Search This Blog

Tuesday, July 27, 2021

Assembly language

From Wikipedia, the free encyclopedia
 
 
Assembly language
Motorola 6800 Assembly Language.png
Typical secondary output from an assembler—showing original assembly language (right) for the Motorola MC6800 and the assembled form
ParadigmImperative, unstructured
First appeared1949

In computer programming, assembly language (or assembler language), sometimes abbreviated asm, is any low-level programming language in which there is a very strong correspondence between the instructions in the language and the architecture's machine code instructions. Because assembly depends on the machine code instructions, every assembly language is designed for exactly one specific computer architecture. Assembly language may also be called symbolic machine code.

Assembly code is converted into executable machine code by a utility program referred to as an assembler. The conversion process is referred to as assembly, as in assembling the source code. Assembly language usually has one statement per machine instruction (1:1), but constants, comments, assembler directives, symbolic labels of program and memory locations, and macros are generally also supported.

The term "assembler" is generally attributed to Wilkes, Wheeler and Gill in their 1951 book The Preparation of Programs for an Electronic Digital Computer, who, however, used the term to mean "a program that assembles another program consisting of several sections into a single program".

Each assembly language is specific to a particular computer architecture and sometimes to an operating system. However, some assembly languages do not provide specific syntax for operating system calls, and most assembly languages can be used universally with any operating system, as the language provides access to all the real capabilities of the processor, upon which all system call mechanisms ultimately rest. In contrast to assembly languages, most high-level programming languages are generally portable across multiple architectures but require interpreting or compiling, a much more complicated task than assembling.

The computational step when an assembler is processing a program is called assembly time.

Assembly language syntax

Assembly language uses a mnemonic to represent each low-level machine instruction or opcode, typically also each architectural register, flag, etc. Many operations require one or more operands in order to form a complete instruction. Most assemblers permit named constants, registers, and labels for program and memory locations, and can calculate expressions for operands. Thus, programmers are freed from tedious repetitive calculations and assembler programs are much more readable than machine code. Depending on the architecture, these elements may also be combined for specific instructions or addressing modes using offsets or other data as well as fixed addresses. Many assemblers offer additional mechanisms to facilitate program development, to control the assembly process, and to aid debugging.

Terminology

  • A macro assembler includes a macroinstruction facility so that (parameterized) assembly language text can be represented by a name, and that name can be used to insert the expanded text into other code.
  • A cross assembler (see also cross compiler) is an assembler that is run on a computer or operating system (the host system) of a different type from the system on which the resulting code is to run (the target system). Cross-assembling facilitates the development of programs for systems that do not have the resources to support software development, such as an embedded system or a microcontroller. In such a case, the resulting object code must be transferred to the target system, via read-only memory (ROM, EPROM, etc.), a programmer (when the read-only memory is integrated in the device, as in microcontrollers), or a data link using either an exact bit-by-bit copy of the object code or a text-based representation of that code (such as Intel hex or Motorola S-record).
  • A high-level assembler is a program that provides language abstractions more often associated with high-level languages, such as advanced control structures (IF/THEN/ELSE, DO CASE, etc.) and high-level abstract data types, including structures/records, unions, classes, and sets.
  • A microassembler is a program that helps prepare a microprogram, called firmware, to control the low level operation of a computer.
  • A meta-assembler is "a program that accepts the syntactic and semantic description of an assembly language, and generates an assembler for that language". "Meta-Symbol" assemblers for the SDS 9 Series and SDS Sigma series of computers are meta-assemblers. Sperry Univac also provided a Meta-Assembler for the UNIVAC 1100/2200 series.
  • inline assembler (or embedded assembler) is assembler code contained within a high-level language program. This is most often used in systems programs which need direct access to the hardware.

Key concepts

Assembler

An assembler program creates object code by translating combinations of mnemonics and syntax for operations and addressing modes into their numerical equivalents. This representation typically includes an operation code ("opcode") as well as other control bits and data. The assembler also calculates constant expressions and resolves symbolic names for memory locations and other entities. The use of symbolic references is a key feature of assemblers, saving tedious calculations and manual address updates after program modifications. Most assemblers also include macro facilities for performing textual substitution – e.g., to generate common short sequences of instructions as inline, instead of called subroutines.

Some assemblers may also be able to perform some simple types of instruction set-specific optimizations. One concrete example of this may be the ubiquitous x86 assemblers from various vendors. Called jump-sizing, most of them are able to perform jump-instruction replacements (long jumps replaced by short or relative jumps) in any number of passes, on request. Others may even do simple rearrangement or insertion of instructions, such as some assemblers for RISC architectures that can help optimize a sensible instruction scheduling to exploit the CPU pipeline as efficiently as possible.

Assemblers have been available since the 1950s, as the first step above machine language and before high-level programming languages such as Fortran, Algol, COBOL and Lisp. There have also been several classes of translators and semi-automatic code generators with properties similar to both assembly and high-level languages, with Speedcode as perhaps one of the better-known examples.

There may be several assemblers with different syntax for a particular CPU or instruction set architecture. For instance, an instruction to add memory data to a register in a x86-family processor might be add eax,[ebx], in original Intel syntax, whereas this would be written addl (%ebx),%eax in the AT&T syntax used by the GNU Assembler. Despite different appearances, different syntactic forms generally generate the same numeric machine code. A single assembler may also have different modes in order to support variations in syntactic forms as well as their exact semantic interpretations (such as FASM-syntax, TASM-syntax, ideal mode, etc., in the special case of x86 assembly programming).

Number of passes

There are two types of assemblers based on how many passes through the source are needed (how many times the assembler reads the source) to produce the object file.

  • One-pass assemblers go through the source code once. Any symbol used before it is defined will require "errata" at the end of the object code (or, at least, no earlier than the point where the symbol is defined) telling the linker or the loader to "go back" and overwrite a placeholder which had been left where the as yet undefined symbol was used.
  • Multi-pass assemblers create a table with all symbols and their values in the first passes, then use the table in later passes to generate code.

In both cases, the assembler must be able to determine the size of each instruction on the initial passes in order to calculate the addresses of subsequent symbols. This means that if the size of an operation referring to an operand defined later depends on the type or distance of the operand, the assembler will make a pessimistic estimate when first encountering the operation, and if necessary, pad it with one or more "no-operation" instructions in a later pass or the errata. In an assembler with peephole optimization, addresses may be recalculated between passes to allow replacing pessimistic code with code tailored to the exact distance from the target.

The original reason for the use of one-pass assemblers was memory size and speed of assembly – often a second pass would require storing the symbol table in memory (to handle forward references), rewinding and rereading the program source on tape, or rereading a deck of cards or punched paper tape. Later computers with much larger memories (especially disc storage), had the space to perform all necessary processing without such re-reading. The advantage of the multi-pass assembler is that the absence of errata makes the linking process (or the program load if the assembler directly produces executable code) faster.

Example: in the following code snippet, a one-pass assembler would be able to determine the address of the backward reference BKWD when assembling statement S2, but would not be able to determine the address of the forward reference FWD when assembling the branch statement S1; indeed, FWD may be undefined. A two-pass assembler would determine both addresses in pass 1, so they would be known when generating code in pass 2.

S1   B    FWD
  ...
FWD   EQU *
  ...
BKWD  EQU *
  ...
S2    B   BKWD

High-level assemblers

More sophisticated high-level assemblers provide language abstractions such as:

See Language design below for more details.

Assembly language

A program written in assembly language consists of a series of mnemonic processor instructions and meta-statements (known variously as directives, pseudo-instructions, and pseudo-ops), comments and data. Assembly language instructions usually consist of an opcode mnemonic followed by an operand, which might be a list of data, arguments or parameters. Some instructions may be "implied," which means the data upon which the instruction operates is implicitly defined by the instruction itself—such an instruction does not take an operand. The resulting statement is translated by an assembler into machine language instructions that can be loaded into memory and executed.

