Search This Blog

Tuesday, April 22, 2025

Neurolinguistics

From Wikipedia, the free encyclopedia
Surface of the human brain, with Brodmann areas numbered
An image of neural pathways in the brain taken using diffusion tensor imaging

Neurolinguistics is the study of neural mechanisms in the human brain that control the comprehension, production, and acquisition of language. As an interdisciplinary field, neurolinguistics draws methods and theories from fields such as neuroscience, linguistics, cognitive science, communication disorders and neuropsychology. Researchers are drawn to the field from a variety of backgrounds, bringing along a variety of experimental techniques as well as widely varying theoretical perspectives. Much work in neurolinguistics is informed by models in psycholinguistics and theoretical linguistics, and is focused on investigating how the brain can implement the processes that theoretical and psycholinguistics propose are necessary in producing and comprehending language. Neurolinguists study the physiological mechanisms by which the brain processes information related to language, and evaluate linguistic and psycholinguistic theories, using aphasiology, brain imaging, electrophysiology, and computer modeling.

History

Broca's area and Wernicke's area

Neurolinguistics is historically rooted in the development in the 19th century of aphasiology, the study of linguistic deficits (aphasias) occurring as the result of brain damage. Aphasiology attempts to correlate structure to function by analyzing the effect of brain injuries on language processing. One of the first people to draw a connection between a particular brain area and language processing was Paul Broca, a French surgeon who conducted autopsies on numerous individuals who had speaking deficiencies, and found that most of them had brain damage (or lesions) on the left frontal lobe, in an area now known as Broca's area. Phrenologists had made the claim in the early 19th century that different brain regions carried out different functions and that language was mostly controlled by the frontal regions of the brain, but Broca's research was possibly the first to offer empirical evidence for such a relationship, and has been described as "epoch-making" and "pivotal" to the fields of neurolinguistics and cognitive science. Later, Carl Wernicke, after whom Wernicke's area is named, proposed that different areas of the brain were specialized for different linguistic tasks, with Broca's area handling the motor production of speech, and Wernicke's area handling auditory speech comprehension. The work of Broca and Wernicke established the field of aphasiology and the idea that language can be studied through examining physical characteristics of the brain. Early work in aphasiology also benefited from the early twentieth-century work of Korbinian Brodmann, who "mapped" the surface of the brain, dividing it up into numbered areas based on each area's cytoarchitecture (cell structure) and function; these areas, known as Brodmann areas, are still widely used in neuroscience today.

The coining of the term neurolinguistics in the late 1940s and 1950s is attributed to Edith Crowell Trager, Henri Hecaen and Alexandr Luria. Luria's 1976 book "Basic Problems of Neurolinguistics" is likely the first book with "neurolinguistics" in the title. Harry Whitaker popularized neurolinguistics in the United States in the 1970s, founding the journal "Brain and Language" in 1974.

Although aphasiology is the historical core of neurolinguistics, in recent years the field has broadened considerably, thanks in part to the emergence of new brain imaging technologies (such as PET and fMRI) and time-sensitive electrophysiological techniques (EEG and MEG), which can highlight patterns of brain activation as people engage in various language tasks. Electrophysiological techniques, in particular, emerged as a viable method for the study of language in 1980 with the discovery of the N400, a brain response shown to be sensitive to semantic issues in language comprehension. The N400 was the first language-relevant event-related potential to be identified, and since its discovery EEG and MEG have become increasingly widely used for conducting language research.

Discipline

Interaction with other fields

Neurolinguistics is closely related to the field of psycholinguistics, which seeks to elucidate the cognitive mechanisms of language by employing the traditional techniques of experimental psychology. Today, psycholinguistic and neurolinguistic theories often inform one another, and there is much collaboration between the two fields.

Much work in neurolinguistics involves testing and evaluating theories put forth by psycholinguists and theoretical linguists. In general, theoretical linguists propose models to explain the structure of language and how language information is organized, psycholinguists propose models and algorithms to explain how language information is processed in the mind, and neurolinguists analyze brain activity to infer how biological structures (populations and networks of neurons) carry out those psycholinguistic processing algorithms. For example, experiments in sentence processing have used the ELAN, N400, and P600 brain responses to examine how physiological brain responses reflect the different predictions of sentence processing models put forth by psycholinguists, such as Janet Fodor and Lyn Frazier's "serial" model, and Theo Vosse and Gerard Kempen's "unification model". Neurolinguists can also make new predictions about the structure and organization of language based on insights about the physiology of the brain, by "generalizing from the knowledge of neurological structures to language structure".

Neurolinguistics research is carried out in all the major areas of linguistics; the main linguistic subfields, and how neurolinguistics addresses them, are given in the table below.

