Search This Blog

Saturday, April 26, 2025

Carbon footprint

 

The carbon footprint can be used to compare the climate change impact of many things. The example given here is the carbon footprint (greenhouse gas emissions) of food across the supply chain caused by land use change, farm, animal feed, processing, transport, retail, packing, losses.

A carbon footprint (or greenhouse gas footprint) is a calculated value or index that makes it possible to compare the total amount of greenhouse gases that an activity, product, company or country adds to the atmosphere. Carbon footprints are usually reported in tonnes of emissions (CO2-equivalent) per unit of comparison. Such units can be for example tonnes CO2-eq per year, per kilogram of protein for consumption, per kilometer travelled, per piece of clothing and so forth. A product's carbon footprint includes the emissions for the entire life cycle. These run from the production along the supply chain to its final consumption and disposal.

Similarly, an organization's carbon footprint includes the direct as well as the indirect emissions that it causes. The Greenhouse Gas Protocol (for carbon accounting of organizations) calls these Scope 1, 2 and 3 emissions. There are several methodologies and online tools to calculate the carbon footprint. They depend on whether the focus is on a country, organization, product or individual person. For example, the carbon footprint of a product could help consumers decide which product to buy if they want to be climate aware. For climate change mitigation activities, the carbon footprint can help distinguish those economic activities with a high footprint from those with a low footprint. So the carbon footprint concept allows everyone to make comparisons between the climate impacts of individuals, products, companies and countries. It also helps people devise strategies and priorities for reducing the carbon footprint.

The carbon dioxide equivalent (CO2eq) emissions per unit of comparison is a suitable way to express a carbon footprint. This sums up all the greenhouse gas emissions. It includes all greenhouse gases, not just carbon dioxide. And it looks at emissions from economic activities, events, organizations and services. In some definitions, only the carbon dioxide emissions are taken into account. These do not include other greenhouse gases, such as methane and nitrous oxide.

Various methods to calculate the carbon footprint exist, and these may differ somewhat for different entities. For organizations it is common practice to use the Greenhouse Gas Protocol. It includes three carbon emission scopes. Scope 1 refers to direct carbon emissions. Scope 2 and 3 refer to indirect carbon emissions. Scope 3 emissions are those indirect emissions that result from the activities of an organization but come from sources which they do not own or control.

For countries it is common to use consumption-based emissions accounting to calculate their carbon footprint for a given year. Consumption-based accounting using input-output analysis backed by super-computing makes it possible to analyse global supply chains. Countries also prepare national GHG inventories for the UNFCCC. The GHG emissions listed in those national inventories are only from activities in the country itself. This approach is called territorial-based accounting or production-based accounting. It does not take into account production of goods and services imported on behalf of residents. Consumption-based accounting does reflect emissions from goods and services imported from other countries.

Consumption-based accounting is therefore more comprehensive. This comprehensive carbon footprint reporting including Scope 3 emissions deals with gaps in current systems. Countries' GHG inventories for the UNFCCC do not include international transport. Comprehensive carbon footprint reporting looks at the final demand for emissions, to where the consumption of the goods and services takes place.

Definition

Comparison of the carbon footprint of protein-rich foods

A formal definition of carbon footprint is as follows: "A measure of the total amount of carbon dioxide (CO2) and methane (CH4) emissions of a defined population, system or activity, considering all relevant sources, sinks and storage within the spatial and temporal boundary of the population, system or activity of interest. Calculated as carbon dioxide equivalent using the relevant 100-year global warming potential (GWP100)."

Scientists report carbon footprints in terms of equivalents of tonnes of CO2 emissions (CO2-equivalent). They may report them per year, per person, per kilogram of protein, per kilometer travelled, and so on.

In the definition of carbon footprint, some scientists include only CO2. But more commonly they include several of the notable greenhouse gases. They can compare various greenhouse gases by using carbon dioxide equivalents over a relevant time scale, like 100 years. Some organizations use the term greenhouse gas footprint or climate footprint to emphasize that all greenhouse gases are included, not just carbon dioxide.

The Greenhouse Gas Protocol includes all of the most important greenhouse gases. "The standard covers the accounting and reporting of seven greenhouse gases covered by the Kyoto Protocol – carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PCFs), sulfur hexafluoride (SF6) and nitrogen trifluoride (NF3)."

In comparison, the IPCC definition of carbon footprint in 2022 covers only carbon dioxide. It defines the carbon footprint as the "measure of the exclusive total amount of emissions of carbon dioxide (CO2) that is directly and indirectly caused by an activity or is accumulated over the lifecycle stages of a product." The IPCC report's authors adopted the same definition that had been proposed in 2007 in the UK. That publication included only carbon dioxide in the definition of carbon footprint. It justified this with the argument that other greenhouse gases were more difficult to quantify. This is because of their differing global warming potentials. They also stated that an inclusion of all greenhouse gases would make the carbon footprint indicator less practical. But there are disadvantages to this approach. One disadvantage of not including methane is that some products or sectors that have a high methane footprint such as livestock appear less harmful for the climate than they actually are.

Types of greenhouse gas emissions

Overview of Greenhouse Gas Protocol scopes and emissions across the value chain, showing upstream activities, reporting company and downstream activities.

The greenhouse gas protocol is a set of standards for tracking greenhouse gas emissions. The standards divide emissions into three scopes (Scope 1, 2 and 3) within the value chain. Greenhouse gas emissions caused directly by the organization such as by burning fossil fuels are referred to as Scope 1. Emissions caused indirectly by an organization, such as by purchasing secondary energy sources like electricity, heat, cooling or steam are called Scope 2. Lastly, indirect emissions associated with upstream or downstream processes are called Scope 3.

Direct carbon emissions (Scope 1)

Direct or Scope 1 carbon emissions come from sources on the site that is producing a product or delivering a service. An example for industry would be the emissions from burning a fuel on site. On the individual level, emissions from personal vehicles or gas-burning stoves are Scope 1.

Indirect carbon emissions (Scope 2)

Indirect carbon emissions are emissions from sources upstream or downstream from the process being studied. They are also known as Scope 2 or Scope 3 emissions.

Scope 2 emissions are the indirect emissions related to purchasing electricity, heat, or steam used on site. Examples of upstream carbon emissions include transportation of materials and fuels, any energy used outside of the production facility, and waste produced outside the production facility. Examples of downstream carbon emissions include any end-of-life process or treatments, product and waste transportation, and emissions associated with selling the product. The GHG Protocol says it is important to calculate upstream and downstream emissions. There could be some double counting. This is because upstream emissions of one person's consumption patterns could be someone else's downstream emissions

Other indirect carbon emissions (Scope 3)

Scope 3 emissions are all other indirect emissions derived from the activities of an organization. But they are from sources they do not own or control. The GHG Protocol's Corporate Value Chain (Scope 3) Accounting and Reporting Standard allows companies to assess their entire value chain emissions impact and identify where to focus reduction activities.

Scope 3 emission sources include emissions from suppliers and product users. These are also known as the value chain. Transportation of good, and other indirect emissions are also part of this scope. In 2022 about 30% of US companies reported Scope 3 emissions. The International Sustainability Standards Board is developing a recommendation to include Scope 3 emissions in all GHG reporting.

Purpose and strengths

Are consumption-based CO₂ per capita emissions above or below the global average

The current rise in global average temperature is more rapid than previous changes. It is primarily caused by humans burning fossil fuels. The increase in greenhouse gases in the atmosphere is also due to deforestation and agricultural and industrial practices. These include cement production. The two most notable greenhouse gases are carbon dioxide and methane. Greenhouse gas emissions, and hence humanity's carbon footprint, have been increasing during the 21st century. The Paris Agreement aims to reduce greenhouse gas emissions enough to limit the rise in global temperature to no more than 1.5°C above pre-industrial levels.

