Search This Blog

Sunday, July 23, 2023

Reproduction

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Reproduction

Reproduction (or procreation or breeding) is the biological process by which new individual organisms – "offspring" – are produced from their "parent" or parents. Reproduction is a fundamental feature of all known life; each individual organism exists as the result of reproduction. There are two forms of reproduction: asexual and sexual.

In asexual reproduction, an organism can reproduce without the involvement of another organism. Asexual reproduction is not limited to single-celled organisms. The cloning of an organism is a form of asexual reproduction. By asexual reproduction, an organism creates a genetically similar or identical copy of itself. The evolution of sexual reproduction is a major puzzle for biologists. The two-fold cost of sexual reproduction is that only 50% of organisms reproduce and organisms only pass on 50% of their genes.

Sexual reproduction typically requires the sexual interaction of two specialized reproductive cells, called gametes, which contain half the number of chromosomes of normal cells and are created by meiosis, with typically a male fertilizing a female of the same species to create a fertilized zygote. This produces offspring organisms whose genetic characteristics are derived from those of the two parental organisms.

Asexual

Asexual reproduction is a process by which organisms create genetically similar or identical copies of themselves without the contribution of genetic material from another organism. Bacteria divide asexually via binary fission; viruses take control of host cells to produce more viruses; Hydras (invertebrates of the order Hydroidea) and yeasts are able to reproduce by budding. These organisms often do not possess different sexes, and they are capable of "splitting" themselves into two or more copies of themselves. Most plants have the ability to reproduce asexually and the ant species Mycocepurus smithii is thought to reproduce entirely by asexual means.

Some species that are capable of reproducing asexually, like hydra, yeast (See Mating of yeasts) and jellyfish, may also reproduce sexually. For instance, most plants are capable of vegetative reproduction – reproduction without seeds or spores – but can also reproduce sexually. Likewise, bacteria may exchange genetic information by conjugation.

Other ways of asexual reproduction include parthenogenesis, fragmentation and spore formation that involves only mitosis. Parthenogenesis is the growth and development of embryo or seed without fertilization. Parthenogenesis occurs naturally in some species, including lower plants (where it is called apomixis), invertebrates (e.g. water fleas, aphids, some bees and parasitic wasps), and vertebrates (e.g. some reptiles, some fish, and very rarely, domestic birds).

Sexual

Hoverflies mating in midair flight

Sexual reproduction is a biological process that creates a new organism by combining the genetic material of two organisms in a process that starts with meiosis, a specialized type of cell division. Each of two parent organisms contributes half of the offspring's genetic makeup by creating haploid gametes. Most organisms form two different types of gametes. In these anisogamous species, the two sexes are referred to as male (producing sperm or microspores) and female (producing ova or megaspores). In isogamous species, the gametes are similar or identical in form (isogametes), but may have separable properties and then may be given other different names (see isogamy). Because both gametes look alike, they generally cannot be classified as male or female. For example, in the green alga, Chlamydomonas reinhardtii, there are so-called "plus" and "minus" gametes. A few types of organisms, such as many fungi and the ciliate Paramecium aurelia, have more than two "sexes", called mating types. Most animals (including humans) and plants reproduce sexually. Sexually reproducing organisms have different sets of genes for every trait (called alleles). Offspring inherit one allele for each trait from each parent. Thus, offspring have a combination of the parents' genes. It is believed that "the masking of deleterious alleles favors the evolution of a dominant diploid phase in organisms that alternate between haploid and diploid phases" where recombination occurs freely.

Bryophytes reproduce sexually, but the larger and commonly-seen organisms are haploid and produce gametes. The gametes fuse to form a zygote which develops into a sporangium, which in turn produces haploid spores. The diploid stage is relatively small and short-lived compared to the haploid stage, i.e. haploid dominance. The advantage of diploidy, heterosis, only exists in the diploid life generation. Bryophytes retain sexual reproduction despite the fact that the haploid stage does not benefit from heterosis. This may be an indication that the sexual reproduction has advantages other than heterosis, such as genetic recombination between members of the species, allowing the expression of a wider range of traits and thus making the population more able to survive environmental variation.

Allogamy

Allogamy is the fertilization of flowers through cross-pollination, this occurs when a flower's ovum is fertilized by spermatozoa from the pollen of a different plant's flower. Pollen may be transferred through pollen vectors or abiotic carriers such as wind. Fertilization begins when the pollen is brought to a female gamete through the pollen tube. Allogamy is also known as cross fertilization, in contrast to autogamy or geitonogamy which are methods of self-fertilization.

Autogamy

Self-fertilization, also known as autogamy, occurs in hermaphroditic organisms where the two gametes fused in fertilization come from the same individual, e.g., many vascular plants, some foraminiferans, some ciliates. The term "autogamy" is sometimes substituted for autogamous pollination (not necessarily leading to successful fertilization) and describes self-pollination within the same flower, distinguished from geitonogamous pollination, transfer of pollen to a different flower on the same flowering plant, or within a single monoecious Gymnosperm plant.

Mitosis and meiosis

Mitosis and meiosis are types of cell division. Mitosis occurs in somatic cells, while meiosis occurs in gametes.

Mitosis The resultant number of cells in mitosis is twice the number of original cells. The number of chromosomes in the offspring cells is the same as that of the parent cell.

Meiosis The resultant number of cells is four times the number of original cells. This results in cells with half the number of chromosomes present in the parent cell. A diploid cell duplicates itself, then undergoes two divisions (tetraploid to diploid to haploid), in the process forming four haploid cells. This process occurs in two phases, meiosis I and meiosis II.

Same-sex

Scientific research is currently investigating the possibility of same-sex procreation, which would produce offspring with equal genetic contributions from either two females or two males. The obvious approaches, subject to a growing amount of activity, are female sperm and male eggs. In 2004, by altering the function of a few genes involved with imprinting, other Japanese scientists combined two mouse eggs to produce daughter mice and in 2018 Chinese scientists created 29 female mice from two female mice mothers but were unable to produce viable offspring from two father mice. Researches noted that there is little chance these techniques would be applied to humans in the near future.