Subfield Description Research questions in neurolinguistics
Phonetics the study of speech sounds how the brain extracts speech sounds from an acoustic signal, how the brain separates speech sounds from background noise
Phonology the study of how sounds are organized in a language how the phonological system of a particular language is represented in the brain
Morphology and lexicology the study of how words are structured and stored in the mental lexicon how the brain stores and accesses words that a person knows
Syntax the study of how multiple-word utterances are constructed how the brain combines words into constituents and sentences; how structural and semantic information is used in understanding sentences
Semantics the study of how meaning is encoded in language

Topics considered

Neurolinguistics research investigates several topics, including where language information is processed, how language processing unfolds over time, how brain structures are related to language acquisition and learning, and how neurophysiology can contribute to speech and language pathology.

Localizations of language processes

Much work in neurolinguistics has, like Broca's and Wernicke's early studies, investigated the locations of specific language "modules" within the brain. Research questions include what course language information follows through the brain as it is processed, whether or not particular areas specialize in processing particular sorts of information, how different brain regions interact with one another in language processing, and how the locations of brain activation differ when a subject is producing or perceiving a language other than his or her first language.

Time course of language processes

Another area of neurolinguistics literature involves the use of electrophysiological techniques to analyze the rapid processing of language in time. The temporal ordering of specific patterns of brain activity may reflect discrete computational processes that the brain undergoes during language processing; for example, one neurolinguistic theory of sentence parsing proposes that three brain responses (the ELAN, N400, and P600) are products of three different steps in syntactic and semantic processing.

Language acquisition

Another topic is the relationship between brain structures and language acquisition. Research in first language acquisition has already established that infants from all linguistic environments go through similar and predictable stages (such as babbling), and some neurolinguistics research attempts to find correlations between stages of language development and stages of brain development, while other research investigates the physical changes (known as neuroplasticity) that the brain undergoes during second language acquisition, when adults learn a new language. Neuroplasticity is observed when both Second Language acquisition and Language Learning experience are induced, the result of this language exposure concludes that an increase of gray and white matter could be found in children, young adults and the elderly.

Language pathology

Neurolinguistic techniques are also used to study disorders and breakdowns in language, such as aphasia and dyslexia, and how they relate to physical characteristics of the brain.

Technology used

Images of the brain recorded with PET (top) and fMRI (bottom). In the PET image, the red areas are the most active. In the fMRI image, the yellowest areas are the areas that show the greatest difference in activation between two tasks (watching a moving stimulus, versus watching a black screen).

Since one of the focuses of this field is the testing of linguistic and psycholinguistic models, the technology used for experiments is highly relevant to the study of neurolinguistics. Modern brain imaging techniques have contributed greatly to a growing understanding of the anatomical organization of linguistic functions. Brain imaging methods used in neurolinguistics may be classified into hemodynamic methods, electrophysiological methods, and methods that stimulate the cortex directly.

Hemodynamic

Hemodynamic techniques take advantage of the fact that when an area of the brain works at a task, blood is sent to supply that area with oxygen (in what is known as the Blood Oxygen Level-Dependent, or BOLD, response). Such techniques include PET and fMRI. These techniques provide high spatial resolution, allowing researchers to pinpoint the location of activity within the brain; temporal resolution (or information about the timing of brain activity), on the other hand, is poor, since the BOLD response happens much more slowly than language processing. In addition to demonstrating which parts of the brain may subserve specific language tasks or computations, hemodynamic methods have also been used to demonstrate how the structure of the brain's language architecture and the distribution of language-related activation may change over time, as a function of linguistic exposure.

In addition to PET and fMRI, which show which areas of the brain are activated by certain tasks, researchers also use diffusion tensor imaging (DTI), which shows the neural pathways that connect different brain areas,[32] thus providing insight into how different areas interact. Functional near-infrared spectroscopy (fNIRS) is another hemodynamic method used in language tasks.

Electrophysiological

Brain waves recorded using EEG

Electrophysiological techniques take advantage of the fact that when a group of neurons in the brain fire together, they create an electric dipole or current. The technique of EEG measures this electric current using sensors on the scalp, while MEG measures the magnetic fields that are generated by these currents. In addition to these non-invasive methods, electrocorticography has also been used to study language processing. These techniques are able to measure brain activity from one millisecond to the next, providing excellent temporal resolution, which is important in studying processes that take place as quickly as language comprehension and production. On the other hand, the location of brain activity can be difficult to identify in EEG; consequently, this technique is used primarily to how language processes are carried out, rather than where. Research using EEG and MEG generally focuses on event-related potentials (ERPs), which are distinct brain responses (generally realized as negative or positive peaks on a graph of neural activity) elicited in response to a particular stimulus. Studies using ERP may focus on each ERP's latency (how long after the stimulus the ERP begins or peaks), amplitude (how high or low the peak is), or topography (where on the scalp the ERP response is picked up by sensors). Some important and common ERP components include the N400 (a negativity occurring at a latency of about 400 milliseconds), the mismatch negativity, the early left anterior negativity (a negativity occurring at an early latency and a front-left topography), the P600, and the lateralized readiness potential.