The carbon footprint concept makes comparisons between the climate impacts of individuals, products, companies and countries. A carbon footprint label on products could enable consumers to choose products with a lower carbon footprint if they want to help limit climate change. For meat products, as an example, such a label could make it clear that beef has a higher carbon footprint than chicken.

Understanding the size of an organization's carbon footprint makes it possible to devise a strategy to reduce it. For most businesses the vast majority of emissions do not come from activities on site, known as Scope 1, or from energy supplied to the organization, known as Scope 2, but from Scope 3 emissions, the extended upstream and downstream supply chain. Therefore, ignoring Scope 3 emissions makes it impossible to detect all emissions of importance, which limits options for mitigation. Large companies in sectors such as clothing or automobiles would need to examine more than 100,000 supply chain pathways to fully report their carbon footprints.

The importance of displacement of carbon emissions has been known for some years. Scientists also call this carbon leakage. The idea of a carbon footprint addresses concerns of carbon leakage which the Paris Agreement does not cover. Carbon leakage occurs when importing countries outsource production to exporting countries. The outsourcing countries are often rich countries while the exporters are often low-income countries. Countries can make it appear that their GHG emissions are falling by moving "dirty" industries abroad, even if their emissions could be increasing when looked at from a consumption perspective.

Carbon leakage and related international trade have a range of environmental impacts. These include increased air pollution, water scarcity, biodiversity loss, raw material usage, and energy depletion.

Scholars have argued in favour of using both consumption-based and production-based accounting. This helps establish shared producer and consumer responsibility. Currently countries report on their annual GHG inventory to the UNFCCC based on their territorial emissions. This is known as the territorial-based or production-based approach. Including consumption-based calculations in the UNFCCC reporting requirements would help close loopholes by addressing the challenge of carbon leakage.

The Paris Agreement currently does not require countries to include in their national totals GHG emissions associated with international transport. These emissions are reported separately. They are not subject to the limitation and reduction commitments of Annex 1 Parties under the Climate Convention and Kyoto Protocol. The carbon footprint methodology includes GHG emissions associated with international transport, thereby assigning emissions caused by international trade to the importing country.

Underlying concepts for calculations

The calculation of the carbon footprint of a product, service or sector requires expert knowledge and careful examination of what is to be included. Carbon footprints can be calculated at different scales. They can apply to whole countries, cities, neighborhoods and also sectors, companies and products. Several free online carbon footprint calculators exist to calculate personal carbon footprints.

Software such as the "Scope 3 Evaluator" can help companies report emissions throughout their value chain. The software tools can help consultants and researchers to model global sustainability footprints. In each situation there are a number of questions that need to be answered. These include which activities are linked to which emissions, and which proportion should be attributed to which company. Software is essential for company management. But there is a need for new ways of enterprise resource planning to improve corporate sustainability performance.

To achieve 95% carbon footprint coverage, it would be necessary to assess 12 million individual supply-chain contributions. This is based on analyzing 12 sectoral case studies. The Scope 3 calculations can be made easier using input-output analysis. This is a technique originally developed by Nobel Prize-winning economist Wassily Leontief.

Consumption-based emission accounting based on input-output analysis

Consumption-based vs. production-based CO₂ emissions per capita
Production vs. consumption-based CO₂ emissions for the United States
Production vs. consumption-based CO₂ emissions per capita for China

Consumption-based emission accounting traces the impacts of demand for goods and services along the global supply chain to the end-consumer. It is also called consumption-based carbon accounting. In contrast, a production-based approach to calculating GHG emissions is not a carbon footprint analysis. This approach is also called a territorial-based approach. The production-based approach includes only impacts physically produced in the country in question. Consumption-based accounting redistributes the emissions from production-based accounting. It considers that emissions in another country are necessary for the home country's consumption bundle.

Consumer-based accounting is based on input-output analysis. It is used at the highest levels for any economic research question related to environmental or social impacts. Analysis of global supply chains is possible using consumption-based accounting with input-output analysis assisted by super-computing capacity.

Leontief created Input-output analysis (IO) to demonstrate the relationship between consumption and production in an economy. It incorporates the entire supply chain. It uses input-output tables from countries' national accounts. It also uses international data such as UN Comtrade and Eurostat. Input-output analysis has been extended globally to multi-regional input-output analysis (MRIO). Innovations and technology enabling the analysis of billions of supply chains made this possible. Standards set by the United Nations underpin this analysis. The analysis enables a Structural Path Analysis. This scans and ranks the top supply chain nodes and paths. It conveniently lists hotspots for urgent action. Input-output analysis has increased in popularity because of its ability to examine global value chains.

Combination with life cycle analysis (LCA)

Life cycle analysis: The full life cycle includes a production chain (comprising supply chains, manufacture, and transport), the energy supply chain, the use phase, and the end of life (disposal, recycle) stage.

Life cycle assessment (LCA) is a methodology for assessing all environmental impacts associated with the life cycle of a commercial product, process, or service. It is not limited to the greenhouse gas emissions. It is also called life cycle analysis. It includes water pollution, air pollution, ecotoxicity and similar types of pollution. Some widely recognized procedures for LCA are included in the ISO 14000 series of environmental management standards. A standard called ISO 14040:2006 provides the framework for conducting an LCA study. ISO 14060 family of standards provides further sophisticated tools. These are used to quantify, monitor, report and validate or verify GHG emissions and removals.

Greenhouse gas product life cycle assessments can also comply with specifications such as Publicly Available Specification (PAS) 2050 and the GHG Protocol Life Cycle Accounting and Reporting Standard.

An advantage of LCA is the high level of detail that can be obtained on-site or by liaising with suppliers. However, LCA has been hampered by the artificial construction of a boundary after which no further impacts of upstream suppliers are considered. This can introduce significant truncation errors. LCA has been combined with input-output analysis. This enables on-site detailed knowledge to be incorporated. IO connects to global economic databases to incorporate the entire supply chain.

Problems

Shifting responsibility from corporations to individuals

Critics argue that the original aim of promoting the personal carbon footprint concept was to shift responsibility away from corporations and institutions and on to personal lifestyle choices. The fossil fuel company BP ran a large advertising campaign for the personal carbon footprint in 2005 which helped popularize this concept. This strategy, employed by many major fossil fuel companies, has been criticized for trying to shift the blame for negative consequences of those industries on to individual choices.

Geoffrey Supran and Naomi Oreskes of Harvard University argue that concepts such as carbon footprints "hamstring us, and they put blinders on us, to the systemic nature of the climate crisis and the importance of taking collective action to address the problem".

Relationship with other environmental impacts

A focus on carbon footprints can lead people to ignore or even exacerbate other related environmental issues of concern. These include biodiversity loss, ecotoxicity, and habitat destruction. It may not be easy to measure these other human impacts on the environment with a single indicator like the carbon footprint. Consumers may think that the carbon footprint is a proxy for environmental impact. In many cases this is not correct. There can be trade-offs between reducing carbon footprint and environmental protection goals. One example is the use of biofuel, a renewable energy source and can reduce the carbon footprint of energy supply but can also pose ecological challenges during its production. This is because it is often produced in monocultures with ample use of fertilizers and pesticides.Another example is offshore wind parks, which could have unintended impacts on marine ecosystems.

The carbon footprint analysis solely focuses on greenhouse gas emissions, unlike a life-cycle assessment which is much broader and looks at all environmental impacts. Therefore, it is useful to stress in communication activities that the carbon footprint is just one in a family of indicators (e.g. ecological footprint, water footprint, land footprint, and material footprint), and should not be looked at in isolation. In fact, carbon footprint can be treated as one component of ecological footprint.