For example, the instruction below tells an x86/IA-32 processor to move an immediate 8-bit value into a register. The binary code for this instruction is 10110 followed by a 3-bit identifier for which register to use. The identifier for the AL register is 000, so the following machine code loads the AL register with the data 01100001.

10110000 01100001

This binary computer code can be made more human-readable by expressing it in hexadecimal as follows.

B0 61

Here, B0 means 'Move a copy of the following value into AL, and 61 is a hexadecimal representation of the value 01100001, which is 97 in decimal. Assembly language for the 8086 family provides the mnemonic MOV (an abbreviation of move) for instructions such as this, so the machine code above can be written as follows in assembly language, complete with an explanatory comment if required, after the semicolon. This is much easier to read and to remember.

MOV AL, 61h       ; Load AL with 97 decimal (61 hex)

In some assembly languages (including this one) the same mnemonic, such as MOV, may be used for a family of related instructions for loading, copying and moving data, whether these are immediate values, values in registers, or memory locations pointed to by values in registers or by immediate (a.k.a direct) addresses. Other assemblers may use separate opcode mnemonics such as L for "move memory to register", ST for "move register to memory", LR for "move register to register", MVI for "move immediate operand to memory", etc.

If the same mnemonic is used for different instructions, that means that the mnemonic corresponds to several different binary instruction codes, excluding data (e.g. the 61h in this example), depending on the operands that follow the mnemonic. For example, for the x86/IA-32 CPUs, the Intel assembly language syntax MOV AL, AH represents an instruction that moves the contents of register AH into register AL. The hexadecimal form of this instruction is:

88 E0

The first byte, 88h, identifies a move between a byte-sized register and either another register or memory, and the second byte, E0h, is encoded (with three bit-fields) to specify that both operands are registers, the source is AH, and the destination is AL.

In a case like this where the same mnemonic can represent more than one binary instruction, the assembler determines which instruction to generate by examining the operands. In the first example, the operand 61h is a valid hexadecimal numeric constant and is not a valid register name, so only the B0 instruction can be applicable. In the second example, the operand AH is a valid register name and not a valid numeric constant (hexadecimal, decimal, octal, or binary), so only the 88 instruction can be applicable.

Assembly languages are always designed so that this sort of unambiguousness is universally enforced by their syntax. For example, in the Intel x86 assembly language, a hexadecimal constant must start with a numeral digit, so that the hexadecimal number 'A' (equal to decimal ten) would be written as 0Ah or 0AH, not AH, specifically so that it cannot appear to be the name of register AH. (The same rule also prevents ambiguity with the names of registers BH, CH, and DH, as well as with any user-defined symbol that ends with the letter H and otherwise contains only characters that are hexadecimal digits, such as the word "BEACH".)

Returning to the original example, while the x86 opcode 10110000 (B0) copies an 8-bit value into the AL register, 10110001 (B1) moves it into CL and 10110010 (B2) does so into DL. Assembly language examples for these follow.

MOV AL, 1h        ; Load AL with immediate value 1
MOV CL, 2h        ; Load CL with immediate value 2
MOV DL, 3h        ; Load DL with immediate value 3

The syntax of MOV can also be more complex as the following examples show.

MOV EAX, [EBX]	  ; Move the 4 bytes in memory at the address contained in EBX into EAX
MOV [ESI+EAX], CL ; Move the contents of CL into the byte at address ESI+EAX
MOV DS, DX        ; Move the contents of DX into segment register DS

In each case, the MOV mnemonic is translated directly into one of the opcodes 88-8C, 8E, A0-A3, B0-BF, C6 or C7 by an assembler, and the programmer normally does not have to know or remember which.

Transforming assembly language into machine code is the job of an assembler, and the reverse can at least partially be achieved by a disassembler. Unlike high-level languages, there is a one-to-one correspondence between many simple assembly statements and machine language instructions. However, in some cases, an assembler may provide pseudoinstructions (essentially macros) which expand into several machine language instructions to provide commonly needed functionality. For example, for a machine that lacks a "branch if greater or equal" instruction, an assembler may provide a pseudoinstruction that expands to the machine's "set if less than" and "branch if zero (on the result of the set instruction)". Most full-featured assemblers also provide a rich macro language (discussed below) which is used by vendors and programmers to generate more complex code and data sequences. Since the information about pseudoinstructions and macros defined in the assembler environment is not present in the object program, a disassembler cannot reconstruct the macro and pseudoinstruction invocations but can only disassemble the actual machine instructions that the assembler generated from those abstract assembly-language entities. Likewise, since comments in the assembly language source file are ignored by the assembler and have no effect on the object code it generates, a disassembler is always completely unable to recover source comments.

Each computer architecture has its own machine language. Computers differ in the number and type of operations they support, in the different sizes and numbers of registers, and in the representations of data in storage. While most general-purpose computers are able to carry out essentially the same functionality, the ways they do so differ; the corresponding assembly languages reflect these differences.

Multiple sets of mnemonics or assembly-language syntax may exist for a single instruction set, typically instantiated in different assembler programs. In these cases, the most popular one is usually that supplied by the CPU manufacturer and used in its documentation.

Two examples of CPUs that have two different sets of mnemonics are the Intel 8080 family and the Intel 8086/8088. Because Intel claimed copyright on its assembly language mnemonics (on each page of their documentation published in the 1970s and early 1980s, at least), some companies that independently produced CPUs compatible with Intel instruction sets invented their own mnemonics. The Zilog Z80 CPU, an enhancement of the Intel 8080A, supports all the 8080A instructions plus many more; Zilog invented an entirely new assembly language, not only for the new instructions but also for all of the 8080A instructions. For example, where Intel uses the mnemonics MOV, MVI, LDA, STA, LXI, LDAX, STAX, LHLD, and SHLD for various data transfer instructions, the Z80 assembly language uses the mnemonic LD for all of them. A similar case is the NEC V20 and V30 CPUs, enhanced copies of the Intel 8086 and 8088, respectively. Like Zilog with the Z80, NEC invented new mnemonics for all of the 8086 and 8088 instructions, to avoid accusations of infringement of Intel's copyright. (It is questionable whether such copyrights can be valid, and later CPU companies such as AMD[nb 3] and Cyrix republished Intel's x86/IA-32 instruction mnemonics exactly with neither permission nor legal penalty.) It is doubtful whether in practice many people who programmed the V20 and V30 actually wrote in NEC's assembly language rather than Intel's; since any two assembly languages for the same instruction set architecture are isomorphic (somewhat like English and Pig Latin), there is no requirement to use a manufacturer's own published assembly language with that manufacturer's products.

Language design

Basic elements

There is a large degree of diversity in the way the authors of assemblers categorize statements and in the nomenclature that they use. In particular, some describe anything other than a machine mnemonic or extended mnemonic as a pseudo-operation (pseudo-op). A typical assembly language consists of 3 types of instruction statements that are used to define program operations:

  • Opcode mnemonics
  • Data definitions
  • Assembly directives

Opcode mnemonics and extended mnemonics

Instructions (statements) in assembly language are generally very simple, unlike those in high-level languages. Generally, a mnemonic is a symbolic name for a single executable machine language instruction (an opcode), and there is at least one opcode mnemonic defined for each machine language instruction. Each instruction typically consists of an operation or opcode plus zero or more operands. Most instructions refer to a single value or a pair of values. Operands can be immediate (value coded in the instruction itself), registers specified in the instruction or implied, or the addresses of data located elsewhere in storage. This is determined by the underlying processor architecture: the assembler merely reflects how this architecture works. Extended mnemonics are often used to specify a combination of an opcode with a specific operand, e.g., the System/360 assemblers use B as an extended mnemonic for BC with a mask of 15 and NOP ("NO OPeration" – do nothing for one step) for BC with a mask of 0.

Extended mnemonics are often used to support specialized uses of instructions, often for purposes not obvious from the instruction name. For example, many CPU's do not have an explicit NOP instruction, but do have instructions that can be used for the purpose. In 8086 CPUs the instruction xchg ax,ax is used for nop, with nop being a pseudo-opcode to encode the instruction xchg ax,ax. Some disassemblers recognize this and will decode the xchg ax,ax instruction as nop. Similarly, IBM assemblers for System/360 and System/370 use the extended mnemonics NOP and NOPR for BC and BCR with zero masks. For the SPARC architecture, these are known as synthetic instructions.

Some assemblers also support simple built-in macro-instructions that generate two or more machine instructions. For instance, with some Z80 assemblers the instruction ld hl,bc is recognized to generate ld l,c followed by ld h,b. These are sometimes known as pseudo-opcodes.

Mnemonics are arbitrary symbols; in 1985 the IEEE published Standard 694 for a uniform set of mnemonics to be used by all assemblers. The standard has since been withdrawn.

Data directives

There are instructions used to define data elements to hold data and variables. They define the type of data, the length and the alignment of data. These instructions can also define whether the data is available to outside programs (programs assembled separately) or only to the program in which the data section is defined. Some assemblers classify these as pseudo-ops.

Assembly directives

Assembly directives, also called pseudo-opcodes, pseudo-operations or pseudo-ops, are commands given to an assembler "directing it to perform operations other than assembling instructions". Directives affect how the assembler operates and "may affect the object code, the symbol table, the listing file, and the values of internal assembler parameters". Sometimes the term pseudo-opcode is reserved for directives that generate object code, such as those that generate data.

The names of pseudo-ops often start with a dot to distinguish them from machine instructions. Pseudo-ops can make the assembly of the program dependent on parameters input by a programmer, so that one program can be assembled in different ways, perhaps for different applications. Or, a pseudo-op can be used to manipulate presentation of a program to make it easier to read and maintain. Another common use of pseudo-ops is to reserve storage areas for run-time data and optionally initialize their contents to known values.

Symbolic assemblers let programmers associate arbitrary names (labels or symbols) with memory locations and various constants. Usually, every constant and variable is given a name so instructions can reference those locations by name, thus promoting self-documenting code. In executable code, the name of each subroutine is associated with its entry point, so any calls to a subroutine can use its name. Inside subroutines, GOTO destinations are given labels. Some assemblers support local symbols which are often lexically distinct from normal symbols (e.g., the use of "10$" as a GOTO destination).

Some assemblers, such as NASM, provide flexible symbol management, letting programmers manage different namespaces, automatically calculate offsets within data structures, and assign labels that refer to literal values or the result of simple computations performed by the assembler. Labels can also be used to initialize constants and variables with relocatable addresses.

Assembly languages, like most other computer languages, allow comments to be added to program source code that will be ignored during assembly. Judicious commenting is essential in assembly language programs, as the meaning and purpose of a sequence of binary machine instructions can be difficult to determine. The "raw" (uncommented) assembly language generated by compilers or disassemblers is quite difficult to read when changes must be made.

Macros

Many assemblers support predefined macros, and others support programmer-defined (and repeatedly re-definable) macros involving sequences of text lines in which variables and constants are embedded. The macro definition is most commonly a mixture of assembler statements, e.g., directives, symbolic machine instructions, and templates for assembler statements. This sequence of text lines may include opcodes or directives. Once a macro has been defined its name may be used in place of a mnemonic. When the assembler processes such a statement, it replaces the statement with the text lines associated with that macro, then processes them as if they existed in the source code file (including, in some assemblers, expansion of any macros existing in the replacement text). Macros in this sense date to IBM autocoders of the 1950s.

In assembly language, the term "macro" represents a more comprehensive concept than it does in some other contexts, such as the pre-processor in the C programming language, where its #define directive typically is used to create short single line macros. Assembler macro instructions, like macros in PL/I and some other languages, can be lengthy "programs" by themselves, executed by interpretation by the assembler during assembly.

Since macros can have 'short' names but expand to several or indeed many lines of code, they can be used to make assembly language programs appear to be far shorter, requiring fewer lines of source code, as with higher level languages. They can also be used to add higher levels of structure to assembly programs, optionally introduce embedded debugging code via parameters and other similar features.

Macro assemblers often allow macros to take parameters. Some assemblers include quite sophisticated macro languages, incorporating such high-level language elements as optional parameters, symbolic variables, conditionals, string manipulation, and arithmetic operations, all usable during the execution of a given macro, and allowing macros to save context or exchange information. Thus a macro might generate numerous assembly language instructions or data definitions, based on the macro arguments. This could be used to generate record-style data structures or "unrolled" loops, for example, or could generate entire algorithms based on complex parameters. For instance, a "sort" macro could accept the specification of a complex sort key and generate code crafted for that specific key, not needing the run-time tests that would be required for a general procedure interpreting the specification. An organization using assembly language that has been heavily extended using such a macro suite can be considered to be working in a higher-level language since such programmers are not working with a computer's lowest-level conceptual elements. Underlining this point, macros were used to implement an early virtual machine in SNOBOL4 (1967), which was written in the SNOBOL Implementation Language (SIL), an assembly language for a virtual machine. The target machine would translate this to its native code using a macro assembler. This allowed a high degree of portability for the time.

Macros were used to customize large scale software systems for specific customers in the mainframe era and were also used by customer personnel to satisfy their employers' needs by making specific versions of manufacturer operating systems. This was done, for example, by systems programmers working with IBM's Conversational Monitor System / Virtual Machine (VM/CMS) and with IBM's "real time transaction processing" add-ons, Customer Information Control System CICS, and ACP/TPF, the airline/financial system that began in the 1970s and still runs many large computer reservation systems (CRS) and credit card systems today.

It is also possible to use solely the macro processing abilities of an assembler to generate code written in completely different languages, for example, to generate a version of a program in COBOL using a pure macro assembler program containing lines of COBOL code inside assembly time operators instructing the assembler to generate arbitrary code. IBM OS/360 uses macros to perform system generation. The user specifies options by coding a series of assembler macros. Assembling these macros generates a job stream to build the system, including job control language and utility control statements.

This is because, as was realized in the 1960s, the concept of "macro processing" is independent of the concept of "assembly", the former being in modern terms more word processing, text processing, than generating object code. The concept of macro processing appeared, and appears, in the C programming language, which supports "preprocessor instructions" to set variables, and make conditional tests on their values. Unlike certain previous macro processors inside assemblers, the C preprocessor is not Turing-complete because it lacks the ability to either loop or "go to", the latter allowing programs to loop.

Despite the power of macro processing, it fell into disuse in many high level languages (major exceptions being C, C++ and PL/I) while remaining a perennial for assemblers.

Macro parameter substitution is strictly by name: at macro processing time, the value of a parameter is textually substituted for its name. The most famous class of bugs resulting was the use of a parameter that itself was an expression and not a simple name when the macro writer expected a name. In the macro:

foo: macro a
load a*b

the intention was that the caller would provide the name of a variable, and the "global" variable or constant b would be used to multiply "a". If foo is called with the parameter a-c, the macro expansion of load a-c*b occurs. To avoid any possible ambiguity, users of macro processors can parenthesize formal parameters inside macro definitions, or callers can parenthesize the input parameters.

Support for structured programming

Packages of macros have been written providing structured programming elements to encode execution flow. The earliest example of this approach was in the Concept-14 macro set, originally proposed by Harlan Mills (March 1970), and implemented by Marvin Kessler at IBM's Federal Systems Division, which provided IF/ELSE/ENDIF and similar control flow blocks for OS/360 assembler programs. This was a way to reduce or eliminate the use of GOTO operations in assembly code, one of the main factors causing spaghetti code in assembly language. This approach was widely accepted in the early 1980s (the latter days of large-scale assembly language use). IBM's High Level Assembler Toolkit includes such a macro package.

A curious design was A-natural, a "stream-oriented" assembler for 8080/Z80, processors from Whitesmiths Ltd. (developers of the Unix-like Idris operating system, and what was reported to be the first commercial C compiler). The language was classified as an assembler because it worked with raw machine elements such as opcodes, registers, and memory references; but it incorporated an expression syntax to indicate execution order. Parentheses and other special symbols, along with block-oriented structured programming constructs, controlled the sequence of the generated instructions. A-natural was built as the object language of a C compiler, rather than for hand-coding, but its logical syntax won some fans.

There has been little apparent demand for more sophisticated assemblers since the decline of large-scale assembly language development. In spite of that, they are still being developed and applied in cases where resource constraints or peculiarities in the target system's architecture prevent the effective use of higher-level languages.

Assemblers with a strong macro engine allow structured programming via macros, such as the switch macro provided with the Masm32 package (this code is a complete program):

include \masm32\include\masm32rt.inc	; use the Masm32 library

.code
demomain:
  REPEAT 20
	switch rv(nrandom, 9)	; generate a number between 0 and 8
	mov ecx, 7
	case 0
		print "case 0"
	case ecx				; in contrast to most other programming languages,
		print "case 7"		; the Masm32 switch allows "variable cases"
	case 1 .. 3
		.if eax==1
			print "case 1"
		.elseif eax==2
			print "case 2"
		.else
			print "cases 1 to 3: other"
		.endif
	case 4, 6, 8
		print "cases 4, 6 or 8"
	default
		mov ebx, 19		     ; print 20 stars
		.Repeat
			print "*"
			dec ebx
		.Until Sign?		 ; loop until the sign flag is set
	endsw
	print chr$(13, 10)
  ENDM
  exit
end demomain

Use of assembly language

Historical perspective

Assembly languages were not available at the time when the stored-program computer was introduced. Kathleen Booth "is credited with inventing assembly language" based on theoretical work she began in 1947, while working on the ARC2 at Birkbeck, University of London following consultation by Andrew Booth (later her husband) with mathematician John von Neumann and physicist Herman Goldstine at the Institute for Advanced Study.

In late 1948, the Electronic Delay Storage Automatic Calculator (EDSAC) had an assembler (named "initial orders") integrated into its bootstrap program. It used one-letter mnemonics developed by David Wheeler, who is credited by the IEEE Computer Society as the creator of the first "assembler". Reports on the EDSAC introduced the term "assembly" for the process of combining fields into an instruction word. SOAP (Symbolic Optimal Assembly Program) was an assembly language for the IBM 650 computer written by Stan Poley in 1955.

Assembly languages eliminate much of the error-prone, tedious, and time-consuming first-generation programming needed with the earliest computers, freeing programmers from tedium such as remembering numeric codes and calculating addresses.

Assembly languages were once widely used for all sorts of programming. However, by the 1980s (1990s on microcomputers), their use had largely been supplanted by higher-level languages, in the search for improved programming productivity. Today, assembly language is still used for direct hardware manipulation, access to specialized processor instructions, or to address critical performance issues. Typical uses are device drivers, low-level embedded systems, and real-time systems.

Historically, numerous programs have been written entirely in assembly language. The Burroughs MCP (1961) was the first computer for which an operating system was not developed entirely in assembly language; it was written in Executive Systems Problem Oriented Language (ESPOL), an Algol dialect. Many commercial applications were written in assembly language as well, including a large amount of the IBM mainframe software written by large corporations. COBOL, FORTRAN and some PL/I eventually displaced much of this work, although a number of large organizations retained assembly-language application infrastructures well into the 1990s.

Most early microcomputers relied on hand-coded assembly language, including most operating systems and large applications. This was because these systems had severe resource constraints, imposed idiosyncratic memory and display architectures, and provided limited, buggy system services. Perhaps more important was the lack of first-class high-level language compilers suitable for microcomputer use. A psychological factor may have also played a role: the first generation of microcomputer programmers retained a hobbyist, "wires and pliers" attitude.

In a more commercial context, the biggest reasons for using assembly language were minimal bloat (size), minimal overhead, greater speed, and reliability.

Typical examples of large assembly language programs from this time are IBM PC DOS operating systems, the Turbo Pascal compiler and early applications such as the spreadsheet program Lotus 1-2-3. Assembly language was used to get the best performance out of the Sega Saturn, a console that was notoriously challenging to develop and program games for. The 1993 arcade game NBA Jam is another example.

Assembly language has long been the primary development language for many popular home computers of the 1980s and 1990s (such as the MSX, Sinclair ZX Spectrum, Commodore 64, Commodore Amiga, and Atari ST). This was in large part because interpreted BASIC dialects on these systems offered insufficient execution speed, as well as insufficient facilities to take full advantage of the available hardware on these systems. Some systems even have an integrated development environment (IDE) with highly advanced debugging and macro facilities. Some compilers available for the Radio Shack TRS-80 and its successors had the capability to combine inline assembly source with high-level program statements. Upon compilation, a built-in assembler produced inline machine code.

Current usage

There have always been debates over the usefulness and performance of assembly language relative to high-level languages.

Although assembly language has specific niche uses where it is important (see below), there are other tools for optimization.

As of July 2017, the TIOBE index of programming language popularity ranks assembly language at 11, ahead of Visual Basic, for example. Assembler can be used to optimize for speed or optimize for size. In the case of speed optimization, modern optimizing compilers are claimed to render high-level languages into code that can run as fast as hand-written assembly, despite the counter-examples that can be found. The complexity of modern processors and memory sub-systems makes effective optimization increasingly difficult for compilers, as well as for assembly programmers. Moreover, increasing processor performance has meant that most CPUs sit idle most of the time, with delays caused by predictable bottlenecks such as cache misses, I/O operations and paging. This has made raw code execution speed a non-issue for many programmers.

There are some situations in which developers might choose to use assembly language:

  • Writing code for systems with older processors that have limited high-level language options such as the Atari 2600, Commodore 64, and graphing calculators. Programs for these computers of 1970s and 1980s are often written in the context of demoscene or retrogaming subcultures.
  • Code that must interact directly with the hardware, for example in device drivers and interrupt handlers.
  • In an embedded processor or DSP, high-repetition interrupts require the shortest number of cycles per interrupt, such as an interrupt that occurs 1000 or 10000 times a second.
  • Programs that need to use processor-specific instructions not implemented in a compiler. A common example is the bitwise rotation instruction at the core of many encryption algorithms, as well as querying the parity of a byte or the 4-bit carry of an addition.
  • A stand-alone executable of compact size is required that must execute without recourse to the run-time components or libraries associated with a high-level language. Examples have included firmware for telephones, automobile fuel and ignition systems, air-conditioning control systems, security systems, and sensors.
  • Programs with performance-sensitive inner loops, where assembly language provides optimization opportunities that are difficult to achieve in a high-level language. For example, linear algebra with BLAS or discrete cosine transformation (e.g. SIMD assembly version from x264).
  • Programs that create vectorized functions for programs in higher-level languages such as C. In the higher-level language this is sometimes aided by compiler intrinsic functions which map directly to SIMD mnemonics, but nevertheless result in a one-to-one assembly conversion specific for the given vector processor.
  • Real-time programs such as simulations, flight navigation systems, and medical equipment. For example, in a fly-by-wire system, telemetry must be interpreted and acted upon within strict time constraints. Such systems must eliminate sources of unpredictable delays, which may be created by (some) interpreted languages, automatic garbage collection, paging operations, or preemptive multitasking. However, some higher-level languages incorporate run-time components and operating system interfaces that can introduce such delays. Choosing assembly or lower level languages for such systems gives programmers greater visibility and control over processing details.
  • Cryptographic algorithms that must always take strictly the same time to execute, preventing timing attacks.
  • Modify and extend legacy code written for IBM mainframe computers.
  • Situations where complete control over the environment is required, in extremely high-security situations where nothing can be taken for granted.
  • Computer viruses, bootloaders, certain device drivers, or other items very close to the hardware or low-level operating system.
  • Instruction set simulators for monitoring, tracing and debugging where additional overhead is kept to a minimum.
  • Situations where no high-level language exists, on a new or specialized processor for which no cross compiler is available.
  • Reverse-engineering and modifying program files such as:
    • existing binaries that may or may not have originally been written in a high-level language, for example when trying to recreate programs for which source code is not available or has been lost, or cracking copy protection of proprietary software.
    • Video games (also termed ROM hacking), which is possible via several methods. The most widely employed method is altering program code at the assembly language level.

Assembly language is still taught in most computer science and electronic engineering programs. Although few programmers today regularly work with assembly language as a tool, the underlying concepts remain important. Such fundamental topics as binary arithmetic, memory allocation, stack processing, character set encoding, interrupt processing, and compiler design would be hard to study in detail without a grasp of how a computer operates at the hardware level. Since a computer's behavior is fundamentally defined by its instruction set, the logical way to learn such concepts is to study an assembly language. Most modern computers have similar instruction sets. Therefore, studying a single assembly language is sufficient to learn: I) the basic concepts; II) to recognize situations where the use of assembly language might be appropriate; and III) to see how efficient executable code can be created from high-level languages.

Typical applications

  • Assembly language is typically used in a system's boot code, the low-level code that initializes and tests the system hardware prior to booting the operating system and is often stored in ROM. (BIOS on IBM-compatible PC systems and CP/M is an example.)
  • Assembly language is often used for low-level code, for instance for operating system kernels, which cannot rely on the availability of pre-existing system calls and must indeed implement them for the particular processor architecture on which the system will be running.
  • Some compilers translate high-level languages into assembly first before fully compiling, allowing the assembly code to be viewed for debugging and optimization purposes.
  • Some compilers for relatively low-level languages, such as Pascal or C, allow the programmer to embed assembly language directly in the source code (so called inline assembly). Programs using such facilities can then construct abstractions using different assembly language on each hardware platform. The system's portable code can then use these processor-specific components through a uniform interface.
  • Assembly language is useful in reverse engineering. Many programs are distributed only in machine code form which is straightforward to translate into assembly language by a disassembler, but more difficult to translate into a higher-level language through a decompiler. Tools such as the Interactive Disassembler make extensive use of disassembly for such a purpose. This technique is used by hackers to crack commercial software, and competitors to produce software with similar results from competing companies.
  • Assembly language is used to enhance speed of execution, especially in early personal computers with limited processing power and RAM.
  • Assemblers can be used to generate blocks of data, with no high-level language overhead, from formatted and commented source code, to be used by other code.

 

Unix

From Wikipedia, the free encyclopedia
 
Unix history-simple.svg
Evolution of Unix and Unix-like systems
 
DeveloperKen Thompson, Dennis Ritchie, Brian Kernighan, Douglas McIlroy, and Joe Ossanna at Bell Labs
Written inC and assembly language
OS familyUnix
Source modelHistorically proprietary software, while some Unix projects (including BSD family and illumos) are open-source
Initial releaseDevelopment started in 1969
First manual published internally in November 1971
Announced outside Bell Labs in October 1973
Available inEnglish
Kernel typeVaries; monolithic, microkernel, hybrid
Influenced byMultics
Default user interfaceCommand-line interface and Graphical (Wayland and X Window System; Android SurfaceFlinger; macOS Quartz)
LicenseVaries; some versions are proprietary, others are free/open-source software
Official websiteopengroup.org/unix

Unix (/ˈjnɪks/; trademarked as UNIX) is a family of multitasking, multiuser computer operating systems that derive from the original AT&T Unix, whose development started in the 1970s at the Bell Labs research center by Ken Thompson, Dennis Ritchie, and others.

Initially intended for use inside the Bell System, AT&T licensed Unix to outside parties in the late 1970s, leading to a variety of both academic and commercial Unix variants from vendors including University of California, Berkeley (BSD), Microsoft (Xenix), Sun Microsystems (SunOS/Solaris), HP/HPE (HP-UX), and IBM (AIX). In the early 1990s, AT&T sold its rights in Unix to Novell, which then sold its Unix business to the Santa Cruz Operation (SCO) in 1995. The UNIX trademark passed to The Open Group, an industry consortium founded in 1996, which allows the use of the mark for certified operating systems that comply with the Single UNIX Specification (SUS). However, Novell continues to own the Unix copyrights, which the SCO Group, Inc. v. Novell, Inc. court case (2010) confirmed.

Unix systems are characterized by a modular design that is sometimes called the "Unix philosophy". According to this philosophy, the operating system should provide a set of simple tools, each of which performs a limited, well-defined function. A unified filesystem (the Unix filesystem) and an inter-process communication mechanism known as "pipes" serve as the main means of communication, and a shell scripting and command language (the Unix shell) is used to combine the tools to perform complex workflows.

Unix distinguishes itself from its predecessors as the first portable operating system: almost the entire operating system is written in the C programming language, which allows Unix to operate on numerous platforms.

Overview

Version 7 Unix, the Research Unix ancestor of all modern Unix systems

Unix was originally meant to be a convenient platform for programmers developing software to be run on it and on other systems, rather than for non-programmers. The system grew larger as the operating system started spreading in academic circles, and as users added their own tools to the system and shared them with colleagues.

At first, Unix was not designed to be portable or for multi-tasking. Later, Unix gradually gained portability, multi-tasking and multi-user capabilities in a time-sharing configuration. Unix systems are characterized by various concepts: the use of plain text for storing data; a hierarchical file system; treating devices and certain types of inter-process communication (IPC) as files; and the use of a large number of software tools, small programs that can be strung together through a command-line interpreter using pipes, as opposed to using a single monolithic program that includes all of the same functionality. These concepts are collectively known as the "Unix philosophy". Brian Kernighan and Rob Pike summarize this in The Unix Programming Environment as "the idea that the power of a system comes more from the relationships among programs than from the programs themselves".

By the early 1980s, users began seeing Unix as a potential universal operating system, suitable for computers of all sizes. The Unix environment and the client–server program model were essential elements in the development of the Internet and the reshaping of computing as centered in networks rather than in individual computers.

Both Unix and the C programming language were developed by AT&T and distributed to government and academic institutions, which led to both being ported to a wider variety of machine families than any other operating system.

The Unix operating system consists of many libraries and utilities along with the master control program, the kernel. The kernel provides services to start and stop programs, handles the file system and other common "low-level" tasks that most programs share, and schedules access to avoid conflicts when programs try to access the same resource or device simultaneously. To mediate such access, the kernel has special rights, reflected in the distinction of kernel space from user space, the latter being a priority realm where most application programs operate.

History

Ken Thompson (sitting) and Dennis Ritchie working together at a PDP-11

The origins of Unix date back to the mid-1960s when the Massachusetts Institute of Technology, Bell Labs, and General Electric were developing Multics, a time-sharing operating system for the GE-645 mainframe computer. Multics featured several innovations, but also presented severe problems. Frustrated by the size and complexity of Multics, but not by its goals, individual researchers at Bell Labs started withdrawing from the project. The last to leave were Ken Thompson, Dennis Ritchie, Douglas McIlroy, and Joe Ossanna, who decided to reimplement their experiences in a new project of smaller scale. This new operating system was initially without organizational backing, and also without a name.

The new operating system was a single-tasking system. In 1970, the group coined the name Unics for Uniplexed Information and Computing Service as a pun on Multics, which stood for Multiplexed Information and Computer Services. Brian Kernighan takes credit for the idea, but adds that "no one can remember" the origin of the final spelling Unix. Dennis Ritchie, Doug McIlroy, and Peter G. Neumann also credit Kernighan.

The operating system was originally written in assembly language, but in 1973, Version 4 Unix was rewritten in C. Version 4 Unix, however, still had many PDP-11 dependent codes, and was not suitable for porting. The first port to another platform was made five years later (1978) for the Interdata 8/32.

In 1974, Ken Robinson of the Department of Computer Science at University of New South Wales (UNSW) in Australia requested a copy of Unix for their PDP-11/40 minicomputer from Dennis Ritchie at Bell Labs. This 1975 installation made UNSW the first university outside the United States to run Unix.

Bell Labs produced several versions of Unix that are collectively referred to as Research Unix. In 1975, the first source license for UNIX was sold to Donald B. Gillies at the University of Illinois at Urbana–Champaign Department of Computer Science (UIUC). UIUC graduate student Greg Chesson, who had worked on the Unix kernel at Bell Labs, was instrumental in negotiating the terms of the license.

During the late 1970s and early 1980s, the influence of Unix in academic circles led to large-scale adoption of Unix (BSD and System V) by commercial startups, which in turn led to Unix fragmenting into multiple, similar but often slightly mutually-incompatible systems including DYNIX, HP-UX, SunOS/Solaris, AIX, and Xenix. In the late 1980s, AT&T Unix System Laboratories and Sun Microsystems developed System V Release 4 (SVR4), which was subsequently adopted by many commercial Unix vendors.

In the 1990s, Unix and Unix-like systems grew in popularity and became the operating system of choice for over 90% of the world's top 500 fastest supercomputers, as BSD and Linux distributions were developed through collaboration by a worldwide network of programmers. In 2000, Apple released Darwin, also a Unix system, which became the core of the Mac OS X operating system, later renamed macOS.

Unix operating systems are widely used in modern servers, workstations, and mobile devices.

Standards

In the late 1980s, an open operating system standardization effort now known as POSIX provided a common baseline for all operating systems; IEEE based POSIX around the common structure of the major competing variants of the Unix system, publishing the first POSIX standard in 1988. In the early 1990s, a separate but very similar effort was started by an industry consortium, the Common Open Software Environment (COSE) initiative, which eventually became the Single UNIX Specification (SUS) administered by The Open Group. Starting in 1998, the Open Group and IEEE started the Austin Group, to provide a common definition of POSIX and the Single UNIX Specification, which, by 2008, had become the Open Group Base Specification.

In 1999, in an effort towards compatibility, several Unix system vendors agreed on SVR4's Executable and Linkable Format (ELF) as the standard for binary and object code files. The common format allows substantial binary compatibility among different Unix systems operating on the same CPU architecture.

The Filesystem Hierarchy Standard was created to provide a reference directory layout for Unix-like operating systems; it has mainly been used in Linux.

Components

The Unix system is composed of several components that were originally packaged together. By including the development environment, libraries, documents and the portable, modifiable source code for all of these components, in addition to the kernel of an operating system, Unix was a self-contained software system. This was one of the key reasons it emerged as an important teaching and learning tool and has had such a broad influence.

The inclusion of these components did not make the system large – the original V7 UNIX distribution, consisting of copies of all of the compiled binaries plus all of the source code and documentation occupied less than 10 MB and arrived on a single nine-track magnetic tape. The printed documentation, typeset from the online sources, was contained in two volumes.

The names and filesystem locations of the Unix components have changed substantially across the history of the system. Nonetheless, the V7 implementation is considered by many to have the canonical early structure:

  • Kernel – source code in /usr/sys, composed of several sub-components:
    • conf – configuration and machine-dependent parts, including boot code
    • dev – device drivers for control of hardware (and some pseudo-hardware)
    • sys – operating system "kernel", handling memory management, process scheduling, system calls, etc.
    • h – header files, defining key structures within the system and important system-specific invariables
  • Development environment – early versions of Unix contained a development environment sufficient to recreate the entire system from source code:
    • cc – C language compiler (first appeared in V3 Unix)
    • as – machine-language assembler for the machine
    • ld – linker, for combining object files
    • lib – object-code libraries (installed in /lib or /usr/lib). libc, the system library with C run-time support, was the primary library, but there have always been additional libraries for things such as mathematical functions (libm) or database access. V7 Unix introduced the first version of the modern "Standard I/O" library stdio as part of the system library. Later implementations increased the number of libraries significantly.
    • make – build manager (introduced in PWB/UNIX), for effectively automating the build process
    • include – header files for software development, defining standard interfaces and system invariants
    • Other languages – V7 Unix contained a Fortran-77 compiler, a programmable arbitrary-precision calculator (bc, dc), and the awk scripting language; later versions and implementations contain many other language compilers and toolsets. Early BSD releases included Pascal tools, and many modern Unix systems also include the GNU Compiler Collection as well as or instead of a proprietary compiler system.
    • Other tools – including an object-code archive manager (ar), symbol-table lister (nm), compiler-development tools (e.g. lex & yacc), and debugging tools.
  • Commands – Unix makes little distinction between commands (user-level programs) for system operation and maintenance (e.g. cron), commands of general utility (e.g. grep), and more general-purpose applications such as the text formatting and typesetting package. Nonetheless, some major categories are:
    • sh – the "shell" programmable command-line interpreter, the primary user interface on Unix before window systems appeared, and even afterward (within a "command window").
    • Utilities – the core toolkit of the Unix command set, including cp, ls, grep, find and many others. Subcategories include:
      • System utilities – administrative tools such as mkfs, fsck, and many others.
      • User utilities – environment management tools such as passwd, kill, and others.
    • Document formatting – Unix systems were used from the outset for document preparation and typesetting systems, and included many related programs such as nroff, troff, tbl, eqn, refer, and pic. Some modern Unix systems also include packages such as TeX and Ghostscript.
    • Graphics – the plot subsystem provided facilities for producing simple vector plots in a device-independent format, with device-specific interpreters to display such files. Modern Unix systems also generally include X11 as a standard windowing system and GUI, and many support OpenGL.
    • Communications – early Unix systems contained no inter-system communication, but did include the inter-user communication programs mail and write. V7 introduced the early inter-system communication system UUCP, and systems beginning with BSD release 4.1c included TCP/IP utilities.
  • Documentation – Unix was the first operating system to include all of its documentation online in machine-readable form. The documentation included:
    • man – manual pages for each command, library component, system call, header file, etc.
    • doc – longer documents detailing major subsystems, such as the C language and troff

Impact

Ken Thompson and Dennis Ritchie, principal developers of Research Unix
 
Photo from USENIX 1984, including Dennis Ritchie (center)
 
Plan 9 from Bell Labs extends Unix design principles and was developed as a successor to Unix.

The Unix system had a significant impact on other operating systems. It achieved its reputation by its interactivity, by providing the software at a nominal fee for educational use, by running on inexpensive hardware, and by being easy to adapt and move to different machines. Unix was originally written in assembly language, but was soon rewritten in C, a high-level programming language. Although this followed the lead of Multics and Burroughs, it was Unix that popularized the idea.

Unix had a drastically simplified file model compared to many contemporary operating systems: treating all kinds of files as simple byte arrays. The file system hierarchy contained machine services and devices (such as printers, terminals, or disk drives), providing a uniform interface, but at the expense of occasionally requiring additional mechanisms such as ioctl and mode flags to access features of the hardware that did not fit the simple "stream of bytes" model. The Plan 9 operating system pushed this model even further and eliminated the need for additional mechanisms.

Unix also popularized the hierarchical file system with arbitrarily nested subdirectories, originally introduced by Multics. Other common operating systems of the era had ways to divide a storage device into multiple directories or sections, but they had a fixed number of levels, often only one level. Several major proprietary operating systems eventually added recursive subdirectory capabilities also patterned after Multics. DEC's RSX-11M's "group, user" hierarchy evolved into VMS directories, CP/M's volumes evolved into MS-DOS 2.0+ subdirectories, and HP's MPE group.account hierarchy and IBM's SSP and OS/400 library systems were folded into broader POSIX file systems.

Making the command interpreter an ordinary user-level program, with additional commands provided as separate programs, was another Multics innovation popularized by Unix. The Unix shell used the same language for interactive commands as for scripting (shell scripts – there was no separate job control language like IBM's JCL). Since the shell and OS commands were "just another program", the user could choose (or even write) their own shell. New commands could be added without changing the shell itself. Unix's innovative command-line syntax for creating modular chains of producer-consumer processes (pipelines) made a powerful programming paradigm (coroutines) widely available. Many later command-line interpreters have been inspired by the Unix shell.

A fundamental simplifying assumption of Unix was its focus on newline-delimited text for nearly all file formats. There were no "binary" editors in the original version of Unix – the entire system was configured using textual shell command scripts. The common denominator in the I/O system was the byte – unlike "record-based" file systems. The focus on text for representing nearly everything made Unix pipes especially useful and encouraged the development of simple, general tools that could be easily combined to perform more complicated ad hoc tasks. The focus on text and bytes made the system far more scalable and portable than other systems. Over time, text-based applications have also proven popular in application areas, such as printing languages (PostScript, ODF), and at the application layer of the Internet protocols, e.g., FTP, SMTP, HTTP, SOAP, and SIP.

Unix popularized a syntax for regular expressions that found widespread use. The Unix programming interface became the basis for a widely implemented operating system interface standard (POSIX, see above). The C programming language soon spread beyond Unix, and is now ubiquitous in systems and applications programming.

Early Unix developers were important in bringing the concepts of modularity and reusability into software engineering practice, spawning a "software tools" movement. Over time, the leading developers of Unix (and programs that ran on it) established a set of cultural norms for developing software, norms which became as important and influential as the technology of Unix itself; this has been termed the Unix philosophy.

The TCP/IP networking protocols were quickly implemented on the Unix versions widely used on relatively inexpensive computers, which contributed to the Internet explosion of worldwide real-time connectivity, and which formed the basis for implementations on many other platforms.

The Unix policy of extensive on-line documentation and (for many years) ready access to all system source code raised programmer expectations, and contributed to the launch of the free software movement in 1983.

Free Unix and Unix-like variants

Console screenshots of Debian (top, a popular Linux distribution) and FreeBSD (bottom, a popular Unix-like operating system)

In 1983, Richard Stallman announced the GNU (short for "GNU's Not Unix") project, an ambitious effort to create a free software Unix-like system; "free" in the sense that everyone who received a copy would be free to use, study, modify, and redistribute it. The GNU project's own kernel development project, GNU Hurd, had not yet produced a working kernel, but in 1991 Linus Torvalds released the kernel Linux as free software under the GNU General Public License. In addition to their use in the GNU operating system, many GNU packages – such as the GNU Compiler Collection (and the rest of the GNU toolchain), the GNU C library and the GNU core utilities – have gone on to play central roles in other free Unix systems as well.

Linux distributions, consisting of the Linux kernel and large collections of compatible software have become popular both with individual users and in business. Popular distributions include Red Hat Enterprise Linux, Fedora, SUSE Linux Enterprise, openSUSE, Debian GNU/Linux, Ubuntu, Linux Mint, Mandriva Linux, Slackware Linux, Arch Linux and Gentoo.

A free derivative of BSD Unix, 386BSD, was released in 1992 and led to the NetBSD and FreeBSD projects. With the 1994 settlement of a lawsuit brought against the University of California and Berkeley Software Design Inc. (USL v. BSDi) by Unix System Laboratories, it was clarified that Berkeley had the right to distribute BSD Unix for free if it so desired. Since then, BSD Unix has been developed in several different product branches, including OpenBSD and DragonFly BSD.

Linux and BSD are increasingly filling the market needs traditionally served by proprietary Unix operating systems, as well as expanding into new markets such as the consumer desktop and mobile and embedded devices. Because of the modular design of the Unix model, sharing components is relatively common; consequently, most or all Unix and Unix-like systems include at least some BSD code, and some systems also include GNU utilities in their distributions.

In a 1999 interview, Dennis Ritchie voiced his opinion that Linux and BSD operating systems are a continuation of the basis of the Unix design, and are derivatives of Unix:

I think the Linux phenomenon is quite delightful, because it draws so strongly on the basis that Unix provided. Linux seems to be the among the healthiest of the direct Unix derivatives, though there are also the various BSD systems as well as the more official offerings from the workstation and mainframe manufacturers.

In the same interview, he states that he views both Unix and Linux as "the continuation of ideas that were started by Ken and me and many others, many years ago".

OpenSolaris was the free software counterpart to Solaris developed by Sun Microsystems, which included a CDDL-licensed kernel and a primarily GNU userland. However, Oracle discontinued the project upon their acquisition of Sun, which prompted a group of former Sun employees and members of the OpenSolaris community to fork OpenSolaris into the illumos kernel. As of 2014, illumos remains the only active open-source System V derivative.

ARPANET

In May 1975, RFC 681 described the development of Network Unix by the Center for Advanced Computation at the University of Illinois Urbana-Champaign. The Unix system was said to "present several interesting capabilities as an ARPANET mini-host". At the time, Unix required a license from Bell Telephone Laboratories that cost US$20,000 for non-university institutions, while universities could obtain a license for a nominal fee of $150. It was noted that Bell was "open to suggestions" for an ARPANET-wide license.

The RFC specifically mentions that Unix "offers powerful local processing facilities in terms of user programs, several compilers, an editor based on QED, a versatile document preparation system, and an efficient file system featuring sophisticated access control, mountable and de-mountable volumes, and a unified treatment of peripherals as special files." The latter permitted the Network Control Program (NCP) to be integrated within the Unix file system, treating network connections as special files that could be accessed through standard Unix I/O calls, which included the added benefit of closing all connections on program exit, should the user neglect to do so. The modular design of Unix allowed them "to minimize the amount of code added to the basic Unix kernel", with much of the NCP code in a swappable user process, running only when needed.

Branding

HP9000 workstation running HP-UX, a certified Unix operating system

In October 1993, Novell, the company that owned the rights to the Unix System V source at the time, transferred the trademarks of Unix to the X/Open Company (now The Open Group), and in 1995 sold the related business operations to Santa Cruz Operation (SCO). Whether Novell also sold the copyrights to the actual software was the subject of a federal lawsuit in 2006, SCO v. Novell, which Novell won. The case was appealed, but on August 30, 2011, the United States Court of Appeals for the Tenth Circuit affirmed the trial decisions, closing the case. Unix vendor SCO Group Inc. accused Novell of slander of title.

The present owner of the trademark UNIX is The Open Group, an industry standards consortium. Only systems fully compliant with and certified to the Single UNIX Specification qualify as "UNIX" (others are called "Unix-like").

By decree of The Open Group, the term "UNIX" refers more to a class of operating systems than to a specific implementation of an operating system; those operating systems which meet The Open Group's Single UNIX Specification should be able to bear the UNIX 98 or UNIX 03 trademarks today, after the operating system's vendor pays a substantial certification fee and annual trademark royalties to The Open Group. Systems that have been licensed to use the UNIX trademark include AIX, EulerOS, HP-UX, Inspur K-UX, IRIX, macOS, Solaris, Tru64 UNIX (formerly "Digital UNIX", or OSF/1), and z/OS. Notably, EulerOS and Inspur K-UX are Linux distributions certified as UNIX 03 compliant.

Sometimes a representation like Un*x, *NIX, or *N?X is used to indicate all operating systems similar to Unix. This comes from the use of the asterisk (*) and the question mark characters as wildcard indicators in many utilities. This notation is also used to describe other Unix-like systems that have not met the requirements for UNIX branding from the Open Group.

The Open Group requests that UNIX is always used as an adjective followed by a generic term such as system to help avoid the creation of a genericized trademark.

Unix was the original formatting, but the usage of UNIX remains widespread because it was once typeset in small caps (Unix). According to Dennis Ritchie, when presenting the original Unix paper to the third Operating Systems Symposium of the American Association for Computing Machinery (ACM), "we had a new typesetter and troff had just been invented and we were intoxicated by being able to produce small caps". Many of the operating system's predecessors and contemporaries used all-uppercase lettering, so many people wrote the name in upper case due to force of habit. It is not an acronym.

Trademark names can be registered by different entities in different countries and trademark laws in some countries allow the same trademark name to be controlled by two different entities if each entity uses the trademark in easily distinguishable categories. The result is that Unix has been used as a brand name for various products including bookshelves, ink pens, bottled glue, diapers, hair driers and food containers.