Experimental design

Experimental techniques

Neurolinguists employ a variety of experimental techniques in order to use brain imaging to draw conclusions about how language is represented and processed in the brain. These techniques include the subtraction paradigm, mismatch design, violation-based studies, various forms of priming, and direct stimulation of the brain.

Subtraction

Many language studies, particularly in fMRI, use the subtraction paradigm, in which brain activation in a task thought to involve some aspect of language processing is compared against activation in a baseline task thought to involve similar non-linguistic processes but not to involve the linguistic process. For example, activations while participants read words may be compared to baseline activations while participants read strings of random letters (in attempt to isolate activation related to lexical processing—the processing of real words), or activations while participants read syntactically complex sentences may be compared to baseline activations while participants read simpler sentences.

Mismatch paradigm

The mismatch negativity (MMN) is a rigorously documented ERP component frequently used in neurolinguistic experiments. It is an electrophysiological response that occurs in the brain when a subject hears a "deviant" stimulus in a set of perceptually identical "standards" (as in the sequence s s s s s s s d d s s s s s s d s s s s s d). Since the MMN is elicited only in response to a rare "oddball" stimulus in a set of other stimuli that are perceived to be the same, it has been used to test how speakers perceive sounds and organize stimuli categorically. For example, a landmark study by Colin Phillips and colleagues used the mismatch negativity as evidence that subjects, when presented with a series of speech sounds with acoustic parameters, perceived all the sounds as either /t/ or /d/ in spite of the acoustic variability, suggesting that the human brain has representations of abstract phonemes—in other words, the subjects were "hearing" not the specific acoustic features, but only the abstract phonemes. In addition, the mismatch negativity has been used to study syntactic processing and the recognition of word category.

Violation-based

An event-related potential

Many studies in neurolinguistics take advantage of anomalies or violations of syntactic or semantic rules in experimental stimuli, and analyzing the brain responses elicited when a subject encounters these violations. For example, sentences beginning with phrases such as *the garden was on the worked, which violates an English phrase structure rule, often elicit a brain response called the early left anterior negativity (ELAN). Violation techniques have been in use since at least 1980, when Kutas and Hillyard first reported ERP evidence that semantic violations elicited an N400 effect. Using similar methods, in 1992, Lee Osterhout first reported the P600 response to syntactic anomalies. Violation designs have also been used for hemodynamic studies (fMRI and PET): Embick and colleagues, for example, used grammatical and spelling violations to investigate the location of syntactic processing in the brain using fMRI. Another common use of violation designs is to combine two kinds of violations in the same sentence and thus make predictions about how different language processes interact with one another; this type of crossing-violation study has been used extensively to investigate how syntactic and semantic processes interact while people read or hear sentences.

Priming

In psycholinguistics and neurolinguistics, priming refers to the phenomenon whereby a subject can recognize a word more quickly if he or she has recently been presented with a word that is similar in meaning or morphological makeup (i.e., composed of similar parts). If a subject is presented with a "prime" word such as doctor and then a "target" word such as nurse, if the subject has a faster-than-usual response time to nurse then the experimenter may assume that word nurse in the brain had already been accessed when the word doctor was accessed. Priming is used to investigate a wide variety of questions about how words are stored and retrieved in the brain and how structurally complex sentences are processed.

Stimulation

Transcranial magnetic stimulation (TMS), a new noninvasive technique for studying brain activity, uses powerful magnetic fields that are applied to the brain from outside the head. It is a method of exciting or interrupting brain activity in a specific and controlled location, and thus is able to imitate aphasic symptoms while giving the researcher more control over exactly which parts of the brain will be examined. As such, it is a less invasive alternative to direct cortical stimulation, which can be used for similar types of research but requires that the subject's scalp be removed, and is thus only used on individuals who are already undergoing a major brain operation (such as individuals undergoing surgery for epilepsy). The logic behind TMS and direct cortical stimulation is similar to the logic behind aphasiology: if a particular language function is impaired when a specific region of the brain is knocked out, then that region must be somehow implicated in that language function. Few neurolinguistic studies to date have used TMS; direct cortical stimulation and cortical recording (recording brain activity using electrodes placed directly on the brain) have been used with macaque monkeys to make predictions about the behavior of human brains.

Subject tasks

In many neurolinguistics experiments, subjects do not simply sit and listen to or watch stimuli, but also are instructed to perform some sort of task in response to the stimuli. Subjects perform these tasks while recordings (electrophysiological or hemodynamic) are being taken, usually in order to ensure that they are paying attention to the stimuli. At least one study has suggested that the task the subject does has an effect on the brain responses and the results of the experiment.

