Search This Blog

Tuesday, May 27, 2025

Marine engineering

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Marine_engineering
Marine engineers reviewing ship plans

Marine engineering is the engineering of boats, ships, submarines, and any other marine vessel. Here it is also taken to include the engineering of other ocean systems and structures – referred to in certain academic and professional circles as "ocean engineering". After completing this degree one can join a ship as an officer in engine department and eventually rise to the rank of a chief engineer. This rank is one of the top ranks onboard and is equal to the rank of a ship's captain. Marine engineering is the highly preferred course to join merchant Navy as an officer as it provides ample opportunities in terms of both onboard and onshore jobs.

Marine engineering applies a number of engineering sciences, including mechanical engineering, electrical engineering, electronic engineering, and computer Engineering, to the development, design, operation and maintenance of watercraft propulsion and ocean systems. It includes but is not limited to power and propulsion plants, machinery, piping, automation and control systems for marine vehicles of any kind, as well as coastal and offshore structures.

History

Archimedes is traditionally regarded as the first marine engineer, having developed a number of marine engineering systems in antiquity. Modern marine engineering dates back to the beginning of the Industrial Revolution (early 1700s).

In 1807, Robert Fulton successfully used a steam engine to propel a vessel through the water. Fulton's ship used the engine to power a small wooden paddle wheel as its marine propulsion system. The integration of a steam engine into a watercraft to create a marine steam engine was the start of the marine engineering profession. Only twelve years after Fulton's Clermont had her first voyage, the Savannah marked the first sea voyage from America to Europe. Around 50 years later the steam powered paddle wheels had a peak with the creation of the Great Eastern, which was as big as one of the cargo ships of today, 700 feet in length, weighing 22,000 tons. Paddle steamers would become the front runners of the steamship industry for the next thirty years till the next type of propulsion came around.

Training

There are several educational paths to becoming a marine engineer, all of which includes earning a university or college degree, such as a Bachelor of Engineering (B.Eng. or B.E.), Bachelor of Science (B.Sc. or B.S.), Bachelor of Technology (B.Tech.), Bachelor of Technology Management and Marine Engineering (B.TecMan & MarEng), or a Bachelor of Applied Science (B.A.Sc.) in Marine Engineering.

Depending on the country and jurisdiction, to be licensed as a Marine engineer, a Master's degree, such as a Master of Engineering (M.Eng.), Master of Science (M.Sc or M.S.), or Master of Applied Science (M.A.Sc.) may be required.

Some marine engineers join the profession laterally, entering from other disciplines, like Mechanical Engineering, Civil Engineering, Electrical Engineering, Geomatics Engineering and Environmental Engineering, or from science-based fields, such as Geology, Geophysics, Physics, Geomatics, Earth Science, and Mathematics. To qualify as a marine engineer, those changing professions are required to earn a graduate Marine Engineering degree, such as an M.Eng, M.S., M.Sc., or M.A.Sc., after graduating from a different quantitative undergraduate program.

The fundamental subjects of marine engineering study usually include:

In the engineering of seagoing vessels, naval architecture is concerned with the overall design of the ship and its propulsion through the water, while marine engineering ensures that the ship systems function as per the design. Although they have distinctive disciplines, naval architects and marine engineers often work side-by-side.

Ocean engineering (and combination with Marine engineering)

Ocean engineering is concerned with other structures and systems in or adjacent to the ocean, including offshore platforms, coastal structures such as piers and harbors, and other ocean systems such as ocean wave energy conversion and underwater life-support systems. This in fact makes ocean engineering a distinctive field from marine engineering, which is concerned with the design and application of shipboard systems specifically. However, on account of its similar nomenclature and multiple overlapping core disciplines (e.g. hydrodynamics, hydromechanics, and materials science), "ocean engineering" sometimes operates under the umbrella term of "marine engineering", especially in industry and academia outside of the U.S. The same combination has been applied to the rest of this article.

Oceanography

Oceanography is a scientific field concerned with the acquisition and analysis of data to characterize the ocean. Although separate disciplines, marine engineering and oceanography are closely intertwined: marine engineers often use data gathered by oceanographers to inform their design and research, and oceanographers use tools designed by marine engineers (more specifically, oceanographic engineers) to advance their understanding and exploration of the ocean.

Mechanical engineering

Marine engineering incorporates many aspects of mechanical engineering. One manifestation of this relationship lies in the design of shipboard propulsion systems. Mechanical engineers design the main propulsion plant, the powering and mechanization aspects of the ship functions such as steering, anchoring, cargo handling, heating, ventilation, air conditioning interior and exterior communication, and other related requirements. Electrical power generation and electrical power distribution systems are typically designed by their suppliers; the only design responsibility of the marine engineering is installation.

Furthermore, an understanding of mechanical engineering topics such as fluid dynamics, fluid mechanics, linear wave theory, strength of materials, structural mechanics, and structural dynamics is essential to a marine engineer's repertoire of skills. These and other mechanical engineering subjects serve as an integral component of the marine engineering curriculum.

Civil Engineering

Civil engineering concepts play in an important role in many marine engineering projects such as the design and construction of ocean structures, ocean bridges and tunnels, and port/harbor design.

Coastal engineering

Electronics and Robotics

Marine engineering often deals in the fields of electrical engineering and robotics, especially in applications related to employing deep-sea cables and UUVs.