The "Sustainable Consumption and Production Hotspot Analysis Tool" (SCP-HAT) is a tool to place carbon footprint analysis into a wider perspective. It includes a number of socio-economic and environmental indicators. It offers calculations that are either consumption-based, following the carbon footprint approach, or production-based. The database of the SCP-HAT tool is underpinned by input–output analysis. This means it includes Scope 3 emissions. The IO methodology is also governed by UN standards. It is based on input-output tables of countries' national accounts and international trade data such as UN Comtrade, and therefore it is comparable worldwide.

Differing boundaries for calculations

The term carbon footprint has been applied to limited calculations that do not include Scope 3 emissions or the entire supply chain. This can lead to claims of misleading customers with regards to the real carbon footprints of companies or products.

Reported values

Greenhouse gas emissions overview

Greenhouse gas emissions per person in the highest-emitting countries. Areas of rectangles represent total emissions for each country.

Greenhouse gas (GHG) emissions from human activities intensify the greenhouse effect. This contributes to climate change. Carbon dioxide (CO2), from burning fossil fuels such as coal, oil, and natural gas, is the main cause of climate change. The largest annual emissions are from China followed by the United States. The United States has higher emissions per capita. The main producers fueling the emissions globally are large oil and gas companies. Emissions from human activities have increased atmospheric carbon dioxide by about 50% over pre-industrial levels. The growing levels of emissions have varied, but have been consistent among all greenhouse gases. Emissions in the 2010s averaged 56 billion tons a year, higher than any decade before. Total cumulative emissions from 1870 to 2022 were 703 GtC (2575 GtCO2), of which 484±20 GtC (1773±73 GtCO2) from fossil fuels and industry, and 219±60 GtC (802±220 GtCO2) from land use change. Land-use change, such as deforestation, caused about 31% of cumulative emissions over 1870–2022, coal 32%, oil 24%, and gas 10%.

Carbon dioxide is the main greenhouse gas resulting from human activities. It accounts for more than half of warming. Methane (CH4) emissions have almost the same short-term impact. Nitrous oxide (N2O) and fluorinated gases (F-gases) play a lesser role in comparison. Emissions of carbon dioxide, methane and nitrous oxide in 2023 were all higher than ever before.

By products

Carbon footprint of EU diets by supply chain

The Carbon Trust has worked with UK manufacturers to produce "thousands of carbon footprint assessments". As of 2014 the Carbon Trust state they have measured 28,000 certifiable product carbon footprints.

Food

Plant-based foods tend to have a lower carbon footprint than meat and dairy. In many cases a much smaller footprint. This holds true when comparing the footprint of foods in terms of their weight, protein content or calories. The protein output of peas and beef provides an example. Producing 100 grams of protein from peas emits just 0.4 kilograms of carbon dioxide equivalents (CO2eq). To get the same amount of protein from beef, emissions would be nearly 90 times higher, at 35 kgCO2eq. Only a small fraction of the carbon footprint of food comes from transport and packaging. Most of it comes from processes on the farm, or from land use change. This means the choice of what to eat has a larger potential to reduce carbon footprint than how far the food has traveled, or how much packaging it is wrapped in.

By sector

The IPCC Sixth Assessment Report found that global GHG emissions have continued to rise across all sectors. Global consumption was the main cause. The most rapid growth was in transport and industry. A key driver of global carbon emissions is affluence. The IPCC noted that the wealthiest 10% in the world contribute between about one third to one half (36%–45%) of global GHG emissions. Researcheres have previously found that affluence is the key driver of carbon emissions. It has a bigger impact than population growth. And it counters the effects of technological developments. Continued economic growth mirrors the increasing trend in material extraction and GHG emissions. “Industrial emissions have been growing faster since 2000 than emissions in any other sector, driven by increased basic materials extraction and production,” the IPCC said.

Transport

Comparison to show which form of transport has the smallest carbon footprint

There can be wide variations in emissions for transport of people. This is due to various factors. They include the length of the trip, the source of electricity in the local grid and the occupancy of public transport. In the case of driving the type of vehicle and number of passengers are factors. Over short to medium distances, walking or cycling are nearly always the lowest carbon way to travel. The carbon footprint of cycling one kilometer is usually in the range of 16 to 50 grams CO2eq per km. For moderate or long distances, trains nearly always have a lower carbon footprint than other options.

By organization

Carbon accounting

Carbon accounting (or greenhouse gas accounting) is a framework of methods to measure and track how much greenhouse gas (GHG) an organization emits. It can also be used to track projects or actions to reduce emissions in sectors such as forestry or renewable energy. Corporations, cities and other groups use these techniques to help limit climate change. Organizations will often set an emissions baseline, create targets for reducing emissions, and track progress towards them. The accounting methods enable them to do this in a more consistent and transparent manner.

The main reasons for GHG accounting are to address social responsibility concerns or meet legal requirements. Public rankings of companies, financial due diligence and potential cost savings are other reasons. GHG accounting methods help investors better understand the climate risks of companies they invest in. They also help with net zero emission goals of corporations or communities. Many governments around the world require various forms of reporting. There is some evidence that programs that require GHG accounting help to lower emissions. Markets for buying and selling carbon credits depend on accurate measurement of emissions and emission reductions. These techniques can help to understand the impacts of specific products and services. They do this by quantifying their GHG emissions throughout their lifecycle (carbon footprint).

By country

Consumption-based CO₂ emissions per capita, 2017

CO2 emissions of countries are typically measured on the basis of production. This accounting method is sometimes referred to as territorial emissions. Countries use it when they report their emissions, and set domestic and international targets such as Nationally Determined Contributions. Consumption-based emissions on the other hand are adjusted for trade. To calculate consumption-based emissions analysts have to track which goods are traded across the world. Whenever a product is imported, all CO2 emissions that were emitted in the production of that product are included. Consumption-based emissions reflect the lifestyle choices of a country's citizens.

According to the World Bank, the global average carbon footprint in 2014 was about 5 tonnes of CO2 per person, measured on a production basis. The EU average for 2007 was about 13.8 tonnes CO2e per person. For the USA, Luxembourg and Australia it was over 25 tonnes CO2e per person. In 2017, the average for the USA was about 20 metric tonnes CO2e per person. This is one of the highest per capita figures in the world.

The footprints per capita of countries in Africa and India were well below average. Per capita emissions in India are low for its huge population. But overall the country is the third largest emitter of CO2 and fifth largest economy by nominal GDP in the world.[91] Assuming a global population of around 9–10 billion by 2050, a carbon footprint of about 2–2.5 tonnes CO2e per capita is needed to stay within a 2 °C target. These carbon footprint calculations are based on a consumption-based approach using a Multi-Regional Input-Output (MRIO) database. This database accounts for all greenhouse gas (GHG) emissions in the global supply chain and allocates them to the final consumer of the purchased commodities.

Reducing the carbon footprint

Sign at demonstration: "Go vegan and cut your climate footprint by 50%"

Climate change mitigation

Efforts to reduce the carbon footprint of products, services and organizations help limit climate change. Such activities are called climate change mitigation.

Climate change mitigation (or decarbonisation) is action to limit the greenhouse gases in the atmosphere that cause climate change. Climate change mitigation actions include conserving energy and replacing fossil fuels with clean energy sources. Secondary mitigation strategies include changes to land use and removing carbon dioxide (CO2) from the atmosphere. Current climate change mitigation policies are insufficient as they would still result in global warming of about 2.7 °C by 2100, significantly above the 2015 Paris Agreement's goal of limiting global warming to below 2 °C.

Reducing industry's carbon footprint

Wind farms provide energy with a fairly low carbon footprint compared to fossil fuels.

Carbon offsetting can reduce a company's overall carbon footprint by providing it with a carbon credit. This compensates the company for carbon dioxide emissions by recognizing an equivalent reduction of carbon dioxide in the atmosphere. Reforestation, or restocking existing forests that have previously been depleted, is an example of carbon offsetting.

A carbon footprint study can identify specific and critical areas for improvement. It uses input-output analysis and scrutinizes the entire supply chain. Such an analysis could be used to eliminate the supply chains with the highest greenhouse gas emissions.

History

The term carbon footprint was first used in a BBC vegetarian food magazine in 1999,  though the broader concept of ecological footprint, which encompasses the carbon footprint, had been used since at least 1992, as also chronicled by William Safire in the New York Times.

In 2005, fossil fuel company BP hired the large advertising campaign Ogilvy to popularize the idea of a carbon footprint for individuals. The campaign instructed people to calculate their personal footprints and provided ways for people to "go on a low-carbon diet".

The carbon footprint is derived from the ecological footprint, which encompasses carbon emissions. The carbon footprint follows the logic of ecological footprint accounting, which tracks the resource use embodied in consumption, whether it is a product, an individual, a city, or a country. While in the ecological footprint, carbon emissions are translated into areas needed to absorb the carbon emissions, the carbon footprint on its own is expressed in the weight of carbon emissions per time unit. William Rees wrote the first academic publication about ecological footprints in 1992. Other related concepts from the 1990s are the "ecological backpack" and material input per unit of service (MIPS).

The International Sustainability Standards Board (ISSB) aims to bring global, rigorous oversight to carbon footprint reporting. It was formed out of the International Financial Reporting Standards. It will require companies to report on their Scope 3 emissions. The ISSB has taken on board criticisms of other initiatives in its aims for universality. It consolidates the Carbon Disclosure Standards Board, the Sustainability Accounting Standards Board and the Value Reporting Foundation. It complements the Global Reporting Initiative. It is influenced by the Task Force on Climate-Related Financial Disclosures. As of early 2023, Great Britain and Nigeria were preparing to adopt these standards.

The concept of total equivalent warming impact (TEWI) is the most used index for carbon dioxide equivalent (CO2) emissions calculation in air conditioning and refrigeration sectors by including both the direct and indirect contributions since it evaluates the emissions caused by the operating lifetime of systems. The Expanded Total Equivalent Warming Impact method has been used for an accurate evaluation of refrigerators emissions.

Environmental degradation

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Environmental_degradation
More than eighty years after the abandonment of Wallaroo Mines (Kadina, South Australia), mosses remain the only vegetation in some areas of the site's grounds.

Environmental degradation is the deterioration of the environment through depletion of resources such as quality of air, water and soil; the destruction of ecosystems; habitat destruction; the extinction of wildlife; and pollution. It is defined as any change or disturbance to the environment perceived to be deleterious or undesirable. The environmental degradation process amplifies the impact of environmental issues which leave lasting impacts on the environment.

Environmental degradation is one of the ten threats officially cautioned by the High-level Panel on Threats, Challenges and Change of the United Nations. The United Nations International Strategy for Disaster Reduction defines environmental degradation as "the reduction of the capacity of the environment to meet social and ecological objectives, and needs".

Environmental degradation comes in many types. When natural habitats are destroyed or natural resources are depleted, the environment is degraded; direct environmental degradation, such as deforestation, which is readily visible; this can be caused by more indirect process, such as the build up of plastic pollution over time or the buildup of greenhouse gases that causes tipping points in the climate system. Efforts to counteract this problem include environmental protection and environmental resources management. Mismanagement that leads to degradation can also lead to environmental conflict where communities organize in opposition to the forces that mismanaged the environment.

Biodiversity loss

Deforestation in Europe, 2018. Almost all of Europe's original forests have been destroyed.

Scientists assert that human activity has pushed the earth into a sixth mass extinction event. The loss of biodiversity has been attributed in particular to human overpopulation, continued human population growth and overconsumption of natural resources by the world's wealthy. A 2020 report by the World Wildlife Fund found that human activity – specifically overconsumption, population growth and intensive farming – has destroyed 68% of vertebrate wildlife since 1970. The Global Assessment Report on Biodiversity and Ecosystem Services, published by the United Nation's IPBES in 2019, posits that roughly one million species of plants and animals face extinction from anthropogenic causes, such as expanding human land use for industrial agriculture and livestock rearing, along with overfishing.

Since the establishment of agriculture over 11,000 years ago, humans have altered roughly 70% of the Earth's land surface, with the global biomass of vegetation being reduced by half, and terrestrial animal communities seeing a decline in biodiversity greater than 20% on average. A 2021 study says that just 3% of the planet's terrestrial surface is ecologically and faunally intact, meaning areas with healthy populations of native animal species and little to no human footprint. Many of these intact ecosystems were in areas inhabited by indigenous peoples. With 3.2 billion people affected globally, degradation affects over 30% of the world's land area and 40% of land in developing countries.

The implications of these losses for human livelihoods and wellbeing have raised serious concerns. With regard to the agriculture sector for example, The State of the World's Biodiversity for Food and Agriculture, published by the Food and Agriculture Organization of the United Nations in 2019, states that "countries report that many species that contribute to vital ecosystem services, including pollinators, the natural enemies of pests, soil organisms and wild food species, are in decline as a consequence of the destruction and degradation of habitats, overexploitation, pollution and other threats" and that "key ecosystems that deliver numerous services essential to food and agriculture, including supply of freshwater, protection against hazards and provision of habitat for species such as fish and pollinators, are declining."

Impacts of environmental degradation on women's livelihoods

On the way biodiversity loss and ecosystem degradation impact livelihoods, the Food and Agriculture Organization of the United Nations finds also that in contexts of degraded lands and ecosystems in rural areas, both girls and women bear heavier workloads.

Women's livelihoods, health, food and nutrition security, access to water and energy, and coping abilities are all disproportionately affected by environmental degradation. Environmental pressures and shocks, particularly in rural areas, force women to deal with the aftermath, greatly increasing their load of unpaid care work. Also, as limited natural resources grow even scarcer due to climate change, women and girls must also walk further to collect food, water or firewood, which heightens their risk of being subjected to gender-based violence.

This implies, for example, longer journeys to get primary necessities and greater exposure to the risks of human trafficking, rape, and sexual violence.

Water degradation

Ethiopia's move to fill the Grand Ethiopian Renaissance Dam's reservoir could reduce Nile flows by as much as 25% and devastate Egyptian farmlands.

One major component of environmental degradation is the depletion of the resource of fresh water on Earth. Approximately only 2.5% of all of the water on Earth is fresh water, with the rest being salt water. 69% of fresh water is frozen in ice caps located on Antarctica and Greenland, so only 30% of the 2.5% of fresh water is available for consumption. Fresh water is an exceptionally important resource, since life on Earth is ultimately dependent on it. Water transports nutrients, minerals and chemicals within the biosphere to all forms of life, sustains both plants and animals, and moulds the surface of the Earth with transportation and deposition of materials.

The current top three uses of fresh water account for 95% of its consumption; approximately 85% is used for irrigation of farmland, golf courses, and parks, 6% is used for domestic purposes such as indoor bathing uses and outdoor garden and lawn use, and 4% is used for industrial purposes such as processing, washing, and cooling in manufacturing centres. It is estimated that one in three people over the entire globe are already facing water shortages, almost one-fifth of the world population live in areas of physical water scarcity, and almost one quarter of the world's population live in a developing country that lacks the necessary infrastructure to use water from available rivers and aquifers. Water scarcity is an increasing problem due to many foreseen issues in the future including population growth, increased urbanization, higher standards of living, and climate change.

Industrial and domestic sewage, pesticides, fertilizers, plankton blooms, silt, oils, chemical residues, radioactive material, and other pollutants are some of the most frequent water pollutants. These have a huge negative impact on the water and can cause degradation in various levels.

Climate change and temperature

Climate change affects the Earth's water supply in a large number of ways. It is predicted that the mean global temperature will rise in the coming years due to a number of forces affecting the climate. The amount of atmospheric carbon dioxide (CO2) will rise, and both of these will influence water resources; evaporation depends strongly on temperature and moisture availability which can ultimately affect the amount of water available to replenish groundwater supplies.

Transpiration from plants can be affected by a rise in atmospheric CO2, which can decrease their use of water, but can also raise their use of water from possible increases of leaf area. Temperature rise can reduce the snow season in the winter and increase the intensity of the melting snow leading to peak runoff of this, affecting soil moisture, flood and drought risks, and storage capacities depending on the area.

Warmer winter temperatures cause a decrease in snowpack, which can result in diminished water resources during summer. This is especially important at mid-latitudes and in mountain regions that depend on glacial runoff to replenish their river systems and groundwater supplies, making these areas increasingly vulnerable to water shortages over time; an increase in temperature will initially result in a rapid rise in water melting from glaciers in the summer, followed by a retreat in glaciers and a decrease in the melt and consequently the water supply every year as the size of these glaciers get smaller and smaller.

Thermal expansion of water and increased melting of oceanic glaciers from an increase in temperature gives way to a rise in sea level. This can affect the freshwater supply to coastal areas as well. As river mouths and deltas with higher salinity get pushed further inland, an intrusion of saltwater results in an increase of salinity in reservoirs and aquifers. Sea-level rise may also consequently be caused by a depletion of groundwater, as climate change can affect the hydrologic cycle in a number of ways. Uneven distributions of increased temperatures and increased precipitation around the globe results in water surpluses and deficits, but a global decrease in groundwater suggests a rise in sea level, even after meltwater and thermal expansion were accounted for, which can provide a positive feedback to the problems sea-level rise causes to fresh-water supply.

A rise in air temperature results in a rise in water temperature, which is also very significant in water degradation as the water would become more susceptible to bacterial growth. An increase in water temperature can also affect ecosystems greatly because of a species' sensitivity to temperature, and also by inducing changes in a body of water's self-purification system from decreased amounts of dissolved oxygen in the water due to rises in temperature.

Climate change and precipitation

A rise in global temperatures is also predicted to correlate with an increase in global precipitation but because of increased runoff, floods, increased rates of soil erosion, and mass movement of land, a decline in water quality is probable, because while water will carry more nutrients it will also carry more contaminants. While most of the attention about climate change is directed towards global warming and greenhouse effect, some of the most severe effects of climate change are likely to be from changes in precipitation, evapotranspiration, runoff, and soil moisture. It is generally expected that, on average, global precipitation will increase, with some areas receiving increases and some decreases.

Climate models show that while some regions should expect an increase in precipitation, such as in the tropics and higher latitudes, other areas are expected to see a decrease, such as in the subtropics. This will ultimately cause a latitudinal variation in water distribution. The areas receiving more precipitation are also expected to receive this increase during their winter and actually become drier during their summer, creating even more of a variation of precipitation distribution. Naturally, the distribution of precipitation across the planet is very uneven, causing constant variations in water availability in respective locations.

Changes in precipitation affect the timing and magnitude of floods and droughts, shift runoff processes, and alter groundwater recharge rates. Vegetation patterns and growth rates will be directly affected by shifts in precipitation amount and distribution, which will in turn affect agriculture as well as natural ecosystems. Decreased precipitation will deprive areas of water causing water tables to fall and reservoirs of wetlands, rivers, and lakes to empty. In addition, a possible increase in evaporation and evapotranspiration will result, depending on the accompanied rise in temperature. Groundwater reserves will be depleted, and the remaining water has a greater chance of being of poor quality from saline or contaminants on the land surface.

Climate change is resulting into a very high rate of land degradation causing enhanced desertification and nutrient deficient soils. The menace of land degradation is increasing by the day and has been characterized as a major global threat. According to Global Assessment of Land Degradation and Improvement (GLADA) a quarter of land area around the globe can now be marked as degraded. Land degradation is supposed to influence lives of 1.5 billion people and 15 billion tons of fertile soil is lost every year due to anthropogenic activities and climate change.

Population growth

Graph of human population from 10,000 BCE to 2000 CE. It shows sevenfold rise in world population that has taken place since the end of the seventeenth century.

The human population on Earth is expanding rapidly, which together with even more rapid economic growth is the main cause of the degradation of the environment. Humanity's appetite for resources is disrupting the environment's natural equilibrium. Production industries are venting smoke into the atmosphere and discharging chemicals that are polluting water resources. The smoke includes detrimental gases such as carbon monoxide and sulphur dioxide. The high levels of pollution in the atmosphere form layers that are eventually absorbed into the atmosphere. Organic compounds such as chlorofluorocarbons (CFCs) have generated an opening in the ozone layer, which admits higher levels of ultraviolet radiation, putting the globe at risk.

The available fresh water being affected by the climate is also being stretched across an ever-increasing global population. It is estimated that almost a quarter of the global population is living in an area that is using more than 20% of their renewable water supply; water use will rise with population while the water supply is also being aggravated by decreases in streamflow and groundwater caused by climate change. Even though some areas may see an increase in freshwater supply from an uneven distribution of precipitation increase, an increased use of water supply is expected.

An increased population means increased withdrawals from the water supply for domestic, agricultural, and industrial uses, the largest of these being agriculture, believed to be the major non-climate driver of environmental change and water deterioration. The next 50 years will likely be the last period of rapid agricultural expansion, but the larger and wealthier population over this time will demand more agriculture.

Population increase over the last two decades, at least in the United States, has also been accompanied by a shift to an increase in urban areas from rural areas, which concentrates the demand for water into certain areas, and puts stress on the fresh water supply from industrial and human contaminants. Urbanization causes overcrowding and increasingly unsanitary living conditions, especially in developing countries, which in turn exposes an increasingly number of people to disease. About 79% of the world's population is in developing countries, which lack access to sanitary water and sewer systems, giving rises to disease and deaths from contaminated water and increased numbers of disease-carrying insects.

Agriculture

The rate of global tree cover loss has approximately doubled since 2001, to an annual loss approaching an area the size of Italy.
Water pollution due to dairy farming in the Wairarapa in New Zealand

Agriculture is dependent on available soil moisture, which is directly affected by climate dynamics, with precipitation being the input in this system and various processes being the output, such as evapotranspiration, surface runoff, drainage, and percolation into groundwater. Changes in climate, especially the changes in precipitation and evapotranspiration predicted by climate models, will directly affect soil moisture, surface runoff, and groundwater recharge.