Lexical decision

The lexical decision task involves subjects seeing or hearing an isolated word and answering whether or not it is a real word. It is frequently used in priming studies, since subjects are known to make a lexical decision more quickly if a word has been primed by a related word (as in "doctor" priming "nurse").

Grammaticality judgment, acceptability judgment

Many studies, especially violation-based studies, have subjects make a decision about the "acceptability" (usually grammatical acceptability or semantic acceptability) of stimuli. Such a task is often used to "ensure that subjects [are] reading the sentences attentively and that they [distinguish] acceptable from unacceptable sentences in the way the [experimenter] expect[s] them to do."

Experimental evidence has shown that the instructions given to subjects in an acceptability judgment task can influence the subjects' brain responses to stimuli. One experiment showed that when subjects were instructed to judge the "acceptability" of sentences they did not show an N400 brain response (a response commonly associated with semantic processing), but that they did show that response when instructed to ignore grammatical acceptability and only judge whether or not the sentences "made sense".

Probe verification

Some studies use a "probe verification" task rather than an overt acceptability judgment; in this paradigm, each experimental sentence is followed by a "probe word", and subjects must answer whether or not the probe word had appeared in the sentence. This task, like the acceptability judgment task, ensures that subjects are reading or listening attentively, but may avoid some of the additional processing demands of acceptability judgments, and may be used no matter what type of violation is being presented in the study.

Truth-value judgment

Subjects may be instructed not to judge whether or not the sentence is grammatically acceptable or logical, but whether the proposition expressed by the sentence is true or false. This task is commonly used in psycholinguistic studies of child language.

Active distraction and double-task

Some experiments give subjects a "distractor" task to ensure that subjects are not consciously paying attention to the experimental stimuli; this may be done to test whether a certain computation in the brain is carried out automatically, regardless of whether the subject devotes attentional resources to it. For example, one study had subjects listen to non-linguistic tones (long beeps and buzzes) in one ear and speech in the other ear, and instructed subjects to press a button when they perceived a change in the tone; this supposedly caused subjects not to pay explicit attention to grammatical violations in the speech stimuli. The subjects showed a mismatch response (MMN) anyway, suggesting that the processing of the grammatical errors was happening automatically, regardless of attention—or at least that subjects were unable to consciously separate their attention from the speech stimuli.

Another related form of experiment is the double-task experiment, in which a subject must perform an extra task (such as sequential finger-tapping or articulating nonsense syllables) while responding to linguistic stimuli; this kind of experiment has been used to investigate the use of working memory in language processing.

Speech–language pathology

From Wikipedia, the free encyclopedia
 
Speech–language pathology
Broca's area (speech production) and Wernicke's area (language comprehension)

Speech–language pathology, also known as speech and language pathology or logopedics, is a healthcare and academic discipline concerning the evaluation, treatment, and prevention of communication disorders, including expressive and mixed receptive-expressive language disorders, voice disorders, speech sound disorders, speech disfluency, pragmatic language impairments, and social communication difficulties, as well as swallowing disorders across the lifespan. It is an allied health profession regulated by professional bodies including the American Speech-Language-Hearing Association (ASHA) and Speech Pathology Australia. The field of speech-language pathology is practiced by a clinician known as a speech–language pathologist (SLP) or a speech and language therapist (SLT). SLPs also play an important role in the screening, diagnosis, and treatment of autism spectrum disorder (ASD), often in collaboration with pediatricians and psychologists.

History

The development of speech-language pathology into a profession took different paths in the various regions of the world. Three identifiable trends influenced the evolution of speech-language pathology in the United States during the late 19th century to early 20th century: the elocution movement, scientific revolution, and the rise of professionalism. Groups of "speech correctionists" formed in the early 1900s. The American Academy of Speech Correction was founded in 1925, which became ASHA in 1978.

Profession

Speech–language pathologists (SLPs) provide a wide range of services, mainly on an individual basis, but also as support for families, support groups, and providing information for the general public. SLPs work to assess levels of communication needs, make diagnoses based on the assessments, and then treat the diagnoses or address the needs. Speech/language services begin with initial screening for communication or swallowing disorders and continue with assessment and diagnosis, consultation for the provision of advice regarding management, intervention, and treatment, and providing counseling and other followup services for these disorders. Services are provided in the following areas:

  • Developmental language and early feeding neurodevelopment and prevention;
  • Cognitive aspects of communication (e.g., attention, memory, problem-solving, executive functions);
  • Speech (phonation, articulation, fluency, resonance, and voice including aeromechanical components of respiration);
  • Language (phonology, morphology, syntax, semantics, and pragmatic/social aspects of communication) including comprehension and expression in oral, written, graphic, and manual modalities; language processing; preliteracy and language-based literacy skills, phonological awareness;
  • Augmentative and alternative communication (AAC) for individuals with severe language and communication impairments;
  • Swallowing or other upper aerodigestive functions such as infant feeding and aeromechanical events (evaluation of esophageal function is for the purpose of referral to medical professionals);
  • Voice (hoarseness, dysphonia), poor vocal volume (hypophonia), abnormal (e.g., rough, breathy, strained) vocal quality. Research demonstrates voice therapy to be especially helpful with certain patient populations; individuals with Parkinson's Disease often develop voice issues as a result of their disease.
  • Sensory awareness related to communication, swallowing, or other upper aerodigestive functions.