Deep-sea cables

A series of transoceanic fiber optic cables are responsible for connecting much of the world's communication via the internet, carrying as much as 99 percent of total global internet and signal traffic. These cables must be engineered to withstand deep-sea environments that are remote and often unforgiving, with extreme pressures and temperatures as well as potential interference by fishing, trawling, and sea life.

UUV autonomy and networks

The use of unmanned underwater vehicles (UUVs) stands to benefit from the use of autonomous algorithms and networking. Marine engineers aim to learn how advancements in autonomy and networking can be used to enhance existing UUV technologies and facilitate the development of more capable underwater vehicles.

Petroleum Engineering

A knowledge of marine engineering proves useful in the field of petroleum engineering, as hydrodynamics and seabed integration serve as key elements in the design and maintenance of offshore oil platforms.

Marine construction

Marine construction is the process of building structures in or adjacent to large bodies of water, usually the sea. These structures can be built for a variety of purposes, including transportation, energy production, and recreation. Marine construction can involve the use of a variety of building materials, predominantly steel and concrete. Some examples of marine structures include ships, offshore platforms, moorings, pipelines, cables, wharves, bridges, tunnels, breakwaters and docks.

Challenges specific to marine engineering

Hydrodynamic loading

In the same way that civil engineers design to accommodate wind loads on building and bridges, marine engineers design to accommodate a ship or submarine struck by waves millions of times over the course of the vessel's life. These load conditions are also found in marine construction and coastal engineering

Stability

Any seagoing vessel has the constant need for hydrostatic stability. A naval architect, like an airplane designer, is concerned with stability. What makes the naval architect's job unique is that a ship operates in two fluids simultaneously: water and air. Even after a ship has been designed and put to sea, marine engineers face the challenge of balancing cargo, as stacking containers vertically increases the mass of the ship and shifts the center of gravity higher. The weight of fuel also presents a problem, as the pitch of the ship may cause the liquid to shift, resulting in an imbalance. In some vessels, this offset will be counteracted by storing water inside larger ballast tanks. Marine engineers are responsible for the task of balancing and tracking the fuel and ballast water of a ship. Floating offshore structures have similar constraints.

Corrosion

The saltwater environment faced by seagoing vessels makes them highly susceptible to corrosion. In every project, marine engineers are concerned with surface protection and preventing galvanic corrosion. Corrosion can be inhibited through cathodic protection by introducing pieces of metal (e.g. zinc) to serve as a "sacrificial anode" in the corrosion reaction. This causes the metal to corrode instead of the ship's hull. Another way to prevent corrosion is by sending a controlled amount of low DC current through the ship's hull, thereby changing the hull's electrical charge and delaying the onset of electro-chemical corrosion. Similar problems are encountered in coastal and offshore structures.

Anti-fouling

Anti-fouling is the process of eliminating obstructive organisms from essential components of seawater systems. Depending on the nature and location of marine growth, this process is performed in a number of different ways:

  • Marine organisms may grow and attach to the surfaces of the outboard suction inlets used to obtain water for cooling systems. Electro-chlorination involves running high electrical current through sea water, altering the water's chemical composition to create sodium hypochlorite, purging any bio-matter.
  • An electrolytic method of anti-fouling involves running electrical current through two anodes (Scardino, 2009). These anodes typically consist of copper and aluminum (or alternatively, iron). The first metal, copper anode, releases its ion into the water, creating an environment that is too toxic for bio-matter. The second metal, aluminum, coats the inside of the pipes to prevent corrosion.
  • Other forms of marine growth such as mussels and algae may attach themselves to the bottom of a ship's hull. This growth interferes with the smoothness and uniformity of the ship's hull, causing the ship to have a less hydrodynamic shape that causes it to be slower and less fuel-efficient. Marine growth on the hull can be remedied by using special paint that prevents the growth of such organisms.

Pollution control

Sulfur emission

The burning of marine fuels releases harmful pollutants into the atmosphere. Ships burn marine diesel in addition to heavy fuel oil. Heavy fuel oil, being the heaviest of refined oils, releases sulfur dioxide when burned. Sulfur dioxide emissions have the potential to raise atmospheric and ocean acidity causing harm to marine life. However, heavy fuel oil may only be burned in international waters due to the pollution created. It is commercially advantageous due to the cost effectiveness compared to other marine fuels. It is prospected that heavy fuel oil will be phased out of commercial use by the year 2020 (Smith, 2018).

Oil and water discharge

Water, oil, and other substances collect at the bottom of the ship in what is known as the bilge. Bilge water is pumped overboard, but must pass a pollution threshold test of 15 ppm (parts per million) of oil to be discharged. Water is tested and either discharged if clean or recirculated to a holding tank to be separated before being tested again. The tank it is sent back to, the oily water separator, utilizes gravity to separate the fluids due to their viscosity. Ships over 400 gross tons are required to carry the equipment to separate oil from bilge water. Further, as enforced by MARPOL, all ships over 400 gross tons and all oil tankers over 150 gross tons are required to log all oil transfers in an oil record book (EPA, 2011).