Strategies

There are a wide range of reproductive strategies employed by different species. Some animals, such as the human and northern gannet, do not reach sexual maturity for many years after birth and even then produce few offspring. Others reproduce quickly; but, under normal circumstances, most offspring do not survive to adulthood. For example, a rabbit (mature after 8 months) can produce 10–30 offspring per year, and a fruit fly (mature after 10–14 days) can produce up to 900 offspring per year. These two main strategies are known as K-selection (few offspring) and r-selection (many offspring). Which strategy is favoured by evolution depends on a variety of circumstances. Animals with few offspring can devote more resources to the nurturing and protection of each individual offspring, thus reducing the need for many offspring. On the other hand, animals with many offspring may devote fewer resources to each individual offspring; for these types of animals it is common for many offspring to die soon after birth, but enough individuals typically survive to maintain the population. Some organisms such as honey bees and fruit flies retain sperm in a process called sperm storage thereby increasing the duration of their fertility.

Other types

  • Polycyclic animals reproduce intermittently throughout their lives.
  • Semelparous organisms reproduce only once in their lifetime, such as annual plants (including all grain crops), and certain species of salmon, spider, bamboo and century plant. Often, they die shortly after reproduction. This is often associated with r-strategists.
  • Iteroparous organisms produce offspring in successive (e.g. annual or seasonal) cycles, such as perennial plants. Iteroparous animals survive over multiple seasons (or periodic condition changes). This is more associated with K-strategists.

Asexual vs. sexual reproduction

Illustration of the twofold cost of sexual reproduction. If each organism were to contribute to the same number of offspring (two), (a) the population remains the same size each generation, where the (b) asexual population doubles in size each generation.

Organisms that reproduce through asexual reproduction tend to grow in number exponentially. However, because they rely on mutation for variations in their DNA, all members of the species have similar vulnerabilities. Organisms that reproduce sexually yield a smaller number of offspring, but the large amount of variation in their genes makes them less susceptible to disease.

Many organisms can reproduce sexually as well as asexually. Aphids, slime molds, sea anemones, some species of starfish (by fragmentation), and many plants are examples. When environmental factors are favorable, asexual reproduction is employed to exploit suitable conditions for survival such as an abundant food supply, adequate shelter, favorable climate, disease, optimum pH or a proper mix of other lifestyle requirements. Populations of these organisms increase exponentially via asexual reproductive strategies to take full advantage of the rich supply resources.[24]

When food sources have been depleted, the climate becomes hostile, or individual survival is jeopardized by some other adverse change in living conditions, these organisms switch to sexual forms of reproduction. Sexual reproduction ensures a mixing of the gene pool of the species. The variations found in offspring of sexual reproduction allow some individuals to be better suited for survival and provide a mechanism for selective adaptation to occur. The meiosis stage of the sexual cycle also allows especially effective repair of DNA damages (see Meiosis). In addition, sexual reproduction usually results in the formation of a life stage that is able to endure the conditions that threaten the offspring of an asexual parent. Thus, seeds, spores, eggs, pupae, cysts or other "over-wintering" stages of sexual reproduction ensure the survival during unfavorable times and the organism can "wait out" adverse situations until a swing back to suitability occurs.

Life without

The existence of life without reproduction is the subject of some speculation. The biological study of how the origin of life produced reproducing organisms from non-reproducing elements is called abiogenesis. Whether or not there were several independent abiogenetic events, biologists believe that the last universal ancestor to all present life on Earth lived about 3.5 billion years ago.

Scientists have speculated about the possibility of creating life non-reproductively in the laboratory. Several scientists have succeeded in producing simple viruses from entirely non-living materials. However, viruses are often regarded as not alive. Being nothing more than a bit of RNA or DNA in a protein capsule, they have no metabolism and can only replicate with the assistance of a hijacked cell's metabolic machinery.

The production of a truly living organism (e.g. a simple bacterium) with no ancestors would be a much more complex task, but may well be possible to some degree according to current biological knowledge. A synthetic genome has been transferred into an existing bacterium where it replaced the native DNA, resulting in the artificial production of a new M. mycoides organism.

There is some debate within the scientific community over whether this cell can be considered completely synthetic on the grounds that the chemically synthesized genome was an almost 1:1 copy of a naturally occurring genome and, the recipient cell was a naturally occurring bacterium. The Craig Venter Institute maintains the term "synthetic bacterial cell" but they also clarify "...we do not consider this to be "creating life from scratch" but rather we are creating new life out of already existing life using synthetic DNA". Venter plans to patent his experimental cells, stating that "they are pretty clearly human inventions". Its creators suggests that building 'synthetic life' would allow researchers to learn about life by building it, rather than by tearing it apart. They also propose to stretch the boundaries between life and machines until the two overlap to yield "truly programmable organisms". Researchers involved stated that the creation of "true synthetic biochemical life" is relatively close in reach with current technology and cheap compared to the effort needed to place man on the Moon.

Lottery principle

Sexual reproduction has many drawbacks, since it requires far more energy than asexual reproduction and diverts the organisms from other pursuits, and there is some argument about why so many species use it. George C. Williams used lottery tickets as an analogy in one explanation for the widespread use of sexual reproduction. He argued that asexual reproduction, which produces little or no genetic variety in offspring, was like buying many tickets that all have the same number, limiting the chance of "winning" – that is, producing surviving offspring. Sexual reproduction, he argued, was like purchasing fewer tickets but with a greater variety of numbers and therefore a greater chance of success. The point of this analogy is that since asexual reproduction does not produce genetic variations, there is little ability to quickly adapt to a changing environment. The lottery principle is less accepted these days because of evidence that asexual reproduction is more prevalent in unstable environments, the opposite of what it predicts.

Disease of despair


From Wikipedia, the free encyclopedia

A disease of despair is one of three classes of behavior-related medical conditions that increase in groups of people who experience despair due to a sense that their long-term social and economic prospects are bleak. The three disease types are drug overdose (including alcohol overdose), suicide, and alcoholic liver disease.

Diseases of despair, and the resulting deaths of despair, are high in the Appalachia region of the United States, especially, in Pennsylvania, West Virginia, and Delaware. The prevalence increased markedly during the first decades of the 21st century, especially among middle-aged and older working class White Americans starting in 2010, followed by an increase in mortality for Hispanic Americans in 2011 and African Americans in 2014. It gained media attention because of its connection to the opioid epidemic. For 2018, some 158,000 U.S. citizens died from these causes, compared to 65,000 in 1995.

Deaths of despair have increased sharply during the COVID-19 pandemic and associated recession, with a 10% to 60% increase above pre-pandemic levels. Life expectancy in the United States declined further to 76.4 years in 2021, with the main drivers being the COVID-19 pandemic along with deaths from drug overdoses, suicides and liver disease.

Definitions

Despair often breeds disease.

Sophocles

The concept of despair in any form can not only affect an individual person, but can also arise in and spread through social communities.

There are four basic types of despair. Cognitive despair denotes thoughts connected to defeat, guilt, hopelessness and pessimism. It may make a person perceive other people's actions as hostile and discount the value of long-term outcomes. Emotional despair refers to feelings of sadness, irritability, loneliness and apathy and may partly impede the process of creating and nourishing interpersonal relationships. The term behavioural despair describes risky, reckless and self-destructive acts reflecting little to no consideration of the future (such as self-harm, reckless driving, drug use, risky sexual behaviours and others). Lastly, biological despair relates to dysfunction or dysregulation of the body's stress reactive system and/or to hormonal instability.

Being under the influence of despair for an extended amount of time may lead to the development of one or more of the diseases of despair, such as suicidal thoughts or drug and alcohol abuse. If an individual has a disease of despair, there is an increased risk of death of despair, usually classified as a suicide, drug or alcohol overdose, or liver failure.

Risk factors

Unstable mental health, depression, suicidal thoughts and addiction to drugs and alcohol affect people of every age, every ethnicity, and every demographic group in every country in the world. However, data show that in recent years these problems are on the rise, especially among the US White non-Hispanic men and women in midlife. Since the beginning of the millennium, this particular group of people is the single one in the world which experienced continual increase in mortality and morbidity while US Black non-Hispanics and US Hispanics, as well as all subgroups of populations in other rich countries (such as countries from the EU, Japan, Australia and others), show the exact opposite trend. Moreover, men and women having no more than high school education and those living in rural areas are more affected by this phenomenon than their peers who are college-educated and live in urban areas.

Recent trends in numbers

Mortality and morbidity rates in the United States have been decreasing for decades. Between 1970 and 2013, mortality rates fell by 44% and morbidity was on a decline even among the elderly. After 1998, mortality rates in other rich countries have been declining by 2% a year; midlife mortality fell by more than 200 per 100,000 for Black non-Hispanics and by more than 60 per 100,000 for Hispanics during the 1998–2013 period. The infamous AIDS epidemic was brought under control – in 2018, only 37,968 people received an HIV diagnosis in the USA and its 6 dependent areas, which is an overall 7% decrease compared with the year 2014. Cardiovascular disease and cancer, the two biggest killers in middle age, are also on a decline, even though the still growing problem with obesity is not getting under control yet. Despite all of these satisfactory numbers, White non-Hispanic population exhibits an increase in premature deaths, especially in those caused by suicide, drug overdose and alcoholic liver disease.

There are two main factors driving this trend. Firstly, the data show the US White non-Hispanic population significantly differs from populations in other countries. For example, in 2015, drug, alcohol and suicide mortality was more than two times higher among US White non-Hispanics in comparison to people from the United Kingdom, Sweden or Australia. In comparison to US Black non-Hispanics, the mortality and morbidity rates are still lower; nevertheless the gap between these groups is narrowing quickly and, for example, for people aged 30–34 the difference between these two ethnicities has almost completely diminished. Also, white non-Hispanics aged 50–54 with no more than a high school diploma reached almost 1,000 premature deaths per 100,000 in the year 2015, whereas the average for all White non-Hispanics regardless of their education was only around 500 deaths per 100,000. Therefore, the factor of education probably negatively correlates with the probability of developing a disease of despair (that means higher education correlates with lower probability of developing a disease of despair).

Secondly, the excess premature deaths are, as stated above, caused primarily by suicide, poisonings or drug overdoses and other causes connected especially to alcoholism such as chronic liver diseases. The proportion of these causes of death (in comparison to deaths caused by assaults, cancer, cardiovascular diseases, HIV and motor vehicle crashes) in population white non-Hispanic people aged 25–44 is increased by 210%. It is also worth noting that the highest rates are to be discovered among people living in rural areas. For example, during the years 1999–2015, the rate of deaths of despair increased twice as much as the rate of other causes of deaths in the population of White non-Hispanics aged 30–44 living in rural areas. In total, death rates in rural subpopulations for all ethnicities increased among those aged 25–64 years by 6%. As a result of these findings, it is possible to assume that living in rural areas is also connected to the diseases and deaths of despair.

COVID-19 pandemic

The COVID-19 pandemic is the most severe global pandemic since the 1918 Spanish flu outbreak with lockdowns, social and economic disturbances and a sharp rise in unemployment.

Preliminary studies indicate an aggravation of depression, anxiety, drug overdoses, and suicidal ideation following the beginning of the COVID-19 pandemic. Though certain health aspects like stress can be concurrent with the crisis, other biopsychosocial risk factors such as job loss, housing precarity, and food insecurity can manifest over time. This range of social determinants, commonly experienced during an economic downturn, can induce and aggravate a sense of despair. Loneliness, which is associated with despair, was also aggravated by social isolation practices put in place during the COVID-19 pandemic, which may contribute to a rise in diseases of despair.

A preliminary review of 70 published studies conducted in 17 countries concerning the potential impacts of COVID-19 on deaths of despair indicates that women, ethnic minorities and younger age groups, may have suffered disproportionately more than other groups.

Drug overdoses

Preliminary indications in Canada and the United States demonstrate that the trajectory of drug overdose-related deaths was exacerbated. In Canada, drug overdose-related deaths stabilized prior to the onset of COVID-19, but increased after the onset of COVID-19. In the United States, drug overdose-related deaths increased prior to and accelerated after the onset of COVID-19.

More specifically, the opioid overdose crisis worsened within the three years, from 2017 to 2020, in Wisconsin. As a result of the difficulty in daily life and for individuals to ensure their health and safety amidst such a dangerous and widespread pandemic, and due to the challenges faced by people on a wide range of issues environmentally, socially, economically, and mentally, it is quite obvious as to why the drug problems around the globe have been aggravated. Particularly in Milwaukee County, Wisconsin, it was found that the pandemic had remarkably escalated the number of monthly overdose deaths, due to opioids. In addition, it was found that the worst of these drug impacts seemed to primarily occur in poor and urban neighborhoods, especially affecting Black and Hispanic communities. Despite this, even wealthy and prosperous, White communities within the suburbs, also faced an increase in the number of overdose deaths.

Causes

Our account echoes the account of suicide by Emile Durkheim, the founder of sociology, of how suicide happens when society fails to provide some of its members with the framework within which they can live dignified and meaningful lives.

Anne Case and Angus Deaton, Deaths of Despair and the Future of Capitalism (2020)

The factors that seem to exacerbate diseases of despair are not fully known, but they are generally recognized as including a worsening of economic inequality and feeling of hopelessness about personal financial success. This can take many forms and appear in different situations. For example, people feel inadequate and disadvantaged when products are marketed to them as being important, but these products repeatedly prove to be unaffordable for them. This increase in rates of mental distress and diseases of despair have been attributed to the flaws in contemporary capitalism and policies associated with the ideology of neoliberalism, which seeks to release markets from all restrictions and reduce or eliminate government assistance programs. The overall loss of employment in affected geographic regions, and stagnant wages and deteriorating working conditions along with the decline of labor unions and the welfare state, are widely hypothesized factors. As such, some scholars have characterized deaths of despair as driven by austerity policies and privatization as "social murder".

The changes in the labor market also affect social connections that might otherwise provide protection, as people at risk for this problem are less likely to get married, more likely to get divorced, and more likely to experience social isolation. However, some experts claim the correlation between income and mortality/morbidity rate is only coincidental and may not be associated with deaths for all groups. Anne Case and Angus Deaton argue that "after 1999, blacks with a college education experienced even more severe percentage declines in income than did whites in the same education group. Yet black mortality rates have fallen steadily, at rates between 2 and 3 percent per year for all age groups." Many other examples from Europe also show that decreased incomes and/or increased unemployment do not, in general, correlate with increased mortality rates. They argue that the ultimate cause is the sense that life is meaningless, unsatisfying, or unfulfilling, rather than strictly the basic economic security that makes these higher order feelings more likely. In a later work Case and Deaton assert that in the United States, much more so than in peer countries such as those of Western Europe, globalization and technological advancement dramatically shifted political power towards capital and away from labor by empowering corporations and weakening labor unions. As such, other rich countries, while facing challenges associated with globalization and technological change, did not experience a "long-term stagnation of wages, nor an epidemic of deaths of despair."

Recent data show that diseases of despair pose a complex threat to modern society and that they are not correlated only to the economic strength of an individual. Social connections, level of education, place of residence, medical condition, mental health, working opportunities, subjective perception of one's own future – all of these play a role in determining whether the individual will develop diseases of despair or not. Additionally, the younger generations are more and more influenced by social media and other modern technologies, which may have unexpected and unfavourable effects on their lives as well. For example, according to a study from 2016, the use of social media "was significantly associated with increased depression."

Contrasted with diseases of poverty

Diseases of despair differ from diseases of poverty because poverty itself is not the central factor. Groups of impoverished people with a sense that their lives or their children's lives will improve are not affected as much by diseases of despair. Instead, this affects people who have little reason to believe that the future will be better. As a result, this problem is distributed unevenly, for example by affecting working-class people in the United States more than working-class people in Europe, even when the European economy was weaker. It also affects White people more than racially disadvantaged groups, possibly because working-class White people are more likely to believe that they are not doing better than their parents did, while non-White people in similar economic situations are more likely to believe that they are better off than their parents.

Effects

Starting in 1998, a rise in deaths of despair has resulted in an unexpected increase in the number of middle-aged White Americans dying (the age-specific mortality rate). By 2014, the increasing number of deaths of despair had resulted in a drop in overall life expectancy. Anne Case and Angus Deaton propose that the increase in mid-life mortality is the result of cumulative disadvantages that have occurred over decades, and that solving it will require patience and perseverance for many years, rather than a quick fix that produces immediate results. The number of deaths of despair in the United States has been estimated at 150,000 per year in 2017.

Even though the main cause of diseases of despair may not be purely economical, the consequences of this phenomenon are, in terms of money, expensive. According to a report from 2016, alcohol misuse, misuse of illegal drugs and non-prescribed medications, treatment of associated disorders and lost productivity cost the U.S. more than $400 billion every year. About 40 percent of those costs were paid by government, which implies a huge cost of alcohol and drug misuse to taxpayers. Another study claims even higher costs of around $1.5 trillion in economic loss, loss of productivity, and societal harm.

Terminology

The phrase diseases of despair has been criticized for medicalizing problems that are primarily social and economic, and for underplaying the role of specific drugs, such as OxyContin, in increasing deaths. While the disease model of addiction has a strong body of empirical support, there is weak evidence for biological markers of suicidal thoughts and behaviors and no evidence that suicide fits a disease model. The use of the phrase diseases of despair to describe suicide in medical literature is more reflective of the medical model than suicidal thoughts and behaviors.

Placebo

From Wikipedia, the free encyclopedia
Placebos are typically inert tablets, such as sugar pills.

A placebo (/pləˈsb/ plə-SEE-boh) is a substance or treatment which is designed to have no therapeutic value. Common placebos include inert tablets (like sugar pills), inert injections (like saline), sham surgery, and other procedures.

In general, placebos can affect how patients perceive their condition and encourage the body's chemical processes for relieving pain and a few other symptoms, but have no impact on the disease itself. Improvements that patients experience after being treated with a placebo can also be due to unrelated factors, such as regression to the mean (a statistical effect where an unusually high or low measurement is likely to be followed by a less extreme one). The use of placebos in clinical medicine raises ethical concerns, especially if they are disguised as an active treatment, as this introduces dishonesty into the doctor–patient relationship and bypasses informed consent. While it was once assumed that this deception was necessary for placebos to have any effect, there is some evidence that placebos may have subjective effects even when the patient is aware that the treatment is a placebo (known as "open-label" placebo).

In drug testing and medical research, a placebo can be made to resemble an active medication or therapy so that it functions as a control; this is to prevent the recipient or others from knowing (with their consent) whether a treatment is active or inactive, as expectations about efficacy can influence results. In a placebo-controlled clinical trial any change in the control group is known as the placebo response, and the difference between this and the result of no treatment is the placebo effect. Some researchers now recommend comparing the experimental treatment with an existing treatment when possible, instead of a placebo.

The idea of a placebo effect—a therapeutic outcome derived from an inert treatment—was discussed in 18th century psychology, but became more prominent in the 20th century. An influential 1955 study entitled The Powerful Placebo firmly established the idea that placebo effects were clinically important, and were a result of the brain's role in physical health. A 1997 reassessment found no evidence of any placebo effect in the source data, as the study had not accounted for regression to the mean.

Etymology

Placebo (pronounced /plaˈkebo/ or /plaˈt͡ʃebo) is Latin for [I] shall be pleasing. It was used as a name for the Vespers in the Office of the Dead, taken from its incipit, a quote from the Vulgate's Psalm 116:9, placēbō Dominō in regiōne vīvōrum, "[I] shall please the Lord in the land of the living." From that, a singer of placebo became associated with someone who falsely claimed a connection to the deceased to get a share of the funeral meal, and hence a flatterer, and so a deceptive act to please.

Definitions

The American Society of Pain Management Nursing defines a placebo as "any sham medication or procedure designed to be void of any known therapeutic value".

In a clinical trial, a placebo response is the measured response of subjects to a placebo; the placebo effect is the difference between that response and no treatment. The placebo response may include improvements due to natural healing, declines due to natural disease progression, the tendency for people who were temporarily feeling either better or worse than usual to return to their average situations (regression toward the mean), and errors in the clinical trial records, which can make it appear that a change has happened when nothing has changed. It is also part of the recorded response to any active medical intervention.

Measurable placebo effects may be either objective (e.g. lowered blood pressure) or subjective (e.g. a lowered perception of pain).

Effects

Placebos can improve patient-reported outcomes such as pain and nausea. This effect is unpredictable and hard to measure, even in the best conducted trials. For example, if used to treat insomnia, placebos can cause patients to perceive that they are sleeping better, but do not improve objective measurements of sleep onset latency. A 2001 Cochrane Collaboration meta-analysis of the placebo effect looked at trials in 40 different medical conditions, and concluded the only one where it had been shown to have a significant effect was for pain.

By contrast, placebos do not appear to affect the actual diseases, or outcomes that are not dependent on a patient's perception. One exception to the latter is Parkinson's disease, where recent research has linked placebo interventions to improved motor functions.

Measuring the extent of the placebo effect is difficult due to confounding factors. For example, a patient may feel better after taking a placebo due to regression to the mean (i.e. a natural recovery or change in symptoms). It is harder still to tell the difference between the placebo effect and the effects of response bias, observer bias and other flaws in trial methodology, as a trial comparing placebo treatment and no treatment will not be a blinded experiment. In their 2010 meta-analysis of the placebo effect, Asbjørn Hróbjartsson and Peter C. Gøtzsche argue that "even if there were no true effect of placebo, one would expect to record differences between placebo and no-treatment groups due to bias associated with lack of blinding." Hróbjartsson and Gøtzsche concluded that their study "did not find that placebo interventions have important clinical effects in general". In a study in 2010, patients given open-label placebo in the context of a supportive patient-practitioner relationship and a persuasive rationale had clinically meaningful symptom improvement that was significantly better than a no-treatment control group with matched patient-provider interaction.

Jeremy Howick has argued that combining so many varied studies to produce a single average might obscure that "some placebos for some things could be quite effective." To demonstrate this, he participated in a systematic review comparing active treatments and placebos using a similar method, which generated a conclusion that there is "no difference between treatment and placebo effects".

Factors influencing the power of the placebo effect

A review published in JAMA Psychiatry found that, in trials of antipsychotic medications, the change in response to receiving a placebo had increased significantly between 1960 and 2013. The review's authors identified several factors that could be responsible for this change, including inflation of baseline scores and enrollment of fewer severely ill patients. Another analysis published in Pain in 2015 found that placebo responses had increased considerably in neuropathic pain clinical trials conducted in the United States from 1990 to 2013. The researchers suggested that this may be because such trials have "increased in study size and length" during this time period.

Children seem to have a greater response than adults to placebos.

The administration of the placebos can determine the placebo effect strength. Studies have found that taking more pills would strengthen the effect. Besides, capsules appear to be more influential than pills, and injections are even stronger than capsules.

Some studies have investigated the use of placebos where the patient is fully aware that the treatment is inert, known as an open-label placebo. A 2017 meta-analysis based on 5 studies found some evidence that open-label placebos may have positive effects in comparison to no treatment, which may open new avenues for treatments, but noted the trials were done with a small number of participants and hence should be interpreted with "caution" until further better controlled trials are conducted. An updated 2021 systematic review and meta-analysis based on 11 studies also found a significant, albeit slightly smaller overall effect of open-label placebos, while noting that "research on OLPs is still in its infancy".

If the person dispensing the placebo shows their care towards the patient, is friendly and sympathetic, or has a high expectation of a treatment's success, then the placebo would be more effectual.

In the Epigenetics and Anticipation book by Springer, Goli (2022) integrates many of the specific and non-specific factors influencing the placebo effect in the perceived healing response formula, developed based on main placebo studies.

Symptoms and conditions

A 2010 Cochrane Collaboration review suggests that placebo effects are apparent only in subjective, continuous measures, and in the treatment of pain and related conditions.

Pain

Placebos are believed to be capable of altering a person's perception of pain. "A person might reinterpret a sharp pain as uncomfortable tingling."

One way in which the magnitude of placebo analgesia can be measured is by conducting "open/hidden" studies, in which some patients receive an analgesic and are informed that they will be receiving it (open), while others are administered the same drug without their knowledge (hidden). Such studies have found that analgesics are considerably more effective when the patient knows they are receiving them.

Depression

In 2008, a controversial meta-analysis led by psychologist Irving Kirsch, analyzing data from the FDA, concluded that 82% of the response to antidepressants was accounted for by placebos. However, there are serious doubts about the used methods and the interpretation of the results, especially the use of 0.5 as the cut-off point for the effect size. A complete reanalysis and recalculation based on the same FDA data discovered that the Kirsch study had "important flaws in the calculations". The authors concluded that although a large percentage of the placebo response was due to expectancy, this was not true for the active drug. Besides confirming drug effectiveness, they found that the drug effect was not related to depression severity.

Another meta-analysis found that 79% of depressed patients receiving placebo remained well (for 12 weeks after an initial 6–8 weeks of successful therapy) compared to 93% of those receiving antidepressants. In the continuation phase however, patients on placebo relapsed significantly more often than patients on antidepressants.

Negative effects

A phenomenon opposite to the placebo effect has also been observed. When an inactive substance or treatment is administered to a recipient who has an expectation of it having a negative impact, this intervention is known as a nocebo (Latin nocebo = "I shall harm"). A nocebo effect occurs when the recipient of an inert substance reports a negative effect or a worsening of symptoms, with the outcome resulting not from the substance itself, but from negative expectations about the treatment.

Another negative consequence is that placebos can cause side-effects associated with real treatment. Failure to minimise nocebo side-effects in clinical trials and clinical practice raises a number of recently explored ethical issues.

