO/IEC TR 19075-7:2017 Part 7: Polymorphic table functions in SQL
  • ISO/IEC TR 19075-8:2019 Part 8: Multi-Dimensional Arrays (SQL/MDA)
  • ISO/IEC TR 19075-9:2020 Part 9: Online analytic processing (OLAP) capabilities

Alternatives

A distinction should be made between alternatives to SQL as a language, and alternatives to the relational model itself. Below are proposed relational alternatives to the SQL language. See navigational database and NoSQL for alternatives to the relational model.

Distributed SQL processing

Distributed Relational Database Architecture (DRDA) was designed by a workgroup within IBM from 1988 to 1994. DRDA enables network-connected relational databases to cooperate to fulfill SQL requests.

An interactive user or program can issue SQL statements to a local RDB and receive tables of data and status indicators in reply from remote RDBs. SQL statements can also be compiled and stored in remote RDBs as packages and then invoked by package name. This is important for the efficient operation of application programs that issue complex, high-frequency queries. It is especially important when the tables to be accessed are located in remote systems.

The messages, protocols, and structural components of DRDA are defined by the Distributed Data Management Architecture. Distributed SQL processing ala DRDA is distinctive from contemporary distributed SQL databases.

Criticisms

Design

SQL deviates in several ways from its theoretical foundation, the relational model and its tuple calculus. In that model, a table is a set of tuples, while in SQL, tables and query results are lists of rows; the same row may occur multiple times, and the order of rows can be employed in queries (e.g. in the LIMIT clause). Critics argue that SQL should be replaced with a language that returns strictly to the original foundation: for example, see The Third Manifesto.

Orthogonality and completeness

Early specifications did not support major features, such as primary keys. Result sets could not be named, and subqueries had not been defined. These were added in 1992.

The lack of sum types has been described as a roadblock to full use of SQL's user-defined types. JSON support, for example, needs to be added by a new standard in 2016.

Null

The concept of Null is the subject of some debates. The Null marker indicates the absence of a value, and is distinct from a value of 0 for an integer column or an empty string for a text column. The concept of Nulls enforces the 3-valued-logic in SQL, which is a concrete implementation of the general 3-valued logic.

Duplicates

Another popular criticism is that it allows duplicate rows, making integration with languages such as Python, whose data types might make accurately representing the data difficult, in terms of parsing and by the absence of modularity.

This is usually avoided by declaring a primary key, or a unique constraint, with one or more columns that uniquely identify a row in the table.

Impedance mismatch

In a similar sense to object–relational impedance mismatch, a mismatch occurs between the declarative SQL language and the procedural languages in which SQL is typically embedded.

SQL data types

The SQL standard defines three kinds of data types:

  • predefined data types
  • constructed types
  • user-defined types.

Constructed types are one of ARRAY, MULTISET, REF(erence), or ROW. User-defined types are comparable to classes in object-oriented language with their own constructors, observers, mutators, methods, inheritance, overloading, overwriting, interfaces, and so on. Predefined data types are intrinsically supported by the implementation.

Predefined data types

  • Character types
  • Character (CHAR)
  • Character varying (VARCHAR)
  • Character large object (CLOB)
  • National character types
  • National character (NCHAR)
  • National character varying (NCHAR VARYING)
  • National character large object (NCLOB)
  • Binary types
  • Binary (BINARY)
  • Binary varying (VARBINARY)
  • Binary large object (BLOB)
  • Numeric types
  • Exact numeric types (NUMERIC, DECIMAL, SMALLINT, INTEGER, BIGINT)
  • Approximate numeric types (FLOAT, REAL, DOUBLE PRECISION)
  • Decimal floating-point type (DECFLOAT)
  • Datetime types (DATE, TIME, TIMESTAMP)
  • Interval type (INTERVAL)
  • Boolean
  • XML
  • JSON

Introduction to entropy

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Introduct...