Cavitation

Cavitation is the process of forming an air bubble in a liquid due to the vaporization of that liquid cause by an area of low pressure. This area of low pressure lowers the boiling point of a liquid allowing it to vaporize into a gas. Cavitation can take place in pumps, which can cause damage to the impeller that moves the fluids through the system. Cavitation is also seen in propulsion. Low pressure pockets form on the surface of the propeller blades as its revolutions per minute increase (IIMS, 2015). Cavitation on the propeller causes a small but violent implosion which could warp the propeller blade. To remedy the issue, more blades allow the same amount of propulsion force but at a lower rate of revolutions. This is crucial for submarines as the propeller needs to keep the vessel relatively quiet to stay hidden. With more propeller blades, the vessel is able to achieve the same amount of propulsion force at lower shaft revolutions.

Applications

The following categories provide a number of focus areas in which marine engineers direct their efforts.

Arctic Engineering

In designing systems that operate in the arctic (especially scientific equipment such as meteorological instrumentation and oceanographic buoys), marine engineers must overcome an array of design challenges. Equipment must be able to operate at extreme temperatures for prolonged periods of time, often with little to no maintenance. This creates the need for exceptionally temperature-resistant materials and durable precision electronic components.

Coastal Design and Restoration

Coastal engineering applies a mixture of civil engineering and other disciplines to create coastal solutions for areas along or near the ocean. In protecting coastlines from wave forces, erosion, and sea level rise, marine engineers must consider whether they will use a "gray" infrastructure solution - such as a breakwater, culvert, or sea wall made from rocks and concrete - or a "green" infrastructure solution that incorporates aquatic plants, mangroves, and/or marsh ecosystems. It has been found that gray infrastructure costs more to build and maintain, but it may provide better protection against ocean forces in high-energy wave environments. A green solution is generally less expensive and more well-integrated with local vegetation, but may be susceptible to erosion or damage if executed improperly. In many cases engineers will select a hybrid approach that combines elements of both gray and green solutions.

Deep Sea Systems

Life Support

The design of underwater life-support systems such as underwater habitats presents a unique set of challenges requiring a detailed knowledge of pressure vessels, diving physiology, and thermodynamics.

Unmanned Underwater Vehicles

Marine engineers may design or make frequent use of unmanned underwater vehicles, which operate underwater without a human aboard. UUVs often perform work in locations which would be otherwise impossible or difficult to access by humans due to a number of environmental factors (e.g. depth, remoteness, and/or temperature). UUVs can be remotely operated by humans, like in the case of remotely operated vehicles, semi-autonomous, or autonomous.

Sensors and instrumentation

The development of oceanographic sciences, subsea engineering and the ability to detect, track and destroy submarines (anti-submarine warfare) required the parallel development of a host of marine scientific instrumentation and sensors. Visible light is not transferred far underwater, so the medium for transmission of data is primarily acoustic. High-frequency sound is used to measure the depth of the ocean, determine the nature of the seafloor, and detect submerged objects. The higher the frequency, the higher the definition of the data that is returned. Sound Navigation and Ranging or SONAR was developed during the First World War to detect submarines, and has been greatly refined through to the present day. Submarines similarly use sonar equipment to detect and target other submarines and surface ships, and to detect submerged obstacles such as seamounts that pose a navigational obstacle. Simple echo-sounders point straight down and can give an accurate reading of ocean depth (or look up at the underside of sea-ice). More advanced echo sounders use a fan-shaped beam or sound, or multiple beams to derive highly detailed images of the ocean floor. High power systems can penetrate the soil and seabed rocks to give information about the geology of the seafloor, and are widely used in geophysics for the discovery of hydrocarbons, or for engineering survey. For close-range underwater communications, optical transmission is possible, mainly using blue lasers. These have a high bandwidth compared with acoustic systems, but the range is usually only a few tens of metres, and ideally at night. As well as acoustic communications and navigation, sensors have been developed to measure ocean parameters such as temperature, salinity, oxygen levels and other properties including nitrate levels, levels of trace chemicals and environmental DNA. The industry trend has been towards smaller, more accurate and more affordable systems so that they can be purchased and used by university departments and small companies as well as large corporations, research organisations and governments. The sensors and instruments are fitted to autonomous and remotely-operated systems as well as ships, and are enabling these systems to take on tasks that hitherto required an expensive human-crewed platform. Manufacture of marine sensors and instruments mainly takes place in Asia, Europe and North America. Products are advertised in specialist journals, and through Trade Shows such as Oceanology International and Ocean Business which help raise awareness of the products.

Environmental Engineering

In every coastal and offshore project, environmental sustainability is an important consideration for the preservation of ocean ecosystems and natural resources. Instances in which marine engineers benefit from knowledge of environmental engineering include creation of fisheries, clean-up of oil spills, and creation of coastal solutions.

Offshore Systems

A number of systems designed fully or in part by marine engineers are used offshore - far away from coastlines.

Offshore oil platforms

The design of offshore oil platforms involves a number of marine engineering challenges. Platforms must be able to withstand ocean currents, wave forces, and saltwater corrosion while remaining structurally integral and fully anchored into the seabed. Additionally, drilling components must be engineered to handle these same challenges with a high factor of safety to prevent oil leaks and spills from contaminating the ocean.

Offshore wind farms

Offshore wind farms encounter many similar marine engineering challenges to oil platforms. They provide a source of renewable energy with a higher yield than wind farms on land, while encountering less resistance from the general public (see NIMBY).