Withdrawal symptoms can also occur after placebo treatment. This was found, for example, after the discontinuation of the Women's Health Initiative study of hormone replacement therapy for menopause. Women had been on placebo for an average of 5.7 years. Moderate or severe withdrawal symptoms were reported by 4.8% of those on placebo compared to 21.3% of those on hormone replacement.

Ethics

In research trials

Knowingly giving a person a placebo when there is an effective treatment available is a bioethically complex issue. While placebo-controlled trials might provide information about the effectiveness of a treatment, it denies some patients what could be the best available (if unproven) treatment. Informed consent is usually required for a study to be considered ethical, including the disclosure that some test subjects will receive placebo treatments.

The ethics of placebo-controlled studies have been debated in the revision process of the Declaration of Helsinki. Of particular concern has been the difference between trials comparing inert placebos with experimental treatments, versus comparing the best available treatment with an experimental treatment; and differences between trials in the sponsor's developed countries versus the trial's targeted developing countries.

Some suggest that existing medical treatments should be used instead of placebos, to avoid having some patients not receive medicine during the trial.

In medical practice

The practice of doctors prescribing placebos that are disguised as real medication is controversial. A chief concern is that it is deceptive and could harm the doctor–patient relationship in the long run. While some say that blanket consent, or the general consent to unspecified treatment given by patients beforehand, is ethical, others argue that patients should always obtain specific information about the name of the drug they are receiving, its side effects, and other treatment options. This view is shared by some on the grounds of patient autonomy. There are also concerns that legitimate doctors and pharmacists could open themselves up to charges of fraud or malpractice by using a placebo. Critics also argued that using placebos can delay the proper diagnosis and treatment of serious medical conditions.

Despite the abovementioned issues, 60% of surveyed physicians and head nurses reported using placebos in an Israeli study, with only 5% of respondents stating that placebo use should be strictly prohibited. A British Medical Journal editorial said, "that a patient gets pain relief from a placebo does not imply that the pain is not real or organic in origin ...the use of the placebo for 'diagnosis' of whether or not pain is real is misguided." A survey in the United States of more than 10,000 physicians came to the result that while 24% of physicians would prescribe a treatment that is a placebo simply because the patient wanted treatment, 58% would not, and for the remaining 18%, it would depend on the circumstances.

Referring specifically to homeopathy, the House of Commons of the United Kingdom Science and Technology Committee has stated:

In the Committee's view, homeopathy is a placebo treatment and the Government should have a policy on prescribing placebos. The Government is reluctant to address the appropriateness and ethics of prescribing placebos to patients, which usually relies on some degree of patient deception. Prescribing of placebos is not consistent with informed patient choice—which the Government claims is very important—as it means patients do not have all the information needed to make choice meaningful. A further issue is that the placebo effect is unreliable and unpredictable.

In his 2008 book Bad Science, Ben Goldacre argues that instead of deceiving patients with placebos, doctors should use the placebo effect to enhance effective medicines. Edzard Ernst has argued similarly that "As a good doctor you should be able to transmit a placebo effect through the compassion you show your patients." In an opinion piece about homeopathy, Ernst argues that it is wrong to support alternative medicine on the basis that it can make patients feel better through the placebo effect. His concerns are that it is deceitful and that the placebo effect is unreliable. Goldacre also concludes that the placebo effect does not justify alternative medicine, arguing that unscientific medicine could lead to patients not receiving prevention advice. Placebo researcher Fabrizio Benedetti also expresses concern over the potential for placebos to be used unethically, warning that there is an increase in "quackery" and that an "alternative industry that preys on the vulnerable" is developing.

Mechanisms

The mechanism for how placebos could have effects is uncertain. An open-label study in 2010 showed that it had an effect even when patients were clearly told that the placebo pill they were receiving was an inactive (i.e., "inert") substance like a sugar pill that contained no medication. These results challenge the "conventional wisdom" that placebo effects require "intentional ignorance". From a sociocognitive perspective, this intentional placebo response attributes to the “ritual effect” that induces anticipation for transition to a better state. A placebo presented as a stimulant may trigger an effect on heart rhythm and blood pressure, but when administered as a depressant, the opposite effect.

Psychology

The subjective effects of placebos may be related to expectations, yet similar effects have been noted in open-label studies.

In psychology, the two main hypotheses of the placebo effect are expectancy theory and classical conditioning.

In 1985, Irving Kirsch hypothesized that placebo effects are produced by the self-fulfilling effects of response expectancies, in which the belief that one will feel different leads a person to actually feel different. According to this theory, the belief that one has received an active treatment can produce the subjective changes thought to be produced by the real treatment. Similarly, the appearance of effect can result from classical conditioning, wherein a placebo and an actual stimulus are used simultaneously until the placebo is associated with the effect from the actual stimulus. Both conditioning and expectations play a role in placebo effect, and make different kinds of contributions. Conditioning has a longer-lasting effect, and can affect earlier stages of information processing. Those who think a treatment will work display a stronger placebo effect than those who do not, as evidenced by a study of acupuncture.

Additionally, motivation may contribute to the placebo effect. The active goals of an individual changes their somatic experience by altering the detection and interpretation of expectation-congruent symptoms, and by changing the behavioral strategies a person pursues. Motivation may link to the meaning through which people experience illness and treatment. Such meaning is derived from the culture in which they live and which informs them about the nature of illness and how it responds to treatment.

Placebo analgesia

Functional imaging upon placebo analgesia suggests links to the activation, and increased functional correlation between this activation, in the anterior cingulate, prefrontal, orbitofrontal and insular cortices, nucleus accumbens, amygdala, the brainstem's periaqueductal gray matter, and the spinal cord.

Since 1978, it has been known that placebo analgesia depends upon the release of endogenous opioids in the brain. Such analgesic placebos activation changes processing lower down in the brain by enhancing the descending inhibition through the periaqueductal gray on spinal nociceptive reflexes, while the expectations of anti-analgesic nocebos acts in the opposite way to block this.

Functional imaging upon placebo analgesia has been summarized as showing that the placebo response is "mediated by "top-down" processes dependent on frontal cortical areas that generate and maintain cognitive expectancies. Dopaminergic reward pathways may underlie these expectancies". "Diseases lacking major 'top-down' or cortically based regulation may be less prone to placebo-related improvement".