Speech, language, and swallowing disorders result from a variety of causes, such as a stroke, brain injury, hearing loss, developmental delay, a cleft palate, cerebral palsy, or emotional issues.

A common misconception is that speech–language pathology is restricted to the treatment of articulation disorders (e.g., helping English-speaking individuals enunciate the traditionally difficult r) or the treatment of individuals who stutter but, in fact, speech–language pathology is concerned with a broad scope of speech, language, literacy, swallowing, and voice issues involved in communication, some of which include:

  • Word-finding and other semantic issues, either as a result of a specific language impairment (SLI) such as a language delay or as a secondary characteristic of a more general issue such as dementia.
  • Social communication difficulties involving how people communicate or interact with others (pragmatics).
  • Language impairments, including difficulties creating sentences that are grammatical (syntax) and modifying word meaning (morphology).
  • Literacy impairments (reading and writing) related to the letter-to-sound relationship (phonics), the word-to-meaning relationship (semantics), and understanding the ideas presented in a text (reading comprehension).
  • Voice difficulties, such as a raspy voice, a voice that is too soft, or other voice difficulties that negatively impact a person's social or professional performance.
  • Cognitive impairments (e.g. attention, memory, executive function) to the extent that they interfere with communication.
  • Parent, caregiver, and other communication partner coaching.

Primary pediatric speech and language disorders include: receptive and expressive language disorders, speech sound disorders, childhood apraxia of speech (CAS), stuttering, and language-based learning disabilities. Speech-language pathologists (SLPs) work with people of all ages.

Swallowing disorders include difficulties in any phase of the swallowing process (i.e., oral, pharyngeal, esophageal), as well as functional dysphagia and feeding disorders. Swallowing disorders can occur at any age and can stem from multiple causes.

Multi-discipline collaboration

SLPs collaborate with other health care professionals, often working as part of a multidisciplinary team. They can provide information and referrals to audiologists, physicians, dentists, nurses, nurse practitioners, occupational therapists, rehabilitation psychologists, dietitians, educators, behavior consultants (applied behavior analysis), and parents as dictated by the individual client's needs. For example, the treatment for patients with cleft lip and palate often requires multidisciplinary collaboration. Speech–language pathologists can be very beneficial in helping resolve speech problems associated with cleft lip and palate. Research has indicated that children who receive early language intervention are less likely to develop compensatory error patterns later in life, although speech therapy outcomes are usually better when surgical treatment is performed earlier. Another area of collaboration relates to auditory processing disorders, where SLPs can collaborate in assessments and provide intervention where there is evidence of speech, language, and/or other cognitive-communication disorders.

Working environments

SLPs work in a variety of clinical and educational settings. SLPs work in public and private hospitals, private practices, skilled nursing facilities (SNFs), long-term acute care (LTAC) facilities, hospice, and home healthcare. SLPs may also work as part of the support structure in the education system, working in both public and private schools, colleges, and universities. Some SLPs also work in community health, providing services at prisons and young offenders' institutions or providing expert testimony in applicable court cases.

Some SLPs' working environments include one-on-one time with the client.

Following ASHA's 2005 approval of the delivery of speech/language services via video conference or telepractice, SLPs in the United States have begun to use this service model.

Children with speech, language, and communication needs (SLCN) are particularly at risk of not being heard because of communication challenges. Speech-language pathologists (SLPs) can explain the significance of supporting communication as a tool for the child to shape and influence choices available to them in their lives, even though it is advised that children with SLCN can and should be actively involved as equal partners in decision-making about their communication needs. Building these skills is especially crucial for SLPs working in settings related to traditional education.

Research

SLPs conduct research related to communication sciences and disorders, swallowing disorders, or other upper aerodigestive functions.

Experimental, empirical, and scientific methodologies that build on hypothesis testing and logical, deductive reasoning have dominated research in speech-language pathology. Other types of research in the field are complemented by qualitative research.

Education and training

United States

In the United States, speech–language pathologists must hold a master's degree from an ASHA-accredited program. Following graduation and passing a nation-wide board exam, SLPs typically begin their Clinical Fellowship Year, during which they are granted a provisional license and receive guidance from their supervisor. At the end of this process, SLPs may choose to apply for ASHA's Certificate of Clinical Competence and apply for full state licensure. SLPs may additionally choose to earn advanced degrees such as a clinical doctorate in speech–language pathology, PhD, or EdD.