Ocean wave energy

Marine engineers continue to investigate the possibility of ocean wave energy as a viable source of power for distributed or grid applications. Many designs have been proposed and numerous prototypes have been built, but the problem of harnessing wave energy in a cost-effective manner remains largely unresolved.

Port and Harbor Design

A marine engineer may also deal with the planning, creation, expansion, and modification of port and harbor designs. Harbors can be natural or artificial and protect anchored ships from wind, waves, and currents. Ports can be defined as a city, town, or place where ships are moored, loaded, or unloaded. Ports typically reside within a harbor and are made up of one or more individual terminals that handle a particular cargo including passengers, bulk cargo, or containerized cargo. Marine engineers plan and design various types of marine terminals and structures found in ports, and they must understand the loads imposed on these structures over the course of their lifetime.

Salvage and Recovery

Marine salvage techniques are continuously modified and improved to recover shipwrecks. Marine engineers use their skills to assist at some stages of this process.

Career

Industry

With a diverse engineering background, marine engineers work in a variety of industry jobs across every field of math, science, technology, and engineering. A few companies such as Oceaneering International and Van Oord specialize in marine engineering, while other companies consult marine engineers for specific projects. Such consulting commonly occurs in the oil industry, with companies such as ExxonMobil and BP hiring marine engineers to manage aspects of their offshore drilling projects.

Military

Marine engineering lends itself to a number of military applications – mostly related to the Navy. The United States Navy's Seabees, Civil Engineer Corps, and Engineering Duty Officers often perform work related to marine engineering. Military contractors (especially those in naval shipyards) and the Army Corps of Engineers play a role in certain marine engineering projects as well.

Expected Growth

In 2012, the average annual earnings for marine engineers in the U.S. were $96,140 with average hourly earnings of $46.22. As a field, marine engineering is predicted to grow approximately 12% from 2016 to 2026. Currently, there are about 8,200 naval architects and marine engineers employed, however, this number is expected to increase to 9,200 by 2026 (BLS, 2017). This is due at least in part to the critical role of the shipping industry on the global market supply chain; 80% of the world's trade by volume is done overseas by close to 50,000 ships, all of which require marine engineers aboard and shoreside (ICS, 2017). Additionally, offshore energy continues to grow, and a greater need exists for coastal solutions due to sea level rise.

Education

Training Ship Golden Bear docked at California Maritime Academy.

Maritime universities are dedicated to teaching and training students in maritime professions. Marine engineers generally have a bachelor's degree in marine engineering, marine engineering technology, or marine systems engineering. Practical training is valued by employers alongside the bachelor's degree.

Professional institutions

Degrees in ocean engineering

A number of institutions - including MIT, UC Berkeley, the U.S. Naval Academy, and Texas A&M University - offer a four-year Bachelor of Science degree specifically in ocean engineering. Accredited programs consist of basic undergraduate math and science subjects such as calculus, statistics, chemistry, and physics; fundamental engineering subjects such as statics, dynamics, electrical engineering, and thermodynamics; and more specialized subjects such as ocean structural analysis, hydromechanics, and coastal management.

Graduate students in ocean engineering take classes on more advanced, in-depth subjects while conducting research to complete a graduate-level thesis. The Massachusetts Institute of Technology offers master's and PhD degrees specifically in ocean engineering. Additionally, MIT co-hosts a joint program with the Woods Hole Oceanographic Institution for students studying ocean engineering and other ocean-related topics at the graduate level.

Journals and Conferences

Journals about ocean engineering include Ocean Engineering, the IEEE Journal of Oceanic Engineering and the Journal of Waterway, Port, Coastal, and Ocean Engineering.

Conferences in the field of marine engineering include the IEEE Oceanic Engineering Society's OCEANS Conference and Exposition and the European Wave and Tidal Energy Conference (EWTEC).

Marine Engineering Achievements

Notable Marine Engineers

In Industry

In Academia

  • Michael E. McCormick, Professor Emeritus of the Department of Naval Architecture and Ocean Engineering at the U.S. Naval Academy and pioneer of wave energy research

Subsea technology

From Wikipedia, the free encyclopedia

Subsea technology involves fully submerged ocean equipment, operations, or applications, especially when some distance offshore, in deep ocean waters, or on the seabed. The term subsea is frequently used in connection with oceanography, marine or ocean engineering, ocean exploration, remotely operated vehicle (ROVs) autonomous underwater vehicles (AUVs), submarine communications or power cables, seafloor mineral mining, oil and gas, and offshore wind power.

Oil and gas

Oil and gas fields reside beneath many inland waters and offshore areas around the world, and in the oil and gas industry the term subsea relates to the exploration, drilling and development of oil and gas fields in these underwater locations. Under water oil fields and facilities are generically referred to using a subsea prefix, such as subsea well, subsea field, subsea project, and subsea developments.

Subsea oil field developments are usually split into Shallow water and Deepwater categories to distinguish between the different facilities and approaches that are needed. The term shallow water or shelf is used for very shallow water depths where bottom-founded facilities like jackup drilling rigs and fixed offshore structures can be used, and where saturation diving is feasible. Deepwater is a term often used to refer to offshore projects located in water depths greater than around 600 feet (180 m), where floating drilling vessels and floating oil platforms are used, and remotely operated underwater vehicles are required as crewed diving is not practical.