Brain and body

In conditioning, a neutral stimulus saccharin is paired in a drink with an agent that produces an unconditioned response. For example, that agent might be cyclophosphamide, which causes immunosuppression. After learning this pairing, the taste of saccharin by itself is able to cause immunosuppression, as a new conditioned response via neural top-down control. Such conditioning has been found to affect a diverse variety of not just basic physiological processes in the immune system but ones such as serum iron levels, oxidative DNA damage levels, and insulin secretion. Recent reviews have argued that the placebo effect is due to top-down control by the brain for immunity and pain. Pacheco-López and colleagues have raised the possibility of "neocortical-sympathetic-immune axis providing neuroanatomical substrates that might explain the link between placebo/conditioned and placebo/expectation responses". There has also been research aiming to understand underlying neurobiological mechanisms of action in pain relief, immunosuppression, Parkinson's disease and depression.

Dopaminergic pathways have been implicated in the placebo response in pain and depression.

Confounding factors

Placebo-controlled studies, as well as studies of the placebo effect itself, often fail to adequately identify confounding factors. False impressions of placebo effects are caused by many factors including:

  • Regression to the mean (natural recovery or fluctuation of symptoms)
  • Additional treatments
  • Response bias from subjects, including scaling bias, answers of politeness, experimental subordination, conditioned answers;
  • Reporting bias from experimenters, including misjudgment and irrelevant response variables.
  • Non-inert ingredients of the placebo medication having an unintended physical effect

History

A quack treating a patient with Perkins Patent Tractors by James Gillray, 1801. John Haygarth used this remedy to illustrate the power of the placebo effect.

The word placebo was used in a medicinal context in the late 18th century to describe a "commonplace method or medicine" and in 1811 it was defined as "any medicine adapted more to please than to benefit the patient". Although this definition contained a derogatory implication it did not necessarily imply that the remedy had no effect.

It was recognized in the 18th and 19th centuries that drugs or remedies often were perceived to work best while they were still novel:

We know that, in Paris, fashion imposes its dictates on medicine just as it does with everything else. Well, at one time, pyramidal elm bark had a great reputation; it was taken as a powder, as an extract, as an elixir, even in baths. It was good for the nerves, the chest, the stomach — what can I say? — it was a true panacea. At the peak of the fad, one of Bouvard's [sic] patients asked him if it might not be a good idea to take some: "Take it, Madame", he replied, "and hurry up while it [still] cures." [dépêchez-vous pendant qu'elle guérit]

— Gaston de Lévis quoting Michel-Philippe Bouvart in the 1780s

Placebos have featured in medical use until well into the twentieth century. In 1955 Henry K. Beecher published an influential paper entitled The Powerful Placebo which proposed the idea that placebo effects were clinically important. Subsequent re-analysis of his materials, however, found in them no evidence of any "placebo effect".

Placebo-controlled studies

The placebo effect makes it more difficult to evaluate new treatments. Clinical trials control for this effect by including a group of subjects that receives a sham treatment. The subjects in such trials are blinded as to whether they receive the treatment or a placebo. If a person is given a placebo under one name, and they respond, they will respond in the same way on a later occasion to that placebo under that name but not if under another.

Clinical trials are often double-blinded so that the researchers also do not know which test subjects are receiving the active or placebo treatment. The placebo effect in such clinical trials is weaker than in normal therapy since the subjects are not sure whether the treatment they are receiving is active.

Virtual machine

From Wikipedia, the free encyclopedia

In computing, a virtual machine (VM) is the virtualization or emulation of a computer system. Virtual machines are based on computer architectures and provide the functionality of a physical computer. Their implementations may involve specialized hardware, software, or a combination of the two. Virtual machines differ and are organized by their function, shown here:

  • System virtual machines (also called full virtualization VMs) provide a substitute for a real machine. They provide the functionality needed to execute entire operating systems. A hypervisor uses native execution to share and manage hardware, allowing for multiple environments that are isolated from one another yet exist on the same physical machine. Modern hypervisors use hardware-assisted virtualization, with virtualization-specific hardware features on the host CPUs providing assistance to hypervisors.
  • Process virtual machines are designed to execute computer programs in a platform-independent environment.

Some virtual machine emulators, such as QEMU and video game console emulators, are designed to also emulate (or "virtually imitate") different system architectures, thus allowing execution of software applications and operating systems written for another CPU or architecture. Operating-system-level virtualization allows the resources of a computer to be partitioned via the kernel. The terms are not universally interchangeable.

Definitions

System virtual machines

A "virtual machine" was originally defined by Popek and Goldberg as "an efficient, isolated duplicate of a real computer machine." Current use includes virtual machines that have no direct correspondence to any real hardware. The physical, "real-world" hardware running the VM is generally referred to as the 'host', and the virtual machine emulated on that machine is generally referred to as the 'guest'. A host can emulate several guests, each of which can emulate different operating systems and hardware platforms.

The desire to run multiple operating systems was the initial motive for virtual machines, so as to allow time-sharing among several single-tasking operating systems. In some respects, a system virtual machine can be considered a generalization of the concept of virtual memory that historically preceded it. IBM's CP/CMS, the first systems to allow full virtualization, implemented time sharing by providing each user with a single-user operating system, the Conversational Monitor System (CMS). Unlike virtual memory, a system virtual machine entitled the user to write privileged instructions in their code. This approach had certain advantages, such as adding input/output devices not allowed by the standard system.

As technology evolves virtual memory for purposes of virtualization, new systems of memory overcommitment may be applied to manage memory sharing among multiple virtual machines on one computer operating system. It may be possible to share memory pages that have identical contents among multiple virtual machines that run on the same physical machine, what may result in mapping them to the same physical page by a technique termed kernel same-page merging (KSM). This is especially useful for read-only pages, such as those holding code segments, which is the case for multiple virtual machines running the same or similar software, software libraries, web servers, middleware components, etc. The guest operating systems do not need to be compliant with the host hardware, thus making it possible to run different operating systems on the same computer (e.g., Windows, Linux, or prior versions of an operating system) to support future software.

The use of virtual machines to support separate guest operating systems is popular in regard to embedded systems. A typical use would be to run a real-time operating system simultaneously with a preferred complex operating system, such as Linux or Windows. Another use would be for novel and unproven software still in the developmental stage, so it runs inside a sandbox. Virtual machines have other advantages for operating system development and may include improved debugging access and faster reboots.

Multiple VMs running their own guest operating system are frequently engaged for server consolidation.

Process virtual machines

A process VM, sometimes called an application virtual machine, or Managed Runtime Environment (MRE), runs as a normal application inside a host OS and supports a single process. It is created when that process is started and destroyed when it exits. Its purpose is to provide a platform-independent programming environment that abstracts away details of the underlying hardware or operating system and allows a program to execute in the same way on any platform.