Methods of assessment

Many approaches exist to assess language, communication, speech and swallowing. Two main aspects of assessment can be to determine the extent of breakdown (impairment-level), or how communication can be supported (functional level). When evaluating impairment-based level of breakdown, therapists are trained to use a cognitive neuropsychological approach to assessment, to precisely determine what aspect of communication is impaired. Some therapists use assessments that are based on historic anatomical models of language, that have since been shown to be unreliable. These tools are often preferred by therapists working within a medical model, where medics request a 'type' of impairment, and a 'severity' rating. The broad tools available allow clinicians to precisely select the aspect of communication that they wish to assess.

Because school-based speech therapy is run under state guidelines and funds, the process of assessment and qualification is more strict. To qualify for in-school speech therapy, students must meet the state's criteria on language testing and speech standardization. Due to such requirements, some students may not be assessed in an efficient time frame or their needs may be undermined by criteria. For a private clinic, students are more likely to qualify for therapy because it is a paid service with more availability.

Clients and patients

Speech–language pathologists work with clients and patients who may present with a wide range of issues.

Infants and children

United States

In the US, some children are eligible to receive speech therapy services, including assessment and lessons through the public school system. If not, private therapy is readily available through personal lessons with a qualified speech–language pathologist or the growing field of telepractice. Teleconferencing tools such as Skype are being used more commonly as a means to access remote locations in private therapy practice, such as in the geographically diverse south island of New Zealand. More at-home or combination treatments have become readily available to address specific types of articulation disorders. The use of mobile applications in speech therapy is also growing as an avenue to bring treatment into the home.

United Kingdom

In the UK, children are entitled to an assessment by local NHS speech- and language-therapy teams, usually after referral by health visitors or education settings, but parents are also entitled to request an assessment directly. If treatment is appropriate, an educational plan will be drawn up. Speech therapists often play a role in multi-disciplinary teams when a child has speech delay or disorder as part of a wider health condition. The Children's Commissioner for England reported in June 2019 that there was a postcode lottery; £291.65 a year per head was spent on services in some areas, while the budget in some areas was £30.94 or less. In 2018, 193,971 children in English primary schools were on the special educational needs register needing speech-therapy services. Speech and language therapists work in acute settings and are often integrated into the MDT in multiple areas of speciality for neonatal, children and adult services. Areas include but not limited to; neonatal care, respiratory, ENT, gastrointestinal, stroke, Neurology,ICU, oncology and geriatric care

Children and adults

Adults

  • Adults with aphasia
  • Adults with mild, moderate, or severe eating, feeding and swallowing difficulties, including dysphagia
  • Adults recovering from significant tumors in the bronchus, lung, oropharynx, breast, and brain
  • Adults with mild, moderate, or severe language difficulties as a result of:
  • Adults seeking transgender-specific voice training, including voice feminization and voice masculinization
  • Speech repetition

    From Wikipedia, the free encyclopedia
    https://en.wikipedia.org/wiki/Speech_repetition

    Children copy with their own mouths the words spoken by the mouths of those around them. That enables them to learn the pronunciation of words not already in their vocabulary.

    Speech repetition occurs when individuals speak the sounds that they have heard another person pronounce or say. In other words, it is the saying by one individual of the spoken vocalizations made by another individual. Speech repetition requires the person repeating the utterance to have the ability to map the sounds that they hear from the other person's oral pronunciation to similar places and manners of articulation in their own vocal tract.

    Such speech imitation often occurs independently of speech comprehension such as in speech shadowing in which people automatically say words heard in earphones, and the pathological condition of echolalia in which people reflexively repeat overheard words. That links to speech repetition of words being separate in the brain to speech perception. Speech repetition occurs in the dorsal speech processing stream, and speech perception occurs in the ventral speech processing stream. Repetitions are often incorporated unawares by that route into spontaneous novel sentences immediately or after delay after the storage in phonological memory.

    In humans, the ability to map heard input vocalizations into motor output is highly developed because of the copying ability playing a critical role in children's rapid expansion of their spoken vocabulary. In older children and adults, that ability remains important, as it enables the continued learning of novel words and names and additional languages. That repetition is also necessary for the propagation of language from generation to generation. It has also been suggested that the phonetic units out of which speech is made have been selected upon by the process of vocabulary expansion and vocabulary transmissions because children prefer to copy words in terms of more easily imitated elementary units.

    Properties

    Automatic

    Vocal imitation happens quickly: words can be repeated within 250-300 milliseconds both in normals (during speech shadowing) and during echolalia. The imitation of speech syllables possibly happens even more quickly: people begin imitating the second phone in the syllable [ao] earlier than they can identify it (out of the set [ao], [aæ] and [ai]). Indeed, "...simply executing a shift to [o] upon detection of a second vowel in [ao] takes very little longer than does interpreting and executing it as a shadowed response". Neurobiologically this suggests "...that the early phases of speech analysis yield information which is directly convertible to information required for speech production". Vocal repetition can be done immediately as in speech shadowing and echolalia. It can also be done after the pattern of pronunciation is stored in short-term memory or long-term memory. It automatically uses both auditory and where available visual information about how a word is produced.