Subsea completions can be traced back to 1943 with the Lake Erie completion at a 35 ft (11 m) water depth. The well had a land-type Christmas tree that required diver intervention for installation, maintenance, and flow line connections. Shell completed its first subsea well in the Gulf of Mexico in 1961.

Systems

Subsea oil production systems can range in complexity from a single satellite well with a flowline linked to a fixed platform, FPSO or an onshore installation, to several wells on a template or clustered around a manifold, and transferring to a fixed or floating facility, or directly to an onshore installation.

Subsea production systems can be used to develop reservoirs, or parts of reservoirs, which require drilling of the wells from more than one location. Deep water conditions, or even ultradeep water conditions, can also inherently dictate development of a field by means of a subsea production system, since traditional surface facilities such as on a steel-piled jacket, might be either technically unfeasible or uneconomical due to the water depth.

The development of subsea oil and gas fields requires specialized equipment. The equipment must be reliable enough to safeguard the environment and make the exploitation of the subsea hydrocarbons economically feasible. The deployment of such equipment requires specialized and expensive vessels, which need to be equipped with diving equipment for relatively shallow equipment work (i.e. a few hundred feet water depth maximum) and robotic equipment for deeper water depths. Any requirement to repair or intervene with installed subsea equipment is thus normally very expensive. This type of expense can result in economic failure of the subsea development.

Subsea technology in offshore oil and gas production is a highly specialized field of application with particular demands on engineering and simulation. Most of the new oil fields are located in deep water and are generally referred to as deepwater systems. Development of these fields sets strict requirements for verification of the various systems’ functions and their compliance with current requirements and specifications. This is because of the high costs and time involved in changing a pre-existing system due to the specialized vessels with advanced onboard equipment. A full-scale test (System Integration Test – SIT) does not provide satisfactory verification of deepwater systems because the test, for practical reasons, cannot be performed under conditions identical to those under which the system will later operate. The oil industry has therefore adopted modern data technology as a tool for virtual testing of deepwater systems that enables detection of costly faults at an early phase of the project. By using modern simulation tools, models of deepwater systems can be set up and used to verify the system's functions, and dynamic properties, against various requirements specifications. This includes the model-based development of innovative high-tech plants and system solutions for the exploitation and production of energy resources in an environmentally friendly way as well as the analysis and evaluation of the dynamic behavior of components and systems used for the production and distribution of oil and gas. Another part is the real-time virtual test of systems for subsea production, subsea drilling, supply above sea level, seismography, subsea construction equipment, and subsea process measurement and control equipment.

Offshore wind power

The power transmission infrastructure for offshore wind power utilizes a variety of subsea technologies for the installation and maintenance of submarine power transmission cables and other electrical energy equipment. In addition, the monopile foundations of fixed-bottom wind turbines and the anchoring and cable structures of floating wind turbines are regularly inspected with a variety of shipborne subsea technology.

Underwater mining

Recent technological advancements have given rise to the use of remotely operated vehicles (ROVs) to collect mineral samples from prospective mine sites. Using drills and other cutting tools, the ROVs obtain samples to be analyzed for desired minerals. Once a site has been located, a mining ship or station is set up to mine the area.

Seafloor mineral mining of seafloor massive sulfide deposits (so named for the sulfide molecules, not the deposit size) are a developing subsea mineral mining industry. Nautilus Minerals Inc. had begun to establish a new industry by commercially exploring and, in the future, planned to extract copper, gold, silver and zinc in its Solwara 1 Project. The project was establishing its operations 1 mile (1.6 km) beneath the ocean surface in the Bismarck Sea near Papua New Guinea. When fully underway the operation would have been the world’s first commercial deep sea mining project. First production was expected to begin in 2017, but the company went bankrupt in 2019 after failing to secure funding for the project.

Remotely operated vehicles

Remotely Operated Vehicles (ROVs) are robotic pieces of equipment operated from afar to perform tasks on the sea floor. ROVs are available in a wide variety of function capabilities and complexities from simple "eyeball" camera devices, to multi-appendage machines that require multiple operators to operate or "fly" the equipment.

Other Professional Equipments used in installation of Sub Sea Telecommunication cable are specially designed crafts, modular barges, Water Pump along with Diving support and other accessories to seamlessly conduct installation operations in Deep Sea and Near Shore end, Rivers, Lakes. There are few professional companies in the world who own, operate such equipments and carry out operations worldwide on turnkey basis.

Energy harvesting and production

Subsea energy technologies are the subject of investigation using a number of technical strategies, none of which have yet been commercialized to become viable products or new energy industries. Energy sources under investigation include utility scale power production from ocean currents, such as the rapid currents found in the waters between the Florida Straits and Cape Hatteras. Research and projects are developing to harvest energy from hydrothermal vents to provide power for subsea ocean research instruments, developing autonomous vehicle recharge technologies, seabed sensor systems, and environmental research applications. Other investigations include harvesting energy from differences in temperature that occur with varied ocean depth, and microbial fuel cells that produce energy from organisms in ocean seafloor sediments.

Current methods for providing power for electric applications on offshore seabeds are limited to the use of batteries, power provided from generators on ships or platforms with fossil fuel generators, or for lower power requirements, wind, solar, or wave energy harvesting buoys.