In areas with decreasing precipitation as predicted by the climate models, soil moisture may be substantially reduced. With this in mind, agriculture in most areas already needs irrigation, which depletes fresh water supplies both by the physical use of the water and the degradation agriculture causes to the water. Irrigation increases salt and nutrient content in areas that would not normally be affected, and damages streams and rivers from damming and removal of water. Fertilizer enters both human and livestock waste streams that eventually enter groundwater, while nitrogen, phosphorus, and other chemicals from fertilizer can acidify both soils and water. Certain agricultural demands may increase more than others with an increasingly wealthier global population, and meat is one commodity expected to double global food demand by 2050, which directly affects the global supply of fresh water. Cows need water to drink, more if the temperature is high and humidity is low, and more if the production system the cow is in is extensive, since finding food takes more effort. Water is needed in the processing of the meat, and also in the production of feed for the livestock. Manure can contaminate bodies of freshwater, and slaughterhouses, depending on how well they are managed, contribute waste such as blood, fat, hair, and other bodily contents to supplies of fresh water.

The transfer of water from agricultural to urban and suburban use raises concerns about agricultural sustainability, rural socioeconomic decline, food security, an increased carbon footprint from imported food, and decreased foreign trade balance. The depletion of fresh water, as applied to more specific and populated areas, increases fresh water scarcity among the population and also makes populations susceptible to economic, social, and political conflict in a number of ways; rising sea levels forces migration from coastal areas to other areas farther inland, pushing populations closer together breaching borders and other geographical patterns, and agricultural surpluses and deficits from the availability of water induce trade problems and economies of certain areas. Climate change is an important cause of involuntary migration and forced displacement According to the Food and Agriculture Organization of the United Nations, global greenhouse gas emissions from animal agriculture exceeds that of transportation.

Water management

A stream in the town of Amlwch, Anglesey, which is contaminated by acid mine drainage from the former copper mine at nearby Parys Mountain

Water management is the process of planning, developing, and managing water resources across all water applications, in terms of both quantity and quality." Water management is supported and guided by institutions, infrastructure, incentives, and information systems

The issue of the depletion of fresh water has stimulated increased efforts in water management. While water management systems are often flexible, adaptation to new hydrologic conditions may be very costly. Preventative approaches are necessary to avoid high costs of inefficiency and the need for rehabilitation of water supplies, and innovations to decrease overall demand may be important in planning water sustainability.

Water supply systems, as they exist now, were based on the assumptions of the current climate, and built to accommodate existing river flows and flood frequencies. Reservoirs are operated based on past hydrologic records, and irrigation systems on historical temperature, water availability, and crop water requirements; these may not be a reliable guide to the future. Re-examining engineering designs, operations, optimizations, and planning, as well as re-evaluating legal, technical, and economic approaches to manage water resources are very important for the future of water management in response to water degradation. Another approach is water privatization; despite its economic and cultural effects, service quality and overall quality of the water can be more easily controlled and distributed. Rationality and sustainability is appropriate, and requires limits to overexploitation and pollution and efforts in conservation.

Consumption increases

As the world's population increases, it is accompanied by an increase in population demand for natural resources. With the need for more production increases comes more damage to the environments and ecosystems in which those resources are housed. According to United Nations' population growth predictions, there could be up to 170 million more births by 2070. The need for more fuel, energy, food, buildings, and water sources grows with the number of people on the planet.

However, the scale of environmental degradation is not only determined by population growth but also by consumption patterns and resource efficiency. Industrialized nations, with higher per capita consumption rates, often have a disproportionately large environmental footprint compared to less developed regions. Efforts to adopt sustainable development practices, including renewable energy, recycling, and waste reduction, could mitigate some of the environmental impacts of increased consumption. Furthermore, promoting circular economies and transitioning to low-impact technologies are critical.

Deforestation

As the need for new agricultural areas and road construction increases, the deforestation processes stay in effect. Deforestation is the "removal of forest or stand of trees from land that is converted to non-forest use." (Wikipedia-Deforestation). Since the 1960s, nearly 50% of tropical forests have been destroyed, but this process is not limited to tropical forest areas. Europe's forests are also destroyed by livestock, insects, diseases, invasive species, and other human activities. Many of the world's terrestrial biodiversity can be found living in the different types of forests. Tearing down these areas for increased consumption directly decreases the world's biodiversity of plant and animal species native to those areas.

Along with destroying habitats and ecosystems, decreasing the world's forest contributes to the amount of CO2 in the atmosphere. By taking away forested areas, we are limiting the amount of carbon reservoirs, limiting it to the largest ones: the atmosphere and oceans. While one of the biggest reasons for deforestation is agriculture use for the world's food supply, removing trees from landscapes also increases erosion rates in areas, making it harder to produce crops in those soil types.


Methylation

From Wikipedia, the free encyclopedia

Methylation, in the chemical sciences, is the addition of a methyl group on a substrate, or the substitution of an atom (or group) by a methyl group. Methylation is a form of alkylation, with a methyl group replacing a hydrogen atom. These terms are commonly used in chemistry, biochemistry, soil science, and biology.

In biological systems, methylation is catalyzed by enzymes; such methylation can be involved in modification of heavy metals, regulation of gene expression, regulation of protein function, and RNA processing. In vitro methylation of tissue samples is also a way to reduce some histological staining artifacts. The reverse of methylation is demethylation.

In biology

In biological systems, methylation is accomplished by enzymes. Methylation can modify heavy metals and can regulate gene expression, RNA processing, and protein function. It is a key process underlying epigenetics. Sources of methyl groups include S-methylmethionine, methyl folate, methyl B12.

Methanogenesis

Methanogenesis, the process that generates methane from CO2, involves a series of methylation reactions. These reactions are caused by a set of enzymes harbored by a family of anaerobic microbes.

Cycle for methanogenesis, showing intermediates

In reverse methanogenesis, methane is the methylating agent.

O-methyltransferases

A wide variety of phenols undergo O-methylation to give anisole derivatives. This process, catalyzed by such enzymes as caffeoyl-CoA O-methyltransferase, is a key reaction in the biosynthesis of lignols, percursors to lignin, a major structural component of plants.

Plants produce flavonoids and isoflavones with methylations on hydroxyl groups, i.e. methoxy bonds. This 5-O-methylation affects the flavonoid's water solubility. Examples are 5-O-methylgenistein, 5-O-methylmyricetin, and 5-O-methylquercetin (azaleatin).

Proteins

Along with ubiquitination and phosphorylation, methylation is a major biochemical process for modifying protein function. The most prevalent protein methylations affect arginine and lysine residue of specific histones. Otherwise histidine, glutamate, asparagine, cysteine are susceptible to methylation. Some of these products include S-methylcysteine, two isomers of N-methylhistidine, and two isomers of N-methylarginine.

Methionine synthase

The methylation reaction catalyzed by methionine synthase

Methionine synthase regenerates methionine (Met) from homocysteine (Hcy). The overall reaction transforms 5-methyltetrahydrofolate (N5-MeTHF) into tetrahydrofolate (THF) while transferring a methyl group to Hcy to form Met. Methionine Syntheses can be cobalamin-dependent and cobalamin-independent: Plants have both, animals depend on the methylcobalamin-dependent form.

In methylcobalamin-dependent forms of the enzyme, the reaction proceeds by two steps in a ping-pong reaction. The enzyme is initially primed into a reactive state by the transfer of a methyl group from N5-MeTHF to Co(I) in enzyme-bound cobalamin ((Cob), also known as vitamine B12)) , , forming methyl-cobalamin(Me-Cob) that now contains Me-Co(III) and activating the enzyme. Then, a Hcy that has coordinated to an enzyme-bound zinc to form a reactive thiolate reacts with the Me-Cob. The activated methyl group is transferred from Me-Cob to the Hcy thiolate, which regenerates Co(I) in Cob, and Met is released from the enzyme.