    The automatic nature of speech repetition was noted by Carl Wernicke, the late nineteenth century neurologist, who observed that "The primary speech movements, enacted before the development of consciousness, are reflexive and mimicking in nature..".

    Independent of speech

    Vocal imitation arises in development before speech comprehension and also babbling: 18-week-old infants spontaneously copy vocal expressions provided the accompanying voice matches. Imitation of vowels has been found as young as 12 weeks. It is independent of native language, language skills, word comprehension and a speaker's intelligence. Many autistic and some mentally disabled people engage in the echolalia of overheard words (often their only vocal interaction with others) without understanding what they echo. Reflex uncontrolled echoing of others words and sentences occurs in roughly half of those with Gilles de la Tourette syndrome. The ability to repeat words without comprehension also occurs in mixed transcortical aphasia where it links to the sparing of the short-term phonological store.

    The ability to repeat and imitate speech sounds occurs separately to that of normal speech. Speech shadowing provides evidence of a 'privileged' input/output speech loop that is distinct to the other components of the speech system. Neurocognitive research likewise finds evidence of a direct (nonlexical) link between phonological analysis input and motor programming output.

    Effector independent

    Speech sounds can be imitatively mapped into vocal articulations in spite of vocal tract anatomy differences in size and shape due to gender, age and individual anatomical variability. Such variability is extensive making input output mapping of speech more complex than a simple mapping of vocal track movements. The shape of the mouth varies widely: dentists recognize three basic shapes of palate: trapezoid, ovoid, and triangular; six types of malocclusion between the two jaws; nine ways teeth relate to the dental arch and a wide range of maxillary and mandible deformities. Vocal sound can also vary due to dental injury and dental caries. Other factors that do not impede the sensory motor mapping needed for vocal imitation are gross oral deformations such as hare-lips, cleft palates or amputations of the tongue tip, pipe smoking, pencil biting and teeth clinching (such as in ventriloquism). Paranasal sinuses vary between individuals 20-fold in volume, and differ in the presence and the degree of their asymmetry.

    Diverse linguistic vocalizations

    Vocal imitation occurs potentially in regard to a diverse range of phonetic units and types of vocalization. The world's languages use consonantal phones that differ in thirteen imitable vocal tract place of articulations (from the lips to the glottis). These phones can potentially be pronounced with eleven types of imitable manner of articulations (nasal stops to lateral clicks). Speech can be copied in regard to its social accent, intonation, pitch and individuality (as with entertainment impersonators). Speech can be articulated in ways which diverge considerably in speed, timbre, pitch, loudness and emotion. Speech further exists in different forms such as song, verse, scream and whisper. Intelligible speech can be produced with pragmatic intonation and in regional dialects and foreign accents. These aspects are readily copied: people asked to repeat speech-like words imitate not only phones but also accurately other pronunciation aspects such as fundamental frequency, schwa-syllable expression, voice spectra and lip kinematics, voice onset times, and regional accent.

    Language acquisition

    Vocabulary expansion

    In 1874 Carl Wernicke proposed that the ability to imitate speech plays a key role in language acquisition. This is now a widely researched issue in child development. A study of 17,000 one and two word utterances made by six children between 18 months to 25 months found that, depending upon the particular infant, between 5% and 45% of their words might be mimicked. These figures are minima since they concern only immediately heard words. Many words that may seem spontaneous are in fact delayed imitations heard days or weeks previously. At 13 months children who imitate new words (but not ones they already know) show a greater increase in noun vocabulary at four months and non noun vocabulary at eight months. A major predictor of vocabulary increase in both 20 months, 24 months, and older children between 4 and 8 years is their skill in repeating nonword phone sequences (a measure of mimicry and storage). This is also the case with children with Down's syndrome . The effect is larger than even age: in a study of 222 two-year-old children that had spoken vocabularies ranging between 3–601 words the ability to repeat nonwords accounted for 24% of the variance compared to 15% for age and 6% for gender (girls better than boys).