Organizations

A number of professional societies and trade bodies are involved with the subsea industry around the world. Such groups include

Government agencies administer regulations in their territorial waters around the world. Examples of such government agencies are the Minerals Management Service (MMS, US), Norwegian Petroleum Directorate (NPD, Norway), and Health & Safety Executive (HSE, UK). The MMS administers the mineral resources in the US (using Code of Federal Regulations (CFR)) and provides management of all the US subsea mineral and renewable energy resources.

North Sea oil

From Wikipedia, the free encyclopedia
North Sea oil and gas fields
An oil platform in Mittelplate, Wadden Sea

North Sea oil is a mixture of hydrocarbons, comprising liquid petroleum and natural gas, produced from petroleum reservoirs beneath the North Sea.

In the petroleum industry, the term "North Sea" often includes areas such as the Norwegian Sea and the area known as "West of Shetland", "the Atlantic Frontier" or "the Atlantic Margin" that is not geographically part of the North Sea.

Brent crude is still used today as a standard benchmark for pricing oil, although the contract now refers to a blend of oils from fields in the northern North Sea.

From the 1960s to 2014 it was reported that 42 billion barrels of oil equivalent (BOE) had been extracted from the North Sea since when production began. As there is still an estimated 24 billion BOE potentially remaining in the reservoir (equivalent to about 35 years worth of production), the North Sea will remain as an important petroleum reservoir for years to come. However, this is the upper end of a range of estimates provided by Sir Ian Wood (commissioned by the UK government to carry out a review of the oil industry in the United Kingdom ); the lower end was 12 billion barrels. Wood, upset with how his figures were being used, said the most likely amount to be found would be between 15 billion and 16 billion barrels.

History

1851–1963

Commercial extraction of oil on the shores of the North Sea dates back to 1851, when James Young retorted oil from torbanite (boghead coal, or oil shale) mined in the Midland Valley of Scotland. Across the sea in Germany, oil was found in the Wietze field near Hanover in 1859, leading to the discovery of seventy more fields, mostly in Lower Cretaceous and Jurassic reservoirs, producing a combined total of around 1340 m³ (8,400 barrels) per day.

Gas was found by chance in a water well near Hamburg in 1910, leading to minor gas discoveries in Zechstein dolomites elsewhere in Germany. In England, BP discovered gas in similar reservoirs in the Eskdale anticline in 1938, and in 1939 they found commercial oil in Carboniferous rocks at Eakring in Nottinghamshire. Discoveries elsewhere in the East Midlands lifted production to 400 m³ (2,500 barrels) per day, and a second wave of exploration from 1953 to 1961 found the Gainsborough field and ten smaller fields.

The Netherlands' first oil shows were seen in a drilling demonstration at De Mient during the 1938 World Petroleum Congress at The Hague. Subsequent exploration led to the 1943 discovery by Exploratie Nederland, part of the Royal Dutch/Shell company Bataafsche Petroleum Maatschappij, of oil under the Dutch village of Schoonebeek, near the German border. NAM found the Netherlands' first gas in Zechstein carbonates at Coevorden in 1948. 1952 saw the first exploration well in the province of Groningen, Haren-1, which was the first to penetrate the Lower Permian Rotliegendes sandstone that is the main reservoir for the gas fields of the southern North Sea, although in Haren-1 it contained only water. The Ten Boer well failed to reach target depth for technical reasons, but was completed as a minor gas producer from the Zechstein carbonates. The Slochteren-1 well found gas in the Rotliegendes in 1959, although the full extent of what became known as the Groningen gas field was not appreciated until 1963—it is currently estimated at ≈96×1012 cu ft (2,700 km3) recoverable gas reserves. Smaller discoveries to the west of Groningen followed.

1964–present

The UK Continental Shelf Act came into force in May 1964. Seismic exploration and the first well followed later that year. It and a second well on the Mid North Sea High were dry, as the Rotliegendes was absent, but BP's Sea Gem rig struck gas in the West Sole Field in September 1965. The celebrations were short-lived since the Sea Gem sank, with the loss of 13 lives, after part of the rig collapsed as it was moved away from the discovery well. The Viking Gas Field was discovered in December 1965 with the Conoco/National Coal Board well 49/17-1, finding the gas-bearing Permian Rotliegend Sandstone at a depth of 2,756 m subsea. Helicopters were first used to transport workers. Larger gas finds followed in 1966 – Leman Bank, Indefatigable and Hewett – but by 1968 companies had lost interest in further exploration of the British sector, a result of a ban on gas exports and low prices offered by the only buyer, British Gas. West Sole came onstream in May 1967. Licensing regulations for Dutch waters were not finalised until 1967.

The situation was transformed in December 1969, when Phillips Petroleum discovered oil in Chalk of Danian age at Ekofisk, in Norwegian waters in the central North Sea. The same month, Amoco discovered the Montrose Field about 217 km (135 mi) east of Aberdeen. The original objective of the well had been to drill for gas to test the idea that the southern North Sea gas province extended to the north. Amoco were astonished when the well discovered oil. BP had been awarded several licences in the area in the second licensing round late in 1965, but had been reluctant to work on them. The discovery of Ekofisk prompted them to drill what turned out to be a dry hole in May 1970, followed by the discovery of the giant Forties Oil Field in October 1970. The following year, Shell Expro discovered the giant Brent oilfield in the northern North Sea east of Shetland in Scotland and the Petronord Group discovered the Frigg gas field. The Piper oilfield was discovered in 1973 and the Statfjord Field and the Ninian Field in 1974, with the Ninian reservoir consisting of Middle Jurassic sandstones at a depth of 3000 m subsea in a "westward tilted horst block".

Offshore production, like that of the North Sea, became more economical after the 1973 oil crisis caused the world oil price to quadruple, followed by the 1979 oil crisis, which caused another tripling in the oil price. Oil production started from the Argyll & Duncan Oilfields (now the Ardmore) in June 1975 followed by Forties Oil Field in November of that year. The inner Moray Firth Beatrice Field, a Jurassic sandstone/shale reservoir 1829 m deep in a "fault-bounded anticlinal trap", was discovered in 1976 with well 11/30-1, drilled by the Mesa Petroleum Group (named after T. Boone Pickens' wife Bea, "the only oil field in the North Sea named for a woman") in 49 m of water.

A 'Statfjord' gravity-based structure under construction in Norway. Almost all of the structure was submerged.

Volatile weather conditions in Europe's North Sea have made drilling particularly hazardous, claiming many lives (see Oil platform). The conditions also make extraction a costly process; by the 1980s, costs for developing new methods and technologies to make the process both efficient and safe far exceeded NASA's budget to land a man on the moon. The exploration of the North Sea has continually pushed the edges of the technology of exploitation (in terms of what can be produced) and later the technologies of discovery and evaluation (2-D seismic, followed by 3-D and 4-D seismic; sub-salt seismic; immersive display and analysis suites and supercomputing to handle the flood of computation required).

The Gullfaks oil field was discovered in 1978. The Snorre Field was discovered in 1979, producing from the Triassic Lunde Formation and the Triassic-Jurassic Statfjord Formation, both fluvial sandstones in a mudstone matrix. The Oseberg oil field and Troll gas field were also discovered in 1979. The Miller oilfield was discovered in 1983. The Alba Field produces from sandstones in the middle Eocene Alba Formation at 1860 m subsea and was discovered in 1984 in UKCS Block 16/26. The Smørbukk Field was discovered in 1984 in 250–300 m of water that produces from Lower to Middle Jurassic sandstone formations within a fault block. The Snøhvit Gas Field and the Draugen oil field were discovered in 1984. The Heidrun oil field was discovered in 1985.

The largest UK field discovered in the past twenty-five years is Buzzard, also located off Scotland, found in June 2001 with producible reserves of almost 64×106 m³ (400m bbl) and an average output of 28,600 m3 to 30,200 m3 (180,000–220,000 bbl) per day.

The largest field found in the past five years on the Norwegian part of the North Sea is the Johan Sverdrup oil field, which was discovered in 2010. It is one of the largest discoveries made in the Norwegian Continental Shelf. Total reserves of the field are estimated at 1.7 to 3.3 billion barrels of gross recoverable oil, and Johan Sverdrup is expected to produce 120,000 to 200,000 barrels of oil per day. Production started on 5 October 2019.

As of January 2015, the North Sea was the world's most active offshore drilling region, with 173 active rigs drilling. By May 2016, the North Sea oil and gas industry was financially stressed by the reduced oil prices, and called for government support.

The distances, number of workplaces, and fierce weather in the 750,000 square kilometre (290,000 square mile) North Sea area require the world's largest fleet of heavy instrument flight rules (IFR) helicopters, some specifically developed for the North Sea. They carry about two million passengers per year from sixteen onshore bases, of which Aberdeen Airport is the world's busiest, with 500,000 passengers per year.

Licensing

The Exclusive Economic Zones in the North Sea

Following the 1958 Convention on the Continental Shelf and after some disputes on the rights to natural resource exploitation the national limits of the exclusive economic zones were ratified. Five countries are involved in oil production in the North Sea. All operate a tax and royalty licensing regime. The respective sectors are divided by median lines agreed in the late 1960s:

  • Norway – Oljedirektoratet (the Norwegian Petroleum Directorate grants licences. The NCS is also divided into quads of 1 degree by 1 degree. Norwegian licence blocks are larger than British blocks, being 15 minutes of latitude by 20 minutes of longitude (12 blocks in a quad). Like in Britain, there are numerous part blocks formed by re-licensing relinquished areas.
  • United Kingdom – Exploration and production licences are regulated by the Oil and Gas Authority following the 2014 Wood Review on maximising UKCS (United Kingdom Continental Shelf) oil and gas recovery. Licences were formerly granted by the Department of Energy and Climate Change (DECC – formerly the Department of Trade and Industry). The UKCS is divided into quadrants of 1 degree latitude and one degree longitude. Each quadrant is divided into 30 blocks measuring 10 minutes of latitude and 12 minutes of longitude. Some blocks are divided further into part blocks where some areas are relinquished by previous licensees. For example, block 13/24a is located in quad 13 and is the 24th block and is the 'a' part block. The UK government has traditionally issued licences via periodic (now annual) licensing rounds. Blocks are awarded on the basis of the work programme bid by the participants. The UK government has actively solicited new entrants to the UKCS via "promote" licensing rounds with less demanding terms and the fallow acreage initiative, where non-active licences have to be relinquished.
  • Denmark – Energistyrelsen (the Danish Energy Agency) administers the Danish sector. The Danes also divide their sector of the North Sea into 1 degree by 1 degree quadrants. Their blocks, however, are 10 minutes latitude by 15 minutes longitude. Part blocks exist where partial relinquishment has taken place.
  • Germany – Germany and the Netherlands share a quadrant and block grid—quadrants are given letters rather than numbers. The blocks are 10 minutes latitude by 20 minutes longitude.
  • Netherlands – The Dutch sector is located in the Southern Gas Basin and shares a grid pattern with Germany.

