Search This Blog

Thursday, August 25, 2022

Energy transition

From Wikipedia, the free encyclopedia
 
Coal, oil, and natural gas remain the primary global energy sources even as renewables have begun rapidly increasing.

The energy transition is the ongoing process of replacing fossil fuels with low carbon energy sources. More generally, an energy transition is a significant structural change in an energy system regarding supply and consumption.

The industrial revolution was driven by an energy transition from wood and other biomass to coal, followed by oil and most recently natural gas. Historically, there is a correlation between an increasing demand for energy and availability of different energy sources.

The current transition to sustainable energy differs as it is largely driven by a recognition that global greenhouse-gas emissions must be brought to zero. Since fossil fuels are the largest single source of carbon emissions, the quantity that can be produced is limited by the Paris Agreement of 2015 to keep global warming below 1.5 °C. Over 70% of our global greenhouse gas emissions result from the energy sector, for transport, heating, and industrial use.

Wind power and solar photovoltaic systems (PV) have the greatest potