Search This Blog

Saturday, June 26, 2021

Little Ice Age

From Wikipedia, the free encyclopedia

Global average temperatures show that the Little Ice Age was not a distinct planet-wide time period, but the end of a long temperature decline that preceded recent global warming.

The Little Ice Age (LIA) was a period of regional cooling that occurred after the Medieval Warm Period. It was not a true ice age of global extent. The term was introduced into scientific literature by François E. Matthes in 1939. The time period has been conventionally defined as extending from the 16th to the 19th centuries, but some experts prefer an alternative timespan from about 1300 to about 1850.

The NASA Earth Observatory notes three particularly cold intervals: one beginning about 1650, another about 1770, and the last in 1850, all separated by intervals of slight warming. The Intergovernmental Panel on Climate Change Third Assessment Report considered that the timing and areas affected by the Little Ice Age suggested largely independent regional climate changes rather than a globally synchronous increased glaciation. At most, there was modest cooling of the Northern Hemisphere during the period.

Several causes have been proposed: cyclical lows in solar radiation, heightened volcanic activity, changes in the ocean circulation, variations in Earth's orbit and axial tilt (orbital forcing), inherent variability in global climate, and decreases in the human population (for example from the Black Death and the epidemics emerging in the Americas upon European contact).

Areas involved

The Intergovernmental Panel on Climate Change Third Assessment Report (TAR) of 2001 described the areas affected:

Evidence from mountain glaciers does suggest increased glaciation in a number of widely spread regions outside Europe prior to the twentieth century, including Alaska, New Zealand and Patagonia. However, the timing of maximum glacial advances in these regions differs considerably, suggesting that they may represent largely independent regional climate changes, not a globally-synchronous increased glaciation. Thus current evidence does not support globally synchronous periods of anomalous cold or warmth over this interval, and the conventional terms of "Little Ice Age" and "Medieval Warm Period" appear to have limited utility in describing trends in hemispheric or global mean temperature changes in past centuries.... [Viewed] hemispherically, the "Little Ice Age" can only be considered as a modest cooling of the Northern Hemisphere during this period of less than 1°C relative to late twentieth century levels.

The IPCC Fourth Assessment Report (AR4) of 2007 discusses more recent research, giving particular attention to the Medieval Warm Period:

...when viewed together, the currently available reconstructions indicate generally greater variability in centennial time scale trends over the last 1 kyr than was apparent in the TAR.... The result is a picture of relatively cool conditions in the seventeenth and early nineteenth centuries and warmth in the eleventh and early fifteenth centuries, but the warmest conditions are apparent in the twentieth century. Given that the confidence levels surrounding all of the reconstructions are wide, virtually all reconstructions are effectively encompassed within the uncertainty previously indicated in the TAR. The major differences between the various proxy reconstructions relate to the magnitude of past cool excursions, principally during the twelfth to fourteenth, seventeenth and nineteenth centuries.

Dating

The last written records of the Norse Greenlanders are from a 1408 marriage at Hvalsey Church, now the best-preserved of the Norse ruins.

There is no consensus regarding the time when the Little Ice Age began, but a series of events before the known climatic minima has often been referenced. In the 13th century, pack ice began advancing southwards in the North Atlantic, as did glaciers in Greenland. Anecdotal evidence suggests expanding glaciers almost worldwide. Based on radiocarbon dating of roughly 150 samples of dead plant material with roots intact, collected from beneath ice caps on Baffin Island and Iceland, Miller et al. (2012) state that cold summers and ice growth began abruptly between 1275 and 1300, followed by "a substantial intensification" from 1430 to 1455.

In contrast, a climate reconstruction based on glacial length shows no great variation from 1600 to 1850 but strong retreat thereafter.

Therefore, any of several dates ranging over 400 years may indicate the beginning of the Little Ice Age:

  • 1250 for when Atlantic pack ice began to grow; cold period possibly triggered or enhanced by the massive eruption of Samalas volcano in 1257
  • 1275 to 1300 based on the radiocarbon dating of plants killed by glaciation
  • 1300 for when warm summers stopped being dependable in Northern Europe
  • 1315 for the rains and Great Famine of 1315–1317
  • 1560 to 1630 for beginning of worldwide glacial expansion known as the Grindelwald Fluctuation
  • 1650 for the first climatic minimum.

The Little Ice Age ended in the latter half of the 19th century or early in the 20th century.

Geophysical and social impact by region

Europe

The Frozen Thames, 1677

The Baltic Sea froze over twice, 1303 and 1306–07; years followed of "unseasonable cold, storms and rains, and a rise in the level of the Caspian Sea.” The Little Ice Age brought colder winters to parts of Europe and North America. Farms and villages in the Swiss Alps were destroyed by encroaching glaciers during the mid-17th century. Canals and rivers in Great Britain and the Netherlands were frequently frozen deeply enough to support ice skating and winter festivals. The first River Thames frost fair was in 1608 and the last in 1814; changes to the bridges and the addition of the Thames Embankment affected the river flow and depth, greatly diminishing the possibility of further freezes. In 1658, a Swedish army marched across the Great Belt to Denmark to attack Copenhagen. The winter of 1794–1795 was particularly harsh: the French invasion army under Pichegru was able to march on the frozen rivers of the Netherlands, and the Dutch fleet was locked in the ice in Den Helder harbour.

Sea ice surrounding Iceland extended for miles in every direction, closing harbors to shipping. The population of Iceland fell by half, but that may have been caused by skeletal fluorosis after the eruption of Laki in 1783. Iceland also suffered failures of cereal crops and people moved away from a grain-based diet. The Norse colonies in Greenland starved and vanished by the early 15th century, as crops failed and livestock could not be maintained through increasingly harsh winters. Greenland was largely cut off by ice from 1410 to the 1720s.

Winter skating on the main canal of Pompenburg, Rotterdam in 1825, shortly before the minimum, by Bartholomeus Johannes van Hove

In his 1995 book the early climatologist Hubert Lamb said that in many years, "snowfall was much heavier than recorded before or since, and the snow lay on the ground for many months longer than it does today." In Lisbon, Portugal, snowstorms were much more frequent than today; one winter in the 17th century produced eight snowstorms. Many springs and summers were cold and wet but with great variability between years and groups of years. This was particularly evident during the 'Grindelwald Fluctuation' (1560-1630): a rapid cooling phase that was associated with more erratic weather - including increased storminess, unseasonal snow storms and droughts. Crop practices throughout Europe had to be altered to adapt to the shortened, less reliable growing season, and there were many years of dearth and famine (such as the Great Famine of 1315–1317, but that may have been before the Little Ice Age). According to Elizabeth Ewan and Janay Nugent, "Famines in France 1693–94, Norway 1695–96 and Sweden 1696–97 claimed roughly 10 percent of the population of each country. In Estonia and Finland in 1696–97, losses have been estimated at a fifth and a third of the national populations, respectively." Viticulture disappeared from some northern regions and storms caused serious flooding and loss of life. Some of them resulted in permanent loss of large areas of land from the Danish, German, and Dutch coasts.

The violin maker Antonio Stradivari produced his instruments during the Little Ice Age. The colder climate is proposed to have caused the wood used in his violins to be denser than in warmer periods, contributing to the tone of his instruments. According to the science historian James Burke, the period inspired such novelties in everyday life as the widespread use of buttons and button-holes, and knitting of custom-made undergarments to better cover and insulate the body. Chimneys were invented to replace open fires in the centre of communal halls, so allowing houses with multiple rooms, separation of masters from servants.

The Little Ice Age, by anthropologist Brian Fagan of the University of California at Santa Barbara, tells of the plight of European peasants during the 1300 to 1850 chill: famines, hypothermia, bread riots and the rise of despotic leaders brutalizing an increasingly dispirited peasantry. In the late 17th century, agriculture had dropped off dramatically: "Alpine villagers lived on bread made from ground nutshells mixed with barley and oat flour." Historian Wolfgang Behringer has linked intensive witch-hunting episodes in Europe to agricultural failures during the Little Ice Age.

The Frigid Golden Age, by environmental historian Dagomar Degroot of Georgetown University, by contrast, reveals that some societies thrived while others faltered during the Little Ice Age. In particular, the Little Ice Age transformed environments around the Dutch Republic — the precursor to the present-day Netherlands — so that they were easier to exploit in commerce and conflict. The Dutch were resilient, even adaptive, in the face of weather that devastated neighboring countries. Merchants exploited harvest failures, military commanders took advantage of shifting wind patterns, and inventors developed technologies that helped them profit from the cold. The 17th-century "Golden Age" of the Republic therefore owed much to the flexibility of the Dutch in coping with a changing climate.

Cultural responses

Historians have argued that cultural responses to the consequences of the Little Ice Age in Europe consisted of violent scapegoating. The prolonged cold, dry periods brought drought upon many European communities, resulting in poor crop growth, poor livestock survival, and increased activity of pathogens and disease vectors. Disease tends to intensify under the same conditions that unemployment and economic difficulties arise: prolonged, cold, dry seasons. Both of these outcomes – disease and unemployment – enhance each other, generating a lethal positive feedback loop. Although these communities had some contingency plans, such as better crop mixes, emergency grain stocks, and international food trade, these did not always prove effective. Communities often lashed out via violent crimes, including robbery and murder; sexual offense accusations increased as well, such as adultery, bestiality, and rape. Europeans sought explanations for the famine, disease, and social unrest that they were experiencing, and blamed the innocent. Evidence from several studies indicate that increases in violent actions against marginalized groups that were held responsible for the Little Ice Age overlap with years of particularly cold, dry weather.

One example of the violent scapegoating occurring during the Little Ice Age was the resurgence of witchcraft trials, as argued by Oster (2004) and Behringer (1999). Oster and Behringer argue that this resurgence was brought upon by the climatic decline. Prior to the Little Ice Age, "witchcraft" was considered an insignificant crime and victims were rarely accused. But beginning in the 1380s, just as the Little Ice Age began, European populations began to link magic and weather-making. The first systematic witch hunts began in the 1430s, and by the 1480s it was widely believed that witches should be held accountable for poor weather. Witches were blamed for direct and indirect consequences of the Little Ice Age: livestock epidemics, cows that gave too little milk, late frosts, and unknown diseases. In general, as the temperature dropped, the number of witchcraft trials rose, and trials decreased when temperature increased. The peaks of witchcraft persecutions overlap with hunger crises that occurred in 1570 and 1580, the latter lasting a decade. These trials primarily targeted poor women, many of whom were widows. Not everybody agreed that witches should be persecuted for weather-making, but such arguments primarily focused not upon whether witches existed, but upon whether witches had the capability to control the weather. The Catholic Church in the Early Middle Ages argued that witches could not control the weather because they were mortals, not God, but by the mid-13th-century most populations agreed with the idea that witches could control natural forces.

Historians have argued that Jewish populations were also blamed for climatic deterioration during the Little Ice Age. Christianity was the official religion of Western Europe, and within these populations there was a great degree of anti-Semitism. There was no direct link made between Jews and weather conditions, they were only blamed for indirect consequences such as disease. For example, outbreaks of the plague were often blamed on Jews; in Western European cities during the 1300s Jewish populations were murdered in an attempt to stop the spread of the plague. Rumors were spread that either Jews were poisoning wells themselves, or conspiring against Christians by telling those with leprosy to poison the wells. As a response to such violent scapegoating, Jewish communities sometimes converted to Christianity or migrated to the Ottoman Empire, Italy, or to territories of the Holy Roman Empire.

Some populations blamed the cold periods and the resulting famine and disease during the Little Ice Age on general divine displeasure. Particular groups, however, took the brunt of the burden in attempts to cure it. For example, in Germany, regulations were imposed upon activities such as gambling and drinking, which disproportionately affected the lower class, and women were forbidden from showing their knees. Other regulations affected the wider population, such as prohibiting dancing and sexual activities, as well as moderating food and drink intake.

In Ireland, Catholics blamed the Reformation for the bad weather. The Annals of Loch Cé, in its entry for the year 1588, describes a midsummer snowstorm: "a wild apple was not larger than each stone of it," blaming it on the presence of a "wicked, heretical, bishop in Oilfinn"; that is, the Protestant Bishop of Elphin, John Lynch.

Depictions of winter in European painting

William James Burroughs analyses the depiction of winter in paintings, as does Hans Neuberger. Burroughs asserts that it occurred almost entirely from 1565 to 1665 and was associated with the climatic decline from 1550 onwards. Burroughs claims that there had been almost no depictions of winter in art, and he "hypothesizes that the unusually harsh winter of 1565 inspired great artists to depict highly original images and that the decline in such paintings was a combination of the 'theme' having been fully explored and mild winters interrupting the flow of painting". Wintry scenes, which entail technical difficulties in painting, have been regularly and well handled since the early 15th century by artists in illuminated manuscript cycles showing the Labours of the Months, typically placed on the calendar pages of books of hours. January and February are typically shown as snowy, as in February in the famous cycle in the Les Très Riches Heures du duc de Berry, painted 1412–1416 and illustrated below. Since landscape painting had not yet developed as an independent genre in art, the absence of other winter scenes is not remarkable. On the other hand, snowy winter landscapes and stormy seascapes in particular became artistic genres in the Dutch Republic during the coldest and stormiest decades of the Little Ice Age. At the time when the Little Ice Age was at its height, Dutch observations and reconstructions of similar weather in the past caused artists to consciously paint local manifestations of a cooler, stormier climate. This was a break from European conventions as Dutch paintings and realistic landscapes depicted scenes from everyday life, which most modern scholars believe that were full of symbolic messages and metaphors that would have been clear to contemporary customers.

The famous winter landscape paintings by Pieter Brueghel the Elder, such as The Hunters in the Snow, are all thought to have been painted in 1565. His son Pieter Brueghel the Younger (1564–1638) also painted many snowy landscapes, but according to Burroughs, he "slavishly copied his father's designs. The derivative nature of so much of this work makes it difficult to draw any definite conclusions about the influence of the winters between 1570 and 1600...".

Winter landscape with iceskaters, c. 1608, Hendrick Avercamp

Burroughs says that snowy subjects return to Dutch Golden Age painting with works by Hendrick Avercamp from 1609 onwards. There is then a hiatus between 1627 and 1640, before the main period of such subjects from the 1640s to the 1660s, which relates well with climate records for the later period. The subjects are less popular after about 1660, but that does not match any recorded reduction in severity of winters and may reflect only changes in taste or fashion. In the later period between the 1780s and 1810s, snowy subjects again became popular.

Neuberger analysed 12,000 paintings, held in American and European museums and dated between 1400 and 1967, for cloudiness and darkness. His 1970 publication shows an increase in such depictions that corresponds to the Little Ice Age, peaking between 1600 and 1649.

Paintings and contemporary records in Scotland demonstrate that curling and ice skating were popular outdoor winter sports, with curling dating back to the 16th century and becoming widely popular in the mid-19th century. As an example, an outdoor curling pond constructed in Gourock in the 1860s remained in use for almost a century, but increasing use of indoor facilities, problems of vandalism, and milder winters led to the pond being abandoned in 1963.

General Crisis of the Seventeenth Century

The General Crisis of the Seventeenth Century in Europe was a period of inclement weather, crop failure, economic hardship, extreme inter-group violence, and high mortality causally linked to the Little Ice Age. Episodes of social instability track the cooling with a time lapse of up to 15 years, and many developed into armed conflicts, such as the Thirty Years' War (1618–1648). It started as a war of succession to the Bohemian throne. Animosity between Protestants and Catholics in the Holy Roman Empire (Germany today) added fuel to the fire. Soon, it escalated to a huge conflict involving all major European powers that devastated much of Germany. By the war's end, some regions of the Holy Roman Empire saw their population drop by as much as 70%. But as global temperatures started to rise, the ecological stress faced by Europeans also began to fade. Mortality rates dropped and the level of violence fell, paving the way for a period known as Pax Britannica, which witnessed the emergence of a variety of innovations in technology (which enabled industrialization), medicine (which improved hygiene), and social welfare (such as the world's first welfare programs in Germany), making life even more comfortable.

North America

"February" from the calendar of Les Très Riches Heures du duc de Berry, 1412–1416

Early European explorers and settlers of North America reported exceptionally severe winters. For example, according to Lamb, Samuel Champlain reported bearing ice along the shores of Lake Superior in June 1608. Both Europeans and indigenous peoples suffered excess mortality in Maine during the winter of 1607–1608, and extreme frost was reported in the Jamestown, Virginia, settlement at the same time. Native Americans formed leagues in response to food shortages. The journal of Pierre de Troyes, Chevalier de Troyes, who led an expedition to James Bay in 1686, recorded that the bay was still littered with so much floating ice that he could hide behind it in his canoe on 1 July. In the winter of 1780, New York Harbor froze, allowing people to walk from Manhattan Island to Staten Island.

The extent of mountain glaciers had been mapped by the late 19th century. In the north and the south temperate zones, Equilibrium Line Altitude (the boundaries separating zones of net accumulation from those of net ablation) were about 100 metres (330 ft) lower than they were in 1975. In Glacier National Park, the last episode of glacier advance came in the late 18th and the early 19th centuries. In 1879, famed naturalist John Muir found that Glacier Bay ice had retreated 48 miles. In Chesapeake Bay, Maryland, large temperature excursions were possibly related to changes in the strength of North Atlantic thermohaline circulation.

Because the Little Ice Age took place during the European colonization of the Americas, it threw off a lot of the early colonizers. The colonizers had expected the climate of North America to be similar to the climate of Europe at similar latitudes, however the climate of North America had hotter summers and colder winters than were expected by the Europeans. This was an effect aggravated by the Little Ice Age. This unpreparedness led to the collapse of many early European settlements in North America.

When colonizers settled at Jamestown, in modern day Virginia, historians agree it was one of the coldest time periods in the last 1000 years. Droughts were also a huge problem in North America during the Little Ice Age, settlers arriving in Roanoke were in the largest drought of the past 800 years. Tree ring studies done by the University of Arkansas discovered that many colonists arrived at the beginning of a seven year drought. These times of drought also decreased Native American populations and led to conflict due to food scarcity. English colonists at Roanoke forced Native Americans of Ossomocomuck to share their depleted supplies with them. This led to warfare between the two groups and Native American cities were destroyed. That cycle would repeat itself many times at Jamestown. The combination of fighting and cold weather led to the spread of diseases as well. The colder weather brought on by the Little Ice Age helped the Malaria parasites brought by Europeans in mosquitoes develop faster. This in turn led to many deaths among Native American populations.

Cold winters made worse by the Little Ice Age were also an issue in North America for colonists. Anecdotal evidence shows that people who lived in North America suffered during this time. John Smith, who established Jamestown, Virginia, wrote of a winter so cold, not even the dogs could bear it. Another colonist, Francis Perkins, wrote in the Winter of 1607 that it got so cold that the river at his fort froze due to extremely cold weather. In 1642, Thomas Gorges wrote that between 1637 and 1645, colonists in Maine in Massachusetts had horrendous weather conditions. June of 1637 was so hot that European newcomers were dying in the heat and travelers had to travel at night to stay cool enough. He also wrote that the winter of 1641-1642 was “piercingly Intolerable” and that no Englishman nor Native American had ever seen anything like it. Stating that the Massachusetts bay had frozen as far as one could see and that horse carriages now roamed where ships used to be. The summers of 1638 and 1639 were very short, cold, and wet according to Gorges and this led to compounding food scarcity for a few years. To make matters worse, creatures like caterpillars and pigeons were feeding on crops and devastating harvests. Every year that Gorges writes about, he notes unusual weather patterns that include high precipitation, drought, and extreme cold or extreme heat. These all are byproducts of the Little Ice Age.

While the Little Ice Age dropped global temperatures by an estimated 0.1 degrees celsius, it increased global weirding all over North America and the world. Summers got hotter and winters got colder. Floods ensued and so did droughts. The Little Ice age didn’t just cool places off a bit, it threw the climate into a weird unpredictable beast that made living in North America significantly harder for all of its inhabitants.

While nobody knows exactly what caused the Little Ice Age, one theory from Warren Ruddimen states that approximately 50% of the Little Ice Age originated in North America. This theory states that when European diseases wiped out 95 percent of Native Americans, the resulting effects led to global cooling. Approximately 55 million Native Americans died due to those diseases and the theory is that as a result of those deaths, 56 million hectares of land was abandoned and reforested. Ruddimen believes that this caused more oxygen to enter the air and then created a global cooling effect.

Many of the people living in North America had their own theories as to why the weather was so poor. Colonist Ferdinando Gorges blamed the cold weather on cold ocean winds. Humphrey Gilbert tried to explain the extremely cold and foggy weather of Newfoundland by saying the earth drew cold vapors from the ocean and drew them west. Dozens of others had their own theories as to why North America was so much colder than Europe. But because of their observations and hypotheses, we know a lot about the Little Ice Age’s effect on North America.

Mesoamerica

An analysis of several climate proxies undertaken in Mexico's Yucatán Peninsula, linked by its authors to Maya and Aztec chronicles relating periods of cold and drought, supports the existence of the Little Ice Age in the region.

Another study conducted in several sites in Mesoamerica such as Los Tuxtlas and Lake Pompal in Veracruz, Mexico demonstrate a decrease in human activity in the area during the Little Ice Age. This was proven by studying charcoal fragments and the amount of maize pollen taken from sedimentary samples using a nonrotatory piston corer. The samples also showed volcanic activity which caused forest regeneration between 650 and 800 A.D. The instances of volcanic activity near Lake Pompal indicate varying temperatures, not a continuous coldness, during the Little Ice Age in Mesoamerica.

Atlantic Ocean

In the North Atlantic, sediments accumulated since the end of the last ice age, nearly 12,000 years ago, show regular increases in the amount of coarse sediment grains deposited from icebergs melting in the now open ocean, indicating a series of 1–2 °C (2–4 °F) cooling events recurring every 1,500 years or so. The most recent of these cooling events was the Little Ice Age. These same cooling events are detected in sediments accumulating off Africa, but the cooling events appear to be larger, ranging between 3–8 °C (6–14 °F).

Asia

Although the original designation of a Little Ice Age referred to reduced temperature of Europe and North America, there is some evidence of extended periods of cooling outside this region, but it is not clear whether they are related or independent events. Mann states:

While there is evidence that many other regions outside Europe exhibited periods of cooler conditions, expanded glaciation, and significantly altered climate conditions, the timing and nature of these variations are highly variable from region to region, and the notion of the Little Ice Age as a globally synchronous cold period has all but been dismissed.

In China, warm-weather crops such as oranges were abandoned in Jiangxi Province, where they had been grown for centuries. Also, the two periods of most frequent typhoon strikes in Guangdong coincide with two of the coldest and driest periods in northern and central China (1660–1680, 1850–1880). Scholars have argued that the fall of the Ming dynasty may have been partially caused by the droughts and famines caused by the Little Ice Age.

There are debates on the start date and time periods of Little Ice Age's effects. Most scholars agree on categorizing the Little Ice Age period into 3 distinct cold periods. 1458-1552, 1600-1720, and 1840-1880. According to data from the National Oceanic and Atmospheric Administration, the Eastern Monsoon area of China was the earliest to experience the effects of Little Ice Age from 1560-1709. In the Western region of China surrounding the Tibetan Plateau, the effects of Little Ice Age lagged behind the Eastern region, with significant cold periods between 1620 and 1749.

The temperature changes was unprecedented for the farming communities in China. According to Dr. Coching Chu's 1972 study, the Little Ice Age during the end of Ming Dynasty and start of Qing Dynasty (1650-1700) was one of the coldest periods in recorded Chinese history. Many major droughts during summer months were recorded while significant freezing events occurred in Winter months, hurting the food supply significantly during Ming Dynasty.

This period of Little Ice Age would correspond to major historical events of the period. The Jurchen people resided in Northern China and formed a tributary state to the Ming government and Wanli Emperor. From 1573 to 1620, the Manchurian land experienced famine experienced extreme snowfall, which depleted agriculture production and decimated the livestock population. Scholars argued that this was caused by the temperature drops during Little Ice Age. Despite the lack of food production, Wanli Emperor ordered the Jurchens to pay the same amount of tribute each year. This led to anger and sowed seeds to the rebellion against Ming China. In 1616, Jurchens established the Later Jin dynasty. Led by Hong Taiji and Nurhaci, the Later Jin dynasty moved South and achieved decisive victories in battles against the Ming military such as the Battle of Fushun in 1618.

Following the earlier defeats and the death of Wanli Emperor, Chongzhen Emperor took the reign of China and continued the war effort. From 1632 to 1641, the Little Ice Age climate began to cause drastic climate changes in Ming territories. For example, rainfall in Huabei region dropped by 11% ~ 47% compared to historical average. Meanwhile, the Shaanbei region along the Yellow River experienced six major floods that ruined cities such as Yan’an. The climate factored heavily in weakening the Imperial government’s control over China and accelerated the fall of Ming dynasty. In 1644, Li Zicheng led Later Jin forces into Beijing, overthrowing the Ming Dynasty, and establishing the Qing Dynasty.

During the early years of the Qing Dynasty, the little ice age continued to have a significant impact on Chinese society. During the rule of Kangxi Emperor (1661-1722), majority of the Qing territories were still much colder than the historical average. However, Kangxi Emperor pushed reforms and managed to increase socioeconomic recovery from the natural disasters, partially benefiting from the peacefulness of the early Qing dynasty. This essentially marked the end of the Little Ice Age in China and led to a more affluent era of Chinese monarchial history known as the High Qing era.

In the Himalayas, the general assumption is that the cooling events in the Himalayas were synchronous with cooling events in Europe during the Little Ice Age based on the characteristics of moraines. However, applications of Quaternary dating methods such as surface exposure dating demonstrated that glacial maxima occurred between 1300 and 1600 CE, which was slightly earlier than the recorded coldest period in Northern Hemisphere. Many large Himalayan glacial debris remained close to their limits from the Little Ice Age to present. The Himalayas also experienced increase in snowfall at higher altitudes, resulting in a southward shift in the Indian summer monsoon and an increase in precipitation. Overall, the increase in winter precipitation may have caused some glacial movements.

In Pakistan, the Balochistan province became colder and the native Baloch people started mass migration and settled along the Indus River in Sindh and Punjab provinces.

Africa

The influence of the Little Ice Age on African climate has been clearly demonstrated throughout the 14th-19th century. Despite variances throughout the continent, a general trend of declining temperatures led to an average cooling of 1 °C in the continent.

In Ethiopia and North Africa, permanent snow was reported on mountain peaks at levels where it does not occur today. Timbuktu, an important city on the trans-Saharan caravan route, was flooded at least 13 times by the Niger River; there are no records of similar flooding before or since.

Several paleoclimatic studies of Southern Africa have suggested significant changes in relative changes in climate and environmental conditions. In Southern Africa, sediment cores retrieved from Lake Malawi show colder conditions between 1570 and 1820, suggesting the Lake Malawi records "further support, and extend, the global expanse of the Little Ice Age." A novel 3,000-year temperature reconstruction method, based on the rate of stalagmite growth in a cold cave in South Africa, further suggests a cold period from 1500 to 1800 "characterizing the South African Little Ice age." This δ18O  stalagmite record temperature reconstruction over a 350-year period (1690-1740) suggests that South Africa may have been the coldest region in Africa, cooling as much as 1.4 °C in the Summer. Further, solar magnetic and Niño-Southern Oscillation cycle may have been key drivers of climate variability in the subtropical region. Periglacial features in the eastern Lesotho Highlands might have been reactivated by the Little Ice Age. Another archaeological reconstruction of South Africa reveals the rise of the Great Zimbabwe people society due to ecological advantages due to increased rainfall over other competitor societies’ such as the Mupungubwe people.

Aside from temperature variability, data from equatorial East Africa suggests impacts to the hydrologic cycle in the late 1700s. Historical data reconstructions from ten major African lakes indicate an episode of “drought and desiccation” occurred throughout East Africa. This period showed drastic reductions in lake depth as these were transformed into desiccated puddles. It is very likely that locals could traverse lake Chad, among others, and bouts of “intense droughts were ubiquitous”. These predictors indicate local societies were probably launched into long migrations and warfare with neighboring tribes as agriculture was rendered virtually useless by the arid soil conditions.

Antarctica

CO
2
mixing ratios at Law Dome

Kreutz et al. (1997) compared results from studies of West Antarctic ice cores with the Greenland Ice Sheet Project Two GISP2 and suggested a synchronous global cooling. An ocean sediment core from the eastern Bransfield Basin in the Antarctic Peninsula shows centennial events that the authors link to the Little Ice Age and Medieval Warm Period. The authors note "other unexplained climatic events comparable in duration and amplitude to the LIA and MWP events also appear."

The Siple Dome (SD) had a climate event with an onset time that is coincident with that of the Little Ice Age in the North Atlantic based on a correlation with the GISP2 record. The event is the most dramatic climate event in the SD Holocene glaciochemical record. The Siple Dome ice core also contained its highest rate of melt layers (up to 8%) between 1550 and 1700, most likely because of warm summers. Law Dome ice cores show lower levels of CO
2
mixing ratios from 1550 to 1800, which Etheridge and Steele conjecture are "probably as a result of colder global climate."

Sediment cores in Bransfield Basin, Antarctic Peninsula, have neoglacial indicators by diatom and sea-ice taxa variations during the Little Ice Age. Stable isotope records from the Mount Erebus Saddle ice core site suggests that the Ross Sea region experienced 1.6 ± 1.4 °C cooler average temperatures during the Little Ice Age, compared to the last 150 years.

Australia and New Zealand

Due to its location in the Southern Hemisphere, Australia did not experience a regional cooling as in Europe or North America. Instead, the Australian Little Ice Age was characterized by humid, rainy climates followed by drying and aridification in the nineteenth century.

As studied by Tibby et al. (2018), lake records from Victoria, New South Wales, and Queensland suggest that conditions in the east and south-east of Australia were wet and unusually cool from the sixteenth to early nineteenth centuries. This corresponds with the “peak” of the global Little Ice Age from 1594-1722. For example, the Swallow Lagoon rainfall record indicates that from circa 1500-1850, there was significant and consistent rainfall, sometimes exceeding 300 millimeters. These rainfalls significantly reduced after circa 1890. Similarly, the hydrological records of Lake Surprise’s salinity levels reveal high humidity levels from circa 1440-1880, while an increase in salinity between 1860-1880 point to a negative change to the once-humid climate. The mid-nineteenth century marked a notable change to east Australia’s rainfall and humidity patterns.

As Tibby et al. (2018) note, in eastern Australia, these paleoclimatic changes of the Little Ice Age in the late 1800s coincided with the agricultural changes resulting from European colonization. Following the 1788 establishment of British colonies on the Australian continent—primarily concentrated in eastern regions and cities like Sydney, and later Melbourne and Brisbane—the British introduced new agricultural practices such as pastoralism. Practices such as these required widespread deforestation and vegetation clearance. Pastoralism and land clearing is captured in works of art such as prominent landscape artist John Glover’s 1833 painting, Patterdale Landscape with Cattle.

Patterdale Landscape with Cattle (1833) by John Glover depicts agricultural practices like pastoralism, which contributed to the aridification of Australia's late Little Ice Age.

Over the next century, such deforestation led to biodiversity loss, wind and water-based soil erosion, and soil salinity. Furthermore, as argued by Gordan et al. (2003), such land and vegetation clearance in Australia resulted in a 10% reduction in water vapor transport to the atmosphere. This occurred in western Australia as well, in which nineteenth century land-clearing resulted in reduced rainfall over the region. By 1850-1890, these human agricultural practices, concentrated in the eastern region of Australia, most likely amplified the drying and aridification that marked the end of the Little Ice Age.

In the north, evidence suggests fairly dry conditions, but coral cores from the Great Barrier Reef show similar rainfall as today but with less variability. A study that analyzed isotopes in Great Barrier Reef corals suggested that increased water vapor transport from southern tropical oceans to the poles contributed to the Little Ice Age. Borehole reconstructions from Australia suggest that over the last 500 years, the 17th century was the coldest on the continent. The borehole temperature reconstruction method further indicates that the warming of Australia over the past five centuries is only around half that of the warming experienced by the Northern Hemisphere, further proving that Australia did not reach the same depths of cooling as the continents to the north.

On the west coast of the Southern Alps of New Zealand, the Franz Josef glacier advanced rapidly during the Little Ice Age and reached its maximum extent in the early 18th century, in one of the few cases of a glacier thrusting into a rainforest. Evidence suggests, corroborated by tree ring proxy data, that the glacier contributed to a -0.56 °C temperature anomaly over the course of the Little Ice Age in New Zealand. Based on dating of a yellow-green lichen of the Rhizocarpon subgenus, the Mueller Glacier, on the eastern flank of the Southern Alps within Aoraki / Mount Cook National Park, is considered to have been at its maximum extent between 1725-1730.

Pacific Islands

Sea-level data for the Pacific Islands suggest that sea level in the region fell, possibly in two stages, between 1270 and 1475. This was associated with a 1.5 °C fall in temperature (determined from oxygen-isotope analysis) and an observed increase in El Niño frequency. Tropical Pacific coral records indicate the most frequent, intense El Niño-Southern Oscillation activity in the mid-seventeenth century. Foraminiferald 18 O records indicate that the Indo-Pacific Warm Pool was warm and saline between 1000 and 1400 CE, with temperatures approximating current conditions, but cooled from 1400 CE onwards, reaching its lowest temperatures in 1700, consistent with the transition from mid-Holocene warming to the Little Ice Age. The nearby Southwestern Pacific, however, experienced warmer than average conditions over the course of the Little Ice Age, thought to be due to increased trade winds causing increased evaporation and higher salinity in the region, and that the dramatic temperature differences between the higher latitudes and the equator resulted in drier conditions in the subtropics. Independent multiproxy analyses of Raraku Lake(sedimentology, mineralology, organic and inorganic geochemistry, etc) indicate that Easter Island was subject to two phases of arid climate leading to drought, with the first occurring between 500 and 1200 CE, and second occurring during the Little Ice Age, from 1570 to 1720. In between these two arid phases, the island enjoyed a humid period, extending from 1200 CE to 1570, coinciding with the maximum development of the Rapanui civilization.

South America

Tree-ring data from Patagonia show cold episodes between 1270 and 1380 and from 1520 to 1670, contemporary with the events in the Northern Hemisphere. Eight sediment cores taken from Puyehue Lake have been interpreted as showing a humid period from 1470 to 1700, which the authors describe as a regional marker of the onset of the Little Ice Age. A 2009 paper details cooler and wetter conditions in southeastern South America between 1550 and 1800, citing evidence obtained via several proxies and models. 18O records from three Andean ice cores show a cool period from 1600 to 1800.

Although only anecdotal evidence, in 1675 the Spanish Antonio de Vea expedition entered San Rafael Lagoon through Río Témpanos (Spanish for "Ice Floe River") without mentioning any ice floe but stating that the San Rafael Glacier did not reach far into the lagoon. In 1766, another expedition noticed that the glacier reached the lagoon and calved into large icebergs. Hans Steffen visited the area in 1898, noticing that the glacier penetrated far into the lagoon. Such historical records indicate a general cooling in the area between 1675 and 1898: "The recognition of the LIA in northern Patagonia, through the use of documentary sources, provides important, independent evidence for the occurrence of this phenomenon in the region." As of 2001, the border of the glacier had significantly retreated as compared to the borders of 1675.

Possible causes

Scientists have tentatively identified seven possible causes of the Little Ice Age: orbital cycles; decreased solar activity; increased volcanic activity; altered ocean current flows; fluctuations in the human population in different parts of the world causing reforestation, or deforestation; and the inherent variability of global climate.

Orbital cycles

Orbital forcing from cycles in the earth's orbit around the sun has, for the past 2,000 years, caused a long-term northern hemisphere cooling trend that continued through the Middle Ages and the Little Ice Age. The rate of Arctic cooling is roughly 0.02 °C per century. This trend could be extrapolated to continue into the future, possibly leading to a full ice age, but the twentieth-century instrumental temperature record shows a sudden reversal of this trend, with a rise in global temperatures attributed to greenhouse gas emissions.

Solar activity

Solar activity includes any sun disturbances like sunspots, solar flares, or prominences, and scientists can track these solar activities in the past by analyzing both the carbon 14 or Beryllium 10 isotopes in items like tree rings. These solar activities, while not the most common or noticeable causes for the little ice age, provide considerable evidence that they played a part in the formation of the little ice age and the increase in temperature after the period. During the time of the little ice age which ranged from 1450 to 1850, there were very low recorded levels of solar activity in the Spörer, Maunder, and Dalton minima.

The Spörer minimum was between 1450-1550 AD, when the little ice age started. A study by Dmitri Mauquoy and others found that at the beginning of Spörer, the percentage of change of carbon-14 skyrocketed to about 10%. This percentage stayed pretty common along with the entire duration of the Spörer minimum, then around 1600 dropped rapidly before the Maunder (1645-1715) where it rose again to a little under 10% change. To put this into perspective, during standard periods the percentage change in carbon-14 idles between -5 to 5 percent so this is a considerable change. At the end of the little ice age which is also the Dalton minimum (1790-1830), the percentage change is normal around -1%. These changes in the Carbon-14 have a strong relationship with the temperature because during these three periods as an increase in the carbon-14 does correlate with cold temperatures during the little ice age.

In a study by Judith Lean, where she talked about the sun and climate relationships and the cause and effect relationship that helped form the little ice age. In her research, she found that during a certain time period there a .13% solar irradiance increased the temperature of the earth by .3 degree Celsius. This was around 1650-1790 and this information can help you formulate another idea of what happened during the little ice age. When they calculated correlation coefficients of the global temperature response to solar forcing over three different periods it comes out to an average coefficient of .79. This shows a strong relationship between the two components and helps the point that the little ice age was considerably cold with very low solar activity. Lean and your team also formulated an equation where Change in T is equal to -168.802+Sx0.123426. This equals turns out to a .16 increase in temperature for every .1% increase in solar irradiance.

To summarize, the entire length of the little ice age had a high percentage change in carbon-14 and low social irradiance. Both of these show a strong relationship to the cold temperatures during the time and while the changes of solar activity actually have on the temperature of the earth compared to things like greenhouse gases is very minimal. Solar activity is still important to the whole picture of climate change and does affect the earth even if it’s just less than one Celsius over a few hundred years.

Solar activity events recorded in radiocarbon
 
The Maunder minimum in a 400-year history of sunspot numbers

Volcanic activity

In a 2012 paper, Miller et al. link the Little Ice Age to an "unusual 50-year-long episode with four large sulfur-rich explosive eruptions, each with global sulfate loading >60 Tg" and notes that "large changes in solar irradiance are not required."

Throughout the Little Ice Age, the world experienced heightened volcanic activity. When a volcano erupts, its ash reaches high into the atmosphere and can spread to cover the whole earth. The ash cloud blocks out some of the incoming solar radiation, leading to worldwide cooling that can last up to two years after an eruption. Also emitted by eruptions is sulfur, in the form of sulfur dioxide gas. When it reaches the stratosphere, it turns into sulfuric acid particles, which reflect the sun's rays, further reducing the amount of radiation reaching Earth's surface.

A recent study found that an especially massive tropical volcanic eruption in 1257, possibly of the now-extinct Mount Samalas near Mount Rinjani, both in Lombok, Indonesia, followed by three smaller eruptions in 1268, 1275, and 1284 did not allow the climate to recover. This may have caused the initial cooling, and the 1452–53 eruption of Kuwae in Vanuatu triggered a second pulse of cooling. The cold summers can be maintained by sea-ice/ocean feedbacks long after volcanic aerosols are removed.

Other volcanoes that erupted during the era and may have contributed to the cooling include Billy Mitchell (ca. 1580), Huaynaputina (1600), Mount Parker (1641), Long Island (Papua New Guinea) (ca. 1660), and Laki (1783). The 1815 eruption of Tambora, also in Indonesia, blanketed the atmosphere with ash; the following year, 1816, came to be known as the Year Without a Summer, when frost and snow were reported in June and July in both New England and Northern Europe.

Ocean circulation

Thermohaline circulation or Oceanic conveyor belt illustrated

Another possibility is that there was a slowing of thermohaline circulation. The circulation could have been interrupted by the introduction of a large amount of fresh water into the North Atlantic, possibly caused by a period of warming before the Little Ice Age known as the Medieval Warm Period. There is some concern that a shutdown of thermohaline circulation could happen again as a result of the present warming period.

Decreased human populations

Some researchers have proposed that human influences on climate began earlier than is normally supposed (see Early anthropocene for more details) and that major population declines in Eurasia and the Americas reduced this impact, leading to a cooling trend.

The Black Death is estimated to have killed 30% to 60% of Europe's population. In total, the plague may have reduced the world population from an estimated 475 million to 350–375 million in the 14th century. It took 200 years for the world population to recover to its previous level. William Ruddiman proposed that these large population reductions in Europe, East Asia, and the Middle East caused a decrease in agricultural activity. Ruddiman suggests reforestation took place, allowing more carbon dioxide uptake from the atmosphere, which may have been a factor in the cooling noted during the Little Ice Age. Ruddiman further hypothesized that a reduced population in the Americas after European contact in the 16th century could have had a similar effect. Other researchers supported depopulation in the Americas as a factor, asserting that humans had cleared considerable amounts of forest to support agriculture in the Americas before the arrival of Europeans brought on a population collapse. Richard Nevle, Robert Dull and colleagues further suggested that not only anthropogenic forest clearance played a role in reducing the amount of carbon sequestered in Neotropical forests, but that human-set fires played a central role in reducing biomass in Amazonian and Central American forests before the arrival of Europeans and the concomitant spread of diseases during the Columbian exchange. Dull and Nevle calculated that reforestation in the tropical biomes of the Americas alone from 1500 to 1650 accounted for net carbon sequestration of 2-5 Pg. Brierley conjectured that European arrival in the Americas caused mass deaths from epidemic disease, which caused much abandonment of farmland, which caused much return of forest, which sequestered greater levels of carbon dioxide. A study of sediment cores and soil samples further suggests that carbon dioxide uptake via reforestation in the Americas could have contributed to the Little Ice Age. The depopulation is linked to a drop in carbon dioxide levels observed at Law Dome, Antarctica. A 2011 study by the Carnegie Institution's Department of Global Ecology asserts that the Mongol invasions and conquests, which lasted almost two centuries, contributed to global cooling by depopulating vast regions and allowing for the return of carbon absorbing forest over cultivated land.

Population increases at mid- to high-latitudes

During the Little Ice Age period, it is suggested that increased deforestation had a significant enough effect on albedo (reflectiveness of the Earth) to decrease regional and global temperatures. Changes in albedo were caused by widespread deforestation at high latitudes. In turn this exposed more snow cover to and increased reflectiveness of the Earth's surface as land was cleared for agricultural use. This theory implies that over the course of the Little Ice Age land was cleared to an extent that warranted deforestation as a cause for climate change.

It has been proposed that Land Use Intensification theory could explain this phenomenon. This theory was originally proposed by Ester Boserup and suggests that agriculture is only advanced as the population demands it. Furthermore, there is evidence of rapid population and agricultural expansion that could warrant some of the changes observed in the climate during this period.

This theory is still under speculation for multiple reasons. Primarily, the difficulty of recreating climate simulations outside of a narrow set of land in these regions. This has led to an inability to rely on data to explain sweeping changes, or account for the wide variety of other sources of climate change globally. As an extension of the first reason climate models including this time period have shown increases and decreases in temperature globally. That is, climate models have not shown deforestation as a singular cause for climate change, nor as a reliable cause for global temperature decrease.

Inherent variability of climate

Spontaneous fluctuations in global climate might explain past variability. It is very difficult to know what the true level of variability from internal causes might be given the existence of other forces, as noted above, whose magnitude may not be known. One approach to evaluating internal variability is to use long integrations of coupled ocean-atmosphere global climate models. They have the advantage that the external forcing is known to be zero, but the disadvantage is that they may not fully reflect reality. The variations may result from chaos-driven changes in the oceans, the atmosphere, or interactions between the two. Two studies have concluded that the demonstrated inherent variability is not great enough to account for the Little Ice Age. The severe winters of 1770 to 1772 in Europe, however, have been attributed to an anomaly in the North Atlantic oscillation.

Roman Warm Period

From Wikipedia, the free encyclopedia

The Roman Warm Period, or Roman Climatic Optimum, was a period of unusually warm weather in Europe and the North Atlantic that ran from approximately 250 BC to AD 400. Theophrastus (371 – c. 287 BC) wrote that date trees could grow in Greece if they were planted, but that they could not set fruit there. That is the case today, implying that South Aegean mean summer temperatures in the 4th and 5th centuries BC were within a degree of modern ones. That and other literary fragments from the time confirm that the Greek climate then was basically the same as it was around 2000. Tree rings from the Italian Peninsula in the late 3rd century BC indicate a time of mild conditions there at the time of Hannibal's crossing of the Alps with imported elephants (218 BC).

Dendrochronological evidence from wood found at the Parthenon shows variability of climate in the 5th century BC, which resembles the modern pattern of variation.

Cooling at the end of the period is noted in Southwest Florida. This may have been due to a reduction in solar radiation reaching the Earth, which may have triggered a change in atmospheric circulation patterns.

The phrase "Roman Warm Period" appears in a 1995 doctoral thesis. It was popularized by an article published in Nature in 1999.

More recent research, including a 2019 analysis based on a much larger dataset of climate proxies, has found that this putative period, along with other warmer or colder pre-industrial periods such as the "Little Ice Age" and "Medieval Warm Period" were regional phenomena, not globally coherent episodes. This analysis uses the temperature record of the last 2,000 years dataset compiled by the PAGES 2k Consortium 2017.

Proxies

Pollen

A high-resolution pollen analysis of a core from Galicia concluded in 2003 that the Roman Warm Period lasted from 250 BC to AD 450 in northwestern Iberia.

Glaciers

A 1986 analysis of Alpine glaciers concluded that the period AD 100–400 period was significantly warmer than centuries before and after. Artifacts recovered from the retreating Schnidejoch glacier have been taken as evidence for the Bronze Age, Roman, and Medieval Warm Periods.

Deep ocean sediment

A 1999 reconstruction of ocean current patterns, based on the granularity of deep ocean sediment, concluded that there was a Roman Warm Period, which peaked around AD 150.

Mollusk shells

An analysis of oxygen isotopes found in mollusk shells in an Icelandic inlet concluded in 2010 that Iceland experienced an exceptionally warm period from 230 BC to AD 40.

 

Medieval Warm Period

From Wikipedia, the free encyclopedia
Global average temperatures show that the Medieval Warm Period was not a planet-wide phenomenon.

The Medieval Warm Period (MWP) also known as the Medieval Climate Optimum, or Medieval Climatic Anomaly was a time of warm climate in the North Atlantic region lasting from c. 950 to c. 1250. It was likely related to warming elsewhere while some other regions were colder, such as the tropical Pacific. Average global mean temperatures have been calculated to be similar to early-mid-20th-century warming. Possible causes of the Medieval Warm Period include increased solar activity, decreased volcanic activity, and changes to ocean circulation.