    Nonvocabulary expansion uses of imitation

    Imitation provides the basis for making longer sentences than children could otherwise spontaneously make on their own.[35] Children analyze the linguistic rules, pronunciation patterns, and conversational pragmatics of speech by making monologues (often in crib talk) in which they repeat and manipulate in word play phrases and sentences previously overheard.[36] Many proto-conversations involve children (and parents) repeating what each other has said in order to sustain social and linguistic interaction. It has been suggested that the conversion of speech sound into motor responses helps aid the vocal "alignment of interactions" by "coordinating the rhythm and melody of their speech".[37] Repetition enables immigrant monolingual children to learn a second language by allowing them to take part in 'conversations'.[38] Imitation related processes aids the storage of overheard words by putting them into speech based short- and long-term memory.[39]

    Language learning

    The ability to repeat nonwords predicts the ability to learn second-language vocabulary.[40] A study found that adult polyglots performed better in short-term memory tasks such as repeating nonword vocalizations compared to nonpolyglots though both are otherwise similar in general intelligence, visuo-spatial short-term memory and paired-associate learning ability.[41] Language delay in contrast links to impairments in vocal imitation.[42]

    Speech repetition and phones

    Electrical brain stimulation research upon the human brain finds that 81% of areas that show disruption of phone identification are also those in which the imitating of oral movements is disrupted and vice versa;[43] Brain injuries in the speech areas show a 0.9 correlation between those causing impairments to the copying of oral movements and those impairing phone production and perception.[44]

    Mechanism

    Spoken words are sequences of motor movements organized around vocal tract gesture motor targets.[45] Vocalization due to this is copied in terms of the motor goals that organize it rather than the exact movements with which it is produced. These vocal motor goals are auditory. According to James Abbs[46] 'For speech motor actions, the individual articulatory movements would not appear to be controlled with regard to three- dimensional spatial targets, but rather with regard to their contribution to complex vocal tract goals such as resonance properties (e.g., shape, degree of constriction) and or aerodynamically significant variables'. Speech sounds also have duplicable higher-order characteristics such as rates and shape of modulations and rates and shape of frequency shifts.[47] Such complex auditory goals (which often link—though not always—to internal vocal gestures) are detectable from the speech sound which they create.

    Neurology

    Dorsal speech processing stream function

    Two cortical processing streams exist: a ventral one which maps sound onto meaning, and a dorsal one, that maps sound onto motor representations. The dorsal stream projects from the posterior Sylvian fissure at the temporoparietal junction, onto frontal motor areas, and is not normally involved in speech perception.[48] Carl Wernicke identified a pathway between the left posterior superior temporal sulcus (a cerebral cortex region sometimes called the Wernicke's area) as a centre of the sound "images" of speech and its syllables that connected through the arcuate fasciculus with part of the inferior frontal gyrus (sometimes called the Broca's area) responsible for their articulation.[6] This pathway is now broadly identified as the dorsal speech pathway, one of the two pathways (together with the ventral pathway) that process speech.[49] The posterior superior temporal gyrus is specialized for the transient representation of the phonetic sequences used for vocal repetition.[50] Part of the auditory cortex also can represent aspects of speech such as its consonantal features.[51]

    Mirror neurons

    Mirror neurons have been identified that both process the perception and production of motor movements. This is done not in terms of their exact motor performance but an inference of the intended motor goals with which it is organized.[52] Mirror neurons that both perceive and produce the motor movements of speech have been identified.[53] Speech is mirrored constantly into its articulations since speakers cannot know in advance that a word is unfamiliar and in need of repetition—which is only learnt after the opportunity to map it into articulations has gone. Thus, speakers if they are to incorporate unfamiliar words into their spoken vocabulary must by default map all spoken input.[54]

    Sign language

    Words in sign languages, unlike those in spoken ones, are made not of sequential units but of spatial configurations of subword unit arrangements, the spatial analogue of the sonic-chronological morphemes of spoken language.[55] These words, like spoken ones, are learnt by imitation. Indeed, rare cases of compulsive sign-language echolalia exist in otherwise language-deficient deaf autistic individuals born into signing families.[55] At least some cortical areas neurobiologically active during both sign and vocal speech, such as the auditory cortex, are associated with the act of imitation.[56]

    Nonhuman animals

    Birds

    Birds learn their songs from those made by other birds. In several examples, birds show highly developed repetition abilities: the Sri Lankan Greater racket-tailed drongo (Dicrurus paradiseus) copies the calls of predators and the alarm signals of other birds[57] Albert's lyrebird (Menura alberti) can accurately imitate the satin bowerbird (Ptilonorhynchus violaceus),[58]

    Research upon avian vocal motor neurons finds that they perceive their song as a series of articulatory gestures as in humans.[59] Birds that can imitate humans, such as the Indian hill myna (Gracula religiosa), imitate human speech by mimicking the various speech formants, created by changing the shape of the human vocal tract, with different vibration frequencies of its internal tympaniform membrane.[60] Indian hill mynahs also imitate such phonetic characteristics as voicing, fundamental frequencies, formant transitions, nasalization, and timing, through their vocal movements are made in a different way from those of the human vocal apparatus.[60]

    Nonhuman mammals

    Apes

    Apes taught language show an ability to imitate language signs with chimpanzees such as Washoe who was able to learn with his arms a vocabulary of 250 American Sign Language gestures. However, such human trained apes show no ability to imitate human speech vocalizations.

    Clinical trial

    From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Clinical_...