Heavy metals: arsenic, mercury, cadmium

Biomethylation is the pathway for converting some heavy elements into more mobile or more lethal derivatives that can enter the food chain. The biomethylation of arsenic compounds starts with the formation of methanearsonates. Thus, trivalent inorganic arsenic compounds are methylated to give methanearsonate. S-adenosylmethionine is the methyl donor. The methanearsonates are the precursors to dimethylarsonates, again by the cycle of reduction (to methylarsonous acid) followed by a second methylation. Related pathways are found in the microbial methylation of mercury to methylmercury.

Epigenetic methylation

DNA methylation

DNA methylation is the conversion of the cytosine to 5-methylcytosine. The formation of Me-CpG is catalyzed by the enzyme DNA methyltransferase. In vertebrates, DNA methylation typically occurs at CpG sites (cytosine-phosphate-guanine sites—that is, sites where a cytosine is directly followed by a guanine in the DNA sequence). In mammals, DNA methylation is common in body cells, and methylation of CpG sites seems to be the default. Human DNA has about 80–90% of CpG sites methylated, but there are certain areas, known as CpG islands, that are CG-rich (high cytosine and guanine content, made up of about 65% CG residues), wherein none is methylated. These are associated with the promoters of 56% of mammalian genes, including all ubiquitously expressed genes. One to two percent of the human genome are CpG clusters, and there is an inverse relationship between CpG methylation and transcriptional activity. Methylation contributing to epigenetic inheritance can occur through either DNA methylation or protein methylation. Improper methylations of human genes can lead to disease development, including cancer.

In honey bees, DNA methylation is associated with alternative splicing and gene regulation based on functional genomic research published in 2013. In addition, DNA methylation is associated with expression changes in immune genes when honey bees were under lethal viral infection. Several review papers have been published on the topics of DNA methylation in social insects.

RNA methylation

RNA methylation occurs in different RNA species viz. tRNA, rRNA, mRNA, tmRNA, snRNA, snoRNA, miRNA, and viral RNA. Different catalytic strategies are employed for RNA methylation by a variety of RNA-methyltransferases. RNA methylation is thought to have existed before DNA methylation in the early forms of life evolving on earth.

N6-methyladenosine (m6A) is the most common and abundant methylation modification in RNA molecules (mRNA) present in eukaryotes. 5-methylcytosine (5-mC) also commonly occurs in various RNA molecules. Recent data strongly suggest that m6A and 5-mC RNA methylation affects the regulation of various biological processes such as RNA stability and mRNA translation, and that abnormal RNA methylation contributes to etiology of human diseases.

In social insects such as honey bees, RNA methylation is studied as a possible epigenetic mechanism underlying aggression via reciprocal crosses.

Protein methylation

Protein methylation typically takes place on arginine or lysine amino acid residues in the protein sequence. Arginine can be methylated once (monomethylated arginine) or twice, with either both methyl groups on one terminal nitrogen (asymmetric dimethylarginine) or one on both nitrogens (symmetric dimethylarginine), by protein arginine methyltransferases (PRMTs). Lysine can be methylated once, twice, or three times by lysine methyltransferases. Protein methylation has been most studied in the histones. The transfer of methyl groups from S-adenosyl methionine to histones is catalyzed by enzymes known as histone methyltransferases. Histones that are methylated on certain residues can act epigenetically to repress or activate gene expression. Protein methylation is one type of post-translational modification.

Evolution

Methyl metabolism is very ancient and can be found in all organisms on earth, from bacteria to humans, indicating the importance of methyl metabolism for physiology. Indeed, pharmacological inhibition of global methylation in species ranging from human, mouse, fish, fly, roundworm, plant, algae, and cyanobacteria causes the same effects on their biological rhythms, demonstrating conserved physiological roles of methylation during evolution.

In chemistry

The term methylation in organic chemistry refers to the alkylation process used to describe the delivery of a CH3 group.

Electrophilic methylation

Methylations are commonly performed using electrophilic methyl sources such as iodomethane, dimethyl sulfate, dimethyl carbonate, or tetramethylammonium chloride. Less common but more powerful (and more dangerous) methylating reagents include methyl triflate, diazomethane, and methyl fluorosulfonate (magic methyl). These reagents all react via SN2 nucleophilic substitutions. For example, a carboxylate may be methylated on oxygen to give a methyl ester; an alkoxide salt RO may be likewise methylated to give an ether, ROCH3; or a ketone enolate may be methylated on carbon to produce a new ketone.

Methylation of a carboxylic acid salt and a phenol using iodomethane

The Purdie methylation is a specific for the methylation at oxygen of carbohydrates using iodomethane and silver oxide.

Purdie methylation

Eschweiler–Clarke methylation

The Eschweiler–Clarke reaction is a method for methylation of amines. This method avoids the risk of quaternization, which occurs when amines are methylated with methyl halides.

The Eschweiler–Clarke reaction is used to methylate amines.

Diazomethane and trimethylsilyldiazomethane

Diazomethane and the safer analogue trimethylsilyldiazomethane methylate carboxylic acids, phenols, and even alcohols:

The method offers the advantage that the side products are easily removed from the product mixture.

Nucleophilic methylation

Methylation sometimes involve use of nucleophilic methyl reagents. Strongly nucleophilic methylating agents include methyllithium (CH3Li) or Grignard reagents such as methylmagnesium bromide (CH3MgX). For example, CH3Li will add methyl groups to the carbonyl (C=O) of ketones and aldehyde.:

Methylation of acetone by methyl lithium

Milder methylating agents include tetramethyltin, dimethylzinc, and trimethylaluminium.

Natural capital

From Wikipedia, the free encyclopedia

Mangrove swamp at Iriomote Island, Japan, providing beneficial services of sediment accumulation, coastal protection, nursery and fish-spawning grounds which may in turn support coastal fishing communities. At least 35% of the world's stock of mangrove swamps has been destroyed in just 20 years
Remarks from 1937 by FDR on "natural capital" and "balancing the budget of our resources"
Honeybee (Apis mellifera) pollinating an Avocado crop. Healthy stocks of wild and cultivated pollinator species are important to support the farming industry and help ensure food security.
Aerial view of the Amazon Rainforest. Looked at as a natural capital asset, rainforests provide air and water regulation services, potential sources of new medicines and natural carbon sequestration.
Fires along the Rio Xingu, Brazil – NASA Earth Observatory. Loss of natural capital assets may have significant impact on local and global economies, as well as on the climate.
The many components of natural capital can be viewed as providing essential goods and ecosystem services which underpin some of our key global issues, such as food and water supply, minimising climate change and meeting energy needs.

Natural capital is the world's stock of natural resources, which includes geology, soils, air, water and all living organisms. Some natural capital assets provide people with free goods and services, often called ecosystem services. All of these underpin our economy and society, and thus make human life possible.

It is an extension of the economic notion of capital (resources which enable the production of more resources) to goods and services provided by the natural environment. For example, a well-maintained forest or river may provide an indefinitely sustainable flow of new trees or fish, whereas over-use of those resources may lead to a permanent decline in timber availability or fish stocks. Natural capital also provides people with essential services, like water catchment, erosion control and crop pollination by insects, which in turn ensure the long-term viability of other natural resources. Since the continuous supply of services from the available natural capital assets is dependent upon a healthy, functioning environment, the structure and diversity of habitats and ecosystems are important components of natural capital. Methods, called 'natural capital asset checks', help decision-makers understand how changes in the current and future performance of natural capital assets will impact human well-being and the economy. Unpriced natural capital is what we refer to when businesses or individuals exploit or abuse nature without being held accountable, which can harm ecosystems and the environment. 

History of the concept

The term 'natural capital' was first used in 1973 by E. F. Schumacher in his book Small Is Beautiful and was developed further by Herman Daly, Robert Costanza, and other founders of the science of Ecological Economics, as part of a comprehensive critique of the shortcomings of conventional economics. Natural capital is a concept central to economic assessment ecosystem services valuation which revolves around the idea, that non-human life produces goods and services that are essential to life. Thus, natural capital is essential to the sustainability of the economy.