A process VM provides a high-level abstraction – that of a high-level programming language (compared to the low-level ISA abstraction of the system VM). Process VMs are implemented using an interpreter; performance comparable to compiled programming languages can be achieved by the use of just-in-time compilation.

This type of VM has become popular with the Java programming language, which is implemented using the Java virtual machine. Other examples include the Parrot virtual machine and the .NET Framework, which runs on a VM called the Common Language Runtime. All of them can serve as an abstraction layer for any computer language.

A special case of process VMs are systems that abstract over the communication mechanisms of a (potentially heterogeneous) computer cluster. Such a VM does not consist of a single process, but one process per physical machine in the cluster. They are designed to ease the task of programming concurrent applications by letting the programmer focus on algorithms rather than the communication mechanisms provided by the interconnect and the OS. They do not hide the fact that communication takes place, and as such do not attempt to present the cluster as a single machine.

Unlike other process VMs, these systems do not provide a specific programming language, but are embedded in an existing language; typically such a system provides bindings for several languages (e.g., C and Fortran). Examples are Parallel Virtual Machine (PVM) and Message Passing Interface (MPI).

History

Both system virtual machines and process virtual machines date to the 1960s and remain areas of active development.

System virtual machines grew out of time-sharing, as notably implemented in the Compatible Time-Sharing System (CTSS). Time-sharing allowed multiple users to use a computer concurrently: each program appeared to have full access to the machine, but only one program was executed at the time, with the system switching between programs in time slices, saving and restoring state each time. This evolved into virtual machines, notably via IBM's research systems: the M44/44X, which used partial virtualization, and the CP-40 and SIMMON, which used full virtualization, and were early examples of hypervisors. The first widely available virtual machine architecture was the CP-67/CMS (see History of CP/CMS for details). An important distinction was between using multiple virtual machines on one host system for time-sharing, as in M44/44X and CP-40, and using one virtual machine on a host system for prototyping, as in SIMMON. Emulators, with hardware emulation of earlier systems for compatibility, date back to the IBM System/360 in 1963, while the software emulation (then-called "simulation") predates it.

Process virtual machines arose originally as abstract platforms for an intermediate language used as the intermediate representation of a program by a compiler; early examples date to around 1966. An early 1966 example was the O-code machine, a virtual machine that executes O-code (object code) emitted by the front end of the BCPL compiler. This abstraction allowed the compiler to be easily ported to a new architecture by implementing a new back end that took the existing O-code and compiled it to machine code for the underlying physical machine. The Euler language used a similar design, with the intermediate language named P (portable). This was popularized around 1970 by Pascal, notably in the Pascal-P system (1973) and Pascal-S compiler (1975), in which it was termed p-code and the resulting machine as a p-code machine. This has been influential, and virtual machines in this sense have been often generally called p-code machines. In addition to being an intermediate language, Pascal p-code was also executed directly by an interpreter implementing the virtual machine, notably in UCSD Pascal (1978); this influenced later interpreters, notably the Java virtual machine (JVM). Another early example was SNOBOL4 (1967), which was written in the SNOBOL Implementation Language (SIL), an assembly language for a virtual machine, which was then targeted to physical machines by transpiling to their native assembler via a macro assembler. Macros have since fallen out of favor, however, so this approach has been less influential. Process virtual machines were a popular approach to implementing early microcomputer software, including Tiny BASIC and adventure games, from one-off implementations such as Pyramid 2000 to a general-purpose engine like Infocom's z-machine, which Graham Nelson argues is "possibly the most portable virtual machine ever created".

Significant advances occurred in the implementation of Smalltalk-80, particularly the Deutsch/Schiffmann implementation which pushed just-in-time (JIT) compilation forward as an implementation approach that uses process virtual machine. Later notable Smalltalk VMs were VisualWorks, the Squeak Virtual Machine, and Strongtalk. A related language that produced a lot of virtual machine innovation was the Self programming language, which pioneered adaptive optimization and generational garbage collection. These techniques proved commercially successful in 1999 in the HotSpot Java virtual machine. Other innovations include a register-based virtual machine, to better match the underlying hardware, rather than a stack-based virtual machine, which is a closer match for the programming language; in 1995, this was pioneered by the Dis virtual machine for the Limbo language.

Full virtualization

Logical diagram of full virtualization

In full virtualization, the virtual machine simulates enough hardware to allow an unmodified "guest" OS (one designed for the same instruction set) to be run in isolation. This approach was pioneered in 1966 with the IBM CP-40 and CP-67, predecessors of the VM family.

Examples outside the mainframe field include Parallels Workstation, Parallels Desktop for Mac, VirtualBox, Virtual Iron, Oracle VM, Virtual PC, Virtual Server, Hyper-V, VMware Fusion, VMware Workstation, VMware Server (discontinued, formerly called GSX Server), VMware ESXi, QEMU, Adeos, Mac-on-Linux, Win4BSD, Win4Lin Pro, and Egenera vBlade technology.

Hardware-assisted virtualization

In hardware-assisted virtualization, the hardware provides architectural support that facilitates building a virtual machine monitor and allows guest OSes to be run in isolation. Hardware-assisted virtualization was first introduced on the IBM System/370 in 1972, for use with VM/370, the first virtual machine operating system offered by IBM as an official product.

In 2005 and 2006, Intel and AMD provided additional hardware to support virtualization. Sun Microsystems (now Oracle Corporation) added similar features in their UltraSPARC T-Series processors in 2005. Examples of virtualization platforms adapted to such hardware include KVM, VMware Workstation, VMware Fusion, Hyper-V, Windows Virtual PC, Xen, Parallels Desktop for Mac, Oracle VM Server for SPARC, VirtualBox and Parallels Workstation.

In 2006, first-generation 32- and 64-bit x86 hardware support was found to rarely offer performance advantages over software virtualization.

Operating-system-level virtualization

In operating-system-level virtualization, a physical server is virtualized at the operating system level, enabling multiple isolated and secure virtualized servers to run on a single physical server. The "guest" operating system environments share the same running instance of the operating system as the host system. Thus, the same operating system kernel is also used to implement the "guest" environments, and applications running in a given "guest" environment view it as a stand-alone system. The pioneer implementation was FreeBSD jails; other examples include Docker, Solaris Containers, OpenVZ, Linux-VServer, LXC, AIX Workload Partitions, Parallels Virtuozzo Containers, and iCore Virtual Accounts.

Introduction to entropy

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Introduct...