Several plural forms of Unix are used casually to refer to multiple brands of Unix and Unix-like systems. Most common is the conventional Unixes, but Unices, treating Unix as a Latin noun of the third declension, is also popular. The pseudo-Anglo-Saxon plural form Unixen is not common, although occasionally seen. Sun Microsystems, developer of the Solaris variant, has asserted that the term Unix is itself plural, referencing its many implementations.

Machine code

From Wikipedia, the free encyclopedia
 
Machine language monitor in a W65C816S single-board computer, displaying code disassembly, as well as processor register and memory dumps.

In computer programming, machine code is a low-level programming language, consisting of machine language instructions, used to control a computer's central processing unit (CPU). Each instruction causes the CPU to perform a very specific task, such as a load, a store, a jump, or an arithmetic logic unit (ALU) operation on one or more units of data in the CPU's registers or memory.

Machine code is a strictly numerical language which is designed to run as fast as possible, and may be considered as the lowest-level representation of a compiled or assembled computer program or as a primitive and hardware-dependent programming language. While it is possible to write programs directly in machine code, managing individual bits and calculating numerical addresses and constants manually is tedious and error-prone. For this reason, programs are very rarely written directly in machine code in modern contexts, but may be done for low level debugging, program patching (especially when assembler source is not available) and assembly language disassembly.

The majority of practical programs today are written in higher-level languages or assembly language. The source code is then translated to executable machine code by utilities such as compilers, assemblers, and linkers, with the important exception of interpreted programs, which are not translated into machine code. However, the interpreter itself, which may be seen as an executor or processor performing the instructions of the source code, typically consists of directly executable machine code (generated from assembly or high-level language source code).

Machine code is by definition the lowest level of programming detail visible to the programmer, but internally many processors use microcode or optimise and transform machine code instructions into sequences of micro-ops. This is not generally considered to be a machine code.

Instruction set

Every processor or processor family has its own instruction set. Instructions are patterns of bits, digits or characters that correspond to machine commands. Thus, the instruction set is specific to a class of processors using (mostly) the same architecture. Successor or derivative processor designs often include instructions of a predecessor and may add new additional instructions. Occasionally, a successor design will discontinue or alter the meaning of some instruction code (typically because it is needed for new purposes), affecting code compatibility to some extent; even compatible processors may show slightly different behavior for some instructions, but this is rarely a problem. Systems may also differ in other details, such as memory arrangement, operating systems, or peripheral devices. Because a program normally relies on such factors, different systems will typically not run the same machine code, even when the same type of processor is used.

A processor's instruction set may have all instructions of the same length, or it may have variable-length instructions. How the patterns are organized varies with the particular architecture and type of instruction. Most instructions have one or more opcode fields which specifies the basic instruction type (such as arithmetic, logical, jump, etc.), the operation (such as add or compare), and other fields that may give the type of the operand(s), the addressing mode(s), the addressing offset(s) or index, or the operand value itself (such constant operands contained in an instruction are called immediates).

Not all machines or individual instructions have explicit operands. An accumulator machine has a combined left operand and result in an implicit accumulator for most arithmetic instructions. Other architectures (such as 8086 and the x86-family) have accumulator versions of common instructions, with the accumulator regarded as one of the general registers by longer instructions. A stack machine has most or all of its operands on an implicit stack. Special purpose instructions also often lack explicit operands (CPUID in the x86 architecture writes values into four implicit destination registers, for instance). This distinction between explicit and implicit operands is important in code generators, especially in the register allocation and live range tracking parts. A good code optimizer can track implicit as well as explicit operands which may allow more frequent constant propagation, constant folding of registers (a register assigned the result of a constant expression freed up by replacing it by that constant) and other code enhancements.

Programs

A computer program is a list of instructions that can be executed by a central processing unit (CPU). A program's execution is done in order for the CPU that is executing it to solve a problem and thus accomplish a result. While simple processors are able to execute instructions one after another, superscalar processors are capable of executing many instructions simultaneously.

Program flow may be influenced by special 'jump' instructions that transfer execution to an address (and hence instruction) other than the next numerically sequential address. Whether these Conditional jumps occur is dependent upon a condition such as a value being greater than, less than, or equal to another value.

Assembly languages

A much more human friendly rendition of machine language, called assembly language, uses mnemonic codes to refer to machine code instructions, rather than using the instructions' numeric values directly, and uses symbolic names to refer to storage locations and sometimes registers. For example, on the Zilog Z80 processor, the machine code 00000101, which causes the CPU to decrement the B processor register, would be represented in assembly language as DEC B.

Example

The MIPS architecture provides a specific example for a machine code whose instructions are always 32 bits long. The general type of instruction is given by the op (operation) field, the highest 6 bits. J-type (jump) and I-type (immediate) instructions are fully specified by op. R-type (register) instructions include an additional field funct to determine the exact operation. The fields used in these types are:

   6      5     5     5     5      6 bits
[  op  |  rs |  rt |  rd |shamt| funct]  R-type
[  op  |  rs |  rt | address/immediate]  I-type
[  op  |        target address        ]  J-type

rs, rt, and rd indicate register operands; shamt gives a shift amount; and the address or immediate fields contain an operand directly.

For example, adding the registers 1 and 2 and placing the result in register 6 is encoded:

[  op  |  rs |  rt |  rd |shamt| funct]
    0     1     2     6     0     32     decimal
 000000 00001 00010 00110 00000 100000   binary

Load a value into register 8, taken from the memory cell 68 cells after the location listed in register 3:

[  op  |  rs |  rt | address/immediate]
   35     3     8           68           decimal
 100011 00011 01000 00000 00001 000100   binary

Jumping to the address 1024:

[  op  |        target address        ]
    2                 1024               decimal
 000010 00000 00000 00000 10000 000000   binary

Relationship to microcode

In some computer architectures, the machine code is implemented by an even more fundamental underlying layer called microcode, providing a common machine language interface across a line or family of different models of computer with widely different underlying dataflows. This is done to facilitate porting of machine language programs between different models. An example of this use is the IBM System/360 family of computers and their successors. With dataflow path widths of 8 bits to 64 bits and beyond, they nevertheless present a common architecture at the machine language level across the entire line.

Using microcode to implement an emulator enables the computer to present the architecture of an entirely different computer. The System/360 line used this to allow porting programs from earlier IBM machines to the new family of computers, e.g. an IBM 1401/1440/1460 emulator on the IBM S/360 model 40.

Relationship to bytecode

Machine code is generally different from bytecode (also known as p-code), which is either executed by an interpreter or itself compiled into machine code for faster (direct) execution. An exception is when a processor is designed to use a particular bytecode directly as its machine code, such as is the case with Java processors.

Machine code and assembly code are sometimes called native code when referring to platform-dependent parts of language features or libraries.

Storing in memory

The Harvard architecture is a computer architecture with physically separate storage and signal pathways for the code (instructions) and data. Today, most processors implement such separate signal pathways for performance reasons but implement a Modified Harvard architecture, so they can support tasks like loading an executable program from disk storage as data and then executing it. Harvard architecture is contrasted to the Von Neumann architecture, where data and code are stored in the same memory which is read by the processor allowing the computer to execute commands.

From the point of view of a process, the code space is the part of its address space where the code in execution is stored. In multitasking systems this comprises the program's code segment and usually shared libraries. In multi-threading environment, different threads of one process share code space along with data space, which reduces the overhead of context switching considerably as compared to process switching.

Readability by humans

Pamela Samuelson wrote that machine code is so unreadable that the United States Copyright Office cannot identify whether a particular encoded program is an original work of authorship; however, the US Copyright Office does allow for copyright registration of computer programs and a program's machine code can sometimes be decompiled in order to make its functioning more easily understandable to humans. However, the output of a decompiler or disassembler will be missing the comments and symbolic references, so while the output may be easier to read than the object code, it will still be more difficult than the original source code. This problem does not exist for object-code formats like SQUOZE, where the source code is included in the file.

Cognitive science professor Douglas Hofstadter has compared machine code to genetic code, saying that "Looking at a program written in machine language is vaguely comparable to looking at a DNA molecule atom by atom."

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...