Reserves and production

The Norwegian and British sectors hold most of the large oil reserves. It is estimated that the Norwegian sector alone contains 54% of the sea's oil reserves and 45% of its gas reserves. More than half of the North Sea oil reserves have been extracted, according to official sources in both Norway and the UK. For Norway, Oljedirektoratet gives a figure of 4,601 million cubic metres of oil (corresponding to 29 billion barrels) for the Norwegian North Sea alone (excluding smaller reserves in Norwegian Sea and Barents Sea) of which 2,778 million cubic metres (60%) has already been produced prior to January 2007. UK sources give a range of estimates of reserves, but even using the most optimistic "maximum" estimate of ultimate recovery, 76% had been recovered as of the end of 2010. Note the UK figure includes fields which are not in the North Sea (onshore, West of Shetland).

United Kingdom Continental Shelf production was 137 million tonnes of oil and 105 billion m³ of gas in 1999. (1 tonne of crude oil converts to 7.5 barrels). The Danish explorations of Cenozoic stratigraphy, undertaken in the 1990s, showed petroleum-rich reserves in the northern Danish sector, especially the Central Graben area. The Dutch area of the North Sea followed through with onshore and offshore gas exploration, and well creation. Exact figures are debatable, because methods of estimating reserves vary and it is often difficult to forecast future discoveries.

Peaking and decline

The oil rigs in the North Sea show up in this satellite photo of Europe taken at night in 2002.

Official production data from 1995 to 2020 is published by the UK government. Table 3.10 lists annual production, import and exports over that period. When it peaked in 1999, production of North Sea oil was 128 million tonnes per year, approx, 950,000 m³ (6 million barrels) per day, having risen by ~ 5% from the early 1990s. However, by 2010 this had halved to under 60 million tonnes/year, and continued declining further, and between 2015 and 2020 has hovered between 40 and 50 million tonnes/year, at around 35% of the 1999 peak. From 2005 the UK became a net importer of crude oil, and as production declined, the amount imported has slowly risen to ~ 20 million tonnes per year by 2020.

Similar historical data is available for gas. Natural gas production peaked at nearly 10 trillion cubic feet (280×109 m³) in 2001 representing some 1.2GWhr of energy; by 2018 UK production had declined to 1.4 trillion cubic feet, (41×109 m³). Over a similar period energy from gas imports have risen by a factor of approximately 10, from 60GWh in 2001 to just over 500GWh in 2019.

UK oil production has seen two peaks, in the mid-1980s and the late 1990s, with a decline to around 300×103 m³ (1.9 million barrels) per day in the early 1990s. Monthly oil production peaked at 13.5×106 m³ (84.9 million barrels) in January 1985 although the highest annual production was seen in 1999, with offshore oil production in that year of 407×106 m³ (398 million barrels) and had declined to 231×106 m³ (220 million barrels) in 2007. This was the largest decrease of any oil-exporting nation in the world, and has led to Britain becoming a net importer of crude for the first time in decades, as recognized by the energy policy of the United Kingdom. Norwegian crude oil production as of 2013 is 1.4 mbpd. This is a more than 50% decline since the peak in 2001 of 3.2 mbpd.

Geology

The geological disposition of the UK's oil and gas fields is outlined in the following table.

North Sea oil and gas fields – Geology
Geological Era Geological Epoch Age, million years Fields
Tertiary Pliocene 2–5
Miocene 5–23
Oligocene 23–34
Eocene 34–56 Frigg, Gannet, Alba
Palaeocene 56–66 Arbroath, Balmoral, Everest, Forties, Heimdal, Maureen, Montrose, Nelson
Mesozoic Cretaceous 66–145 Lower: Britannia, Scapa
Jurassic 145–201 Upper: Moray Firth fields, Brae, Buzzard, Claymore, Fulmar, Magnus, Piper, Scott, Tiffany

Kittiwake, Gannet

Middle: Brent, Bruce, Eider, Heather, Hutton, Ninian, Tern

Lower to Middle: Beatrice

Triassic 201–252 Upper: Beryl

Dotty, Douglas, Esmond, Hamilton, J-Block, Morecambe Bay

Lower: Hewett

Palaeozoic Permian 252–299 Upper Permian (Zechstein): Argyll, Auk

Lower Permian (Rotliegend): Camelot, Indefatigable, Leman, Viking, West Sole

Carboniferous 299–359 Caister, Murdoch
Devonian 359–419 Buchan
Silurian 419–444
Ordovician 444–485
Cambrian 485–541

Carbon dioxide sequestration

In the North Sea, Norway's Equinor natural-gas platform Sleipner strips carbon dioxide out of the natural gas with amine solvents and disposes of this carbon dioxide by geological sequestration ("carbon sequestration") while keeping up gas production pressure. Sleipner reduces emissions of carbon dioxide by approximately one million tonnes a year; that is about 19000th of global emissions. The cost of geological sequestration is minor relative to the overall running costs.

Clinical trial

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Clinical_...