The period was followed by a cooler period in the North Atlantic and elsewhere termed the Little Ice Age. Some refer to the event as the Medieval Climatic Anomaly as this term emphasizes that climatic effects other than temperature were important.

It is thought that between c.  950 and c.  1100 was the Northern Hemisphere's warmest period since the Roman Warm Period. It was only in the 20th and 21st centuries that the Northern Hemisphere experienced higher temperatures. Climate proxy records show peak warmth occurred at different times for different regions, indicating that the Medieval Warm Period was not a globally uniform event.

Initial research

The Medieval Warm Period (MWP) is generally thought to have occurred from c. 950c. 1250, during the European Middle Ages. In 1965 Hubert Lamb, one of the first paleoclimatologists, published research based on data from botany, historical document research and meteorology, combined with records indicating prevailing temperature and rainfall in England around c. 1200 and around c. 1600. He proposed, "Evidence has been accumulating in many fields of investigation pointing to a notably warm climate in many parts of the world, that lasted a few centuries around c. 1000c. 1200 AD, and was followed by a decline of temperature levels till between c. 1500 and c. 1700 the coldest phase since the last ice age occurred."

The warm period became known as the Medieval Warm Period, and the cold period was called the Little Ice Age (LIA). However, that view was questioned by other researchers; the IPCC First Assessment Report of 1990 discussed the "Medieval Warm Period around 1000 AD (which may not have been global) and the Little Ice Age which ended only in the middle to late nineteenth century." It said temperatures in the "late tenth to early thirteenth centuries (about AD 950-1250) appear to have been exceptionally warm in western Europe, Iceland and Greenland". The IPCC Third Assessment Report from 2001 summarized newer research: "evidence does not support globally synchronous periods of anomalous cold or warmth over this time frame, and the conventional terms of 'Little Ice Age' and 'Medieval Warm Period' are chiefly documented in describing northern hemisphere trends in hemispheric or global mean temperature changes in past centuries." Global temperature records taken from ice cores, tree rings, and lake deposits, have shown that the Earth may have been slightly cooler globally (by 0.03 °C) than in the early and mid-20th century.

Palaeoclimatologists developing region-specific climate reconstructions of past centuries conventionally label their coldest interval as "LIA" and their warmest interval as the "MWP." Others follow the convention, and when a significant climate event is found in the "LIA" or "MWP" time frames, they associate their events to the period. Some "MWP" events are thus wet events or cold events rather than strictly warm events, particularly in central Antarctica, where climate patterns opposite to the North Atlantic area have been noticed.

Globally

A 2009 study by Michael E. Mann et al., examining spatial patterns of surface temperatures shown in multi-proxy reconstructions finds that the Medieval Warm Period, shows "warmth that matches or exceeds that of the past decade in some regions, but which falls well below recent levels globally." Their reconstruction of the pattern is characterised by warmth over a large part of the North Atlantic Ocean, Southern Greenland, the Eurasian Arctic, and parts of North America which appears to substantially exceed that of the late 20th century (1961–1990) baseline and is comparable or exceeds that of the past decade or two in some regions. Certain regions, such as central Eurasia, northwestern North America, and (with less confidence) parts of the South Atlantic, exhibit anomalous coolness.

In 2013, a study by the Pages-2k consortium suggests the warming was not globally synchronous: "Our regional temperature reconstructions also show little evidence for globally synchronized multi-decadal shifts that would mark well-defined worldwide MWP and LIA intervals. Instead, the specific timing of peak warm and cold intervals varies regionally, with multi-decadal variability resulting in regionally specific temperature departures from an underlying global cooling trend." In direct contrast to these findings, a 2013 study recreated a "temperature record of western equatorial Pacific subsurface and intermediate water masses over the past 10,000 years that shows that heat content varied in step with both Northern and Southern high-latitude oceans. The findings support the view that the Holocene Thermal Maximum, the Medieval Warm Period, and the Little Ice Age were global events, and they provide a long-term perspective for evaluating the role of ocean heat content in various warming scenarios for the future."

In 2019, using an extended proxy data set, the Pages-2k consortium confirmed that the Medieval Climate Anomaly was not a globally synchronous event. The warmest 51-year period within 'Medieval Warm Period' did not occur at the same time for different regions. They argue for a regional instead of global framing of climate variability in the preindustrial Common Era to aid understanding.

North Atlantic

Greenland ice sheet temperatures interpreted with 18O isotope from 6 ice cores (Vinther, B., et al., 2009). The dataset ranges from 9690BC to AD1970 and it has a resolution of around 20 years, meaning that each data point represents the average temperature of the surrounding 20 years.
 
The last written records of the Norse Greenlanders are from an Icelandic marriage in 1408 but recorded later in Iceland, at Hvalsey Church, now the best-preserved of the Norse ruins.

Lloyd D. Keigwin's 1996 study of radiocarbon-dated box core data from marine sediments in the Sargasso Sea found that its sea surface temperature was approximately 1 °C (1.8 °F) cooler approximately 400 years ago (the Little Ice Age) and 1700 years ago and approximately 1 °C warmer 1000 years ago (the Medieval Warm Period).

Using sediment samples from Puerto Rico, the Gulf Coast, and the Atlantic Coast from Florida to New England, Mann et al. (2009) found consistent evidence of a peak in North Atlantic tropical cyclone activity during the Medieval Warm Period that was followed by a subsequent lull in activity.

By retrieval and isotope analysis of marine cores and from examination of mollusc growth patterns from Iceland, Patterson et al were able to reconstruct a mollusc growth record at a decadal resolution from the Roman Warm Period to the Medieval Warm Period and the Little Ice Age.

North America

1690 copy of the 1570 Skálholt map, based on documentary information about earlier Norse sites in America.

The 2009 Mann et al. study found warmth exceeding 1961–1990 levels in Southern Greenland and parts of North America during the Medieval Climate Anomaly (defined in the study from 950 to 1250) with warmth in some regions exceeding temperatures of the 1990–2010 period. Much of the Northern Hemisphere showed significant cooling during the Little Ice Age (defined in the study from 1400 to 1700), but Labrador and isolated parts of the United States appeared to be approximately as warm as during the 1961–1990 period.

Norse colonization of the Americas has been associated with warmer periods. The common theory is that Norsemen took advantage of ice-free seas to colonize areas in Greenland and other outlying lands of the far north. However a study from Columbia University suggests that Greenland was not colonized in warmer weather, but in fact the warming effect was very short term. c. 1000AD, the climate was sufficiently warm for the Vikings to journey to Newfoundland and establish a short-lived outpost there.

From around 985, Vikings founded the Eastern Settlement and Western Settlement, both near the southern tip of Greenland. In the colony's early stages, they kept cattle, sheep, and goats, with around a quarter of their diet from seafood. After the climate became colder and stormier around 1250, their diet steadily shifted towards ocean sources; by around 1300, seal hunting provided over three quarters of their food.

By 1350, there was reduced demand for their exports, and trade with Europe fell away. The last document from the settlements dates from 1412, and over the following decades, the remaining Europeans left in what seems to have been a gradual withdrawal, caused mainly by economic factors such as increased availability of farms in Scandinavian countries.

L'Anse aux Meadows, Newfoundland, today, with a reconstruction of a Viking settlement.

In Chesapeake Bay (now Maryland and Virginia in the United States), researchers found large temperature excursions (changes from the mean temperature of that time) during the Medieval Warm Period (about 950–1250) and the Little Ice Age (about 1400–1700, with cold periods persisting into the early 20th century), possibly related to changes in the strength of North Atlantic thermohaline circulation. Sediments in Piermont Marsh of the lower Hudson Valley show a dry Medieval Warm period from 800 to 1300.

Prolonged droughts affected many parts of the western United States and especially eastern California and the west of Great Basin. Alaska experienced three time intervals of comparable warmth: 1–300, 850–1200, and post-1800. Knowledge of the North American Medieval Warm Period has been useful in dating occupancy periods of certain Native American habitation sites, especially in arid parts of the western United States. MWP droughts may have also impacted Native American settlements in the eastern United States, such as at Cahokia. Review of more recent archaeological research shows that as the search for signs of unusual cultural changes has broadened, some of the early patterns (for example, violence and health problems) having been found to be more complicated and regionally varied than it had been previously thought. Others, like settlement disruption, deterioration of long-distance trade, and population movements, have been further corroborated.

Africa

The climate in equatorial eastern Africa has alternated between drier than today and relatively wet. It was drier during the Medieval Warm Period (1000–1270).

Antarctica

A sediment core from the eastern Bransfield Basin, Antarctic Peninsula, preserves climatic events from the Little Ice Age and the Medieval Warm Period. The authors noted, "The late Holocene records clearly identify Neoglacial events of the Little Ice Age (LIA) and Medieval Warm Period (MWP)." Some Antarctic regions were atypically cold, whereas others were atypically warm between 1000 and 1200.

Pacific Ocean

Corals in the tropical Pacific Ocean suggest that relatively cool, dry conditions may have persisted early in the millennium, consistent with a La Niña-like configuration of the El Niño-Southern Oscillation patterns.

In 2013 a study from three US universities publicized in Science magazine showed that the water temperature in the Pacific Ocean was 0.9 degrees warmer during Medieval Warmth Period than during the little ice age and 0.65 degrees warmer than the decades before the study.

South America

The Medieval Warm Period has been noted in Chile in a 1500-year lake bed sediment core as well as in the Eastern Cordillera of Ecuador.

A reconstruction based on ice cores found the Medieval Warm Period could be distinguished in tropical South America from about 1050 to 1300 that was followed, in the 15th century, by the Little Ice Age. Peak temperatures did not rise as high as those from the late 20th century, which were unprecedented in the area during the study period of 1600 years.

Asia

Adhikari and Kumon (2001), investigating sediments in Lake Nakatsuna in central Japan, found a warm period from 900 to 1200 that corresponded to the Medieval Warm Period and three cool phases, two of which could be related to the Little Ice Age. Another research in northeastern Japan shows that there is one warm and humid interval, from 750 to 1200, and two cold and dry intervals, from 1 to 750 and from 1200 to now. Ge et al. studied temperatures in China during the past 2000 years and found high uncertainty prior to the 16th century but good consistency over the last 500 years highlighted by the two cold periods, 1620s–1710s and 1800s–1860s, and the warming during the 20th century. They also found that the warming during the 10–14th centuries in some regions might be comparable in magnitude to the warming of the last few decades of the 20th century, which was unprecedented within the past 500 years.

Oceania

There is an extreme scarcity of data from Australia for both the periods of the Medieval Warm Period and the Little Ice Age. However, evidence from wave-built shingle terraces for a permanently-full Lake Eyre during the 9th and 10th centuries is consistent with a La Niña-like configuration, but the data is insufficient to show how lake levels varied from year to year or what climatic conditions elsewhere in Australia were like.

A 1979 study from the University of Waikato found,"Temperatures derived from an 18O/16O profile through a stalagmite found in a New Zealand cave (40.67°S, 172.43°E) suggested the Medieval Warm Period to have occurred between AD c. 1050 and c. 1400 and to have been 0.75 °C warmer than the Current Warm Period." More evidence in New Zealand is from an 1100-year tree-ring record.

Popular revolts in late-medieval Europe

Richard II of England meets the rebels of the Peasants' Revolt

Popular revolts in late medieval Europe were uprisings and rebellions by (typically) peasants in the countryside, or the bourgeois in towns, against nobles, abbots and kings during the upheavals of the 14th through early 16th centuries, part of a larger "Crisis of the Late Middle Ages". Although sometimes known as Peasant Revolts, the phenomenon of popular uprisings was of broad scope and not just restricted to peasants. In Central Europe and the Balkan region, these rebellions expressed, and helped cause, a political and social disunity paving the way for the expansion of the Ottoman Empire.

Background

Before the 14th century, popular uprisings (such as uprisings at a manor house against an unpleasant overlord), though not unknown, tended to operate on a local scale. This changed in the 14th and 15th centuries when new downward pressures on the poor resulted in mass movements of popular uprisings across Europe. For example, Germany between 1336 and 1525 witnessed no fewer than sixty instances of militant peasant unrest.

Most of the revolts expressed the desire of those below to share in the wealth, status, and well-being of those more fortunate. In the end, they were almost always defeated by the nobles. A new attitude emerged in Europe, that "peasant" was a pejorative concept, it was something separate, and seen in a negative light, from those who had wealth and status. This was an entirely new social stratification from earlier times when society had been based on the three orders, those who work, those who pray, and those who fight, when being a peasant meant being next to God, just like the other orders.

Causes

Michele di Lando, placed in the office of gonfaloniere of Florence by the revolt of the Guild-less Ciompi

The main reasons cited for these mass uprisings are: an increasing gap between the wealthy and poor, declining incomes of the poor, rising inflation and taxation, the external crises of famine, plague and war, and religious backlashes.

The social gap between rich and poor had become more extreme, the origins of this change can be traced to the 12th century and the rise of the concept of nobility. Dress, behaviour, courtesy, speech, diet, education — all became part of the noble class, making them distinct from others. By the 14th century the nobles had indeed become very different in their behaviour, appearance and values from those "beneath".

The nobles however also faced a crisis of declining income. By 1285 inflation had become rampant (in part due to population pressures) and some nobles charged rent based on customary fixed rates, based on the feudal system, so as the price of goods and services rose from inflation, the income of those nobles remained stagnant, effectively dropping. To make matters worse, the nobles had become accustomed to a more luxurious lifestyle that required more money. To address this, nobles illegally raised rents, cheated, stole, and sometimes resorted to outright violence to maintain this lifestyle.

Kings who needed money to finance wars resorted to devaluing currency by cutting silver and gold coins with less precious metal, which resulted in increased inflation and, in the end, increased tax rates.

The 14th century crisis of famine, plague, and war put additional pressures on those at the bottom. The plague drastically reduced the numbers of people who were workers and producing the wealth.

Finally, layered on top of this was a popular ideological view of the time that property, wealth and inequality were against the teachings of God, as expressed through the teachings of the Franciscans. The sentiment of the time was probably best expressed by preacher John Ball during the English Peasant Revolt when he said, "When Adam delved and Eve span, who was then the gentleman?", criticizing economic inequality as human-made rather than a creation of God.

Notable rural revolts

The rebellion of György Dózsa in 1514 spread like lightning in the Kingdom of Hungary where hundreds of manor-houses and castles were burnt and thousands of the gentry killed by impalement, crucifixion and other methods. Dózsa is here depicted punished with heated iron chair and crown

Notable urban revolts

Terminology

Defeat of the Jacquerie

Different historians will use different terms to describe these events. The word peasant, since the 14th century, has had a pejorative meaning. However, it was not always that way; peasants were once viewed as pious and seen with respect and pride. As nobles increasingly lived better quality lives, there arose a new consciousness of those on top and those below, and the sense that being a peasant was not a position of equality. This new consciousness coincided with the popular uprisings of the 14th century.

Research by Rodney Hilton in the 1970s showed that the English Peasant Revolt of 1381 (or Great Rising) was led not by peasants, but by those who would be the most affected by increased taxation: the merchants who were neither wealthy, but not poor either. Indeed, these revolts were often accompanied by landless knights, excommunicated clerics and other members of society who might find gain or have reason to rebel. Although these were popular revolts, they were often organized and led by people who would not have considered themselves peasants.

Peasants is typically a term used for rural agrarian poor while many uprisings occurred within towns and cities by tradesmen, thus the term is not fully encompassing of events as a whole for the period.

For historical writing purposes, many modern historians will use the word peasant with care and respect, choosing other phrases such as "Popular" or "from below" or "grassroots", although in some countries in central and eastern Europe where serfdom continued up to the 19th century in places, the word peasant is still used by some historians as the main description of these events.

Bayesian inference

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Bayesian_inference Bayesian inference ( / ...