In a traditional economic analysis of the factors of production, natural capital would usually be classified as "land" distinct from traditional "capital". The historical distinction between "land" and "capital" defined "land" as naturally occurring with a fixed supply, whereas "capital", as originally defined referred only to man-made goods. (e.g., Georgism) It is, however, misleading to view "land" as if its productive capacity is fixed, because natural capital can be improved or degraded by the actions of man over time (see Environmental degradation). Moreover, natural capital yields benefits and goods, such as timber or food, which can be harvested by humans. These benefits are similar to those realized by owners of infrastructural capital which yields more goods, such as a factory that produces automobiles just as an apple tree produces apples.

Ecologists are teaming up with economists to measure and express values of the wealth of ecosystems as a way of finding solutions to the biodiversity crisis. Some researchers have attempted to place a dollar figure on ecosystem services such as the value that the Canadian boreal forest's contribution to global ecosystem services. If ecologically intact, the boreal forest has an estimated value of US$3.7 trillion. The boreal forest ecosystem is one of the planet's great atmospheric regulators and it stores more carbon than any other biome on the planet. The annual value for ecological services of the Boreal Forest is estimated at US$93.2 billion, or 2.5 greater than the annual value of resource extraction.

The economic value of 17 ecosystem services for the entire biosphere (calculated in 1997) has an estimated average value of US$33 trillion per year. These ecological economic values are not currently included in calculations of national income accounts, the GDP and they have no price attributes because they exist mostly outside of the global markets. The loss of natural capital continues to accelerate and goes undetected or ignored by mainstream monetary analysis.

Within the international community the basic principle is not controversial, although much uncertainty exists over how best to value different aspects of ecological health, natural capital and ecosystem services. Full-cost accounting, triple bottom line, measuring well-being and other proposals for accounting reform often include suggestions to measure an "ecological deficit" or "natural deficit" alongside a social and financial deficit. It is difficult to measure such a deficit without some agreement on methods of valuation and auditing of at least the global forms of natural capital (e.g. value of air, water, soil).

All uses of the term currently differentiate natural from man-made or infrastructural capital in some way. Indicators adopted by United Nations Environment Programme's World Conservation Monitoring Centre and the Organisation for Economic Co-operation and Development (OECD) to measure natural biodiversity use the term in a slightly more specific way. According to the OECD, natural capital is "natural assets in their role of providing natural resource inputs and environmental services for economic production" and is "generally considered to comprise three principal categories: natural resources stocks, land, and ecosystems."

The concept of "natural capital" has also been used by the Biosphere 2 project, and the Natural Capitalism economic model of Paul Hawken, Amory Lovins, and Hunter Lovins. Recently, it has begun to be used by politicians, notably Ralph Nader, Paul Martin Jr., and agencies of the UK government, including its Natural Capital Committee and the London Health Observatory.

In Natural Capitalism: Creating the Next Industrial Revolution the author claims that the "next industrial revolution" depends on the espousal of four central strategies: "the conservation of resources through more effective manufacturing processes, the reuse of materials as found in natural systems, a change in values from quantity to quality, and investing in natural capital, or restoring and sustaining natural resources."

Natural capital declaration

In June 2012 a 'natural capital declaration' (NCD) was launched at the Rio+20 summit held in Brazil. An initiative of the global finance sector, it was signed by 40 CEOs to 'integrate natural capital considerations into loans, equity, fixed income and insurance products, as well as in accounting, disclosure and reporting frameworks.' They worked with supporting organisations to develop tools and metrics to integrate natural capital factors into existing business structures.

In summary, its four key aims are to:

  • Increase understanding of business dependency on natural capital assets;
  • Support development of tools to integrate natural capital considerations into the decision-making process of all financial products and services;
  • Help build a global consensus on integrating natural capital into private sector accounting and decision-making;
  • Encourage a consensus on integrated reporting to include natural capital as one of the key components of an organisation's success.

Natural Capital Protocol

In July 2016, the Natural Capital Coalition (now known as Capitals Coalition) released the Natural Capital Protocol. The Protocol provides a standardised framework for organisations to identify, measure and value their direct and indirect impacts and dependencies on natural capital. The Protocol harmonises existing tools and methodologies, and guides organisations towards the information they need to make strategic and operational decisions that include impacts and dependencies on natural capital.

The Protocol was developed in a unique collaboration between 38 organisations who signed voluntary, pre-competitive contracts. This collaboration was led by Mark Gough, who is now the CEO of the Capitals Coalition.

The Protocol is available on a creative commons license and is free for organisations to apply.

Internationally agreed standard

Environmental-economic accounts provide the conceptual framework for integrated statistics on the environment and its relationship with the economy, including the impacts of the economy on the environment and the contribution of the environment to the economy. A coherent set of indicators and descriptive statistics can be derived from the accounts that inform a wide range of policies.

These include, but are not limited to:

The System of Integrated Environmental and Economic Accounting (SEEA) contains the internationally agreed standard concepts, definitions, classifications, accounting rules and tables for producing internationally comparable statistics on the environment and its relationship with the economy. The SEEA is a flexible system in the sense that its implementation can be adapted to countries' specific situations and priorities. Coordination of the implementation of the SEEA and ongoing work on new methodological developments is managed and supervised by the UN Committee of Experts on Environmental-Economic Accounting (UNCEEA). The final, official version of the SEEA Central Framework was published in February 2014.

In March 2021, the United Nations Statistical Commission adopted the SEEA Ecosystem Accounting (SEEA EA) standard at its 52nd session. The SEEA EA is a statistical framework that provides a coherent accounting approach to the measurement of ecosystems. Ecosystem accounts enable the presentation of data and indicators of ecosystem extent, ecosystem condition, and ecosystem services in both physical and monetary terms in a spatially explicit way. Following its adoption, the Statistics Division of the United Nations Department of Economic and Social Affairs (UN DESA) in collaboration with the United Nations Environment Programme (UNEP) and the Basque Centre for Climate Change (BC3) released the ARIES for SEEA Explorer in April 2021, an artificial intelligence-powered tool based on the Artificial Intelligence for Environment and Sustainability (ARIES) platform for rapid, standardized and customizable natural capital accounting. The ARIES for SEEA Explorer was made available on the UN Global Platform in order to accelerate SEEA's implementation worldwide.

Private sector approaches

Some studies envisage a private sector natural capital 'ecosystem', including investors, assets and regulators.

Criticism

Whilst measuring the components of natural capital in any region is a relatively straightforward process, both the task and the rationale of putting a monetary valuation on them, or on the value of the goods and services they freely give us, has proved more contentious. Within the UK, Guardian columnist, George Monbiot, has been critical of the work of the government's Natural Capital Committee and of other attempts to place any sort of monetary value on natural capital assets, or on the free ecosystem services they provide us with. In a speech referring to a report to government which suggested that better protection of the UK's freshwater ecosystems would yield an enhancement in aesthetic value of £700m, he derided attempts 'to compare things which cannot be directly compared'. He went on to say:

These figures, ladies and gentlemen, are marmalade. They are finely shredded, boiled to a pulp, heavily sweetened ... and still indigestible. In other words they are total gibberish.

— G. Monbiot

Others have defended efforts to integrate the valuation of natural capital into local and national economic decision-making, arguing that it puts the environment on a more balanced footing when weighed against other commercial pressures, and that 'valuation' of those assets is not the same as monetisation.

Philosophy of engineering

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Philosophy_of_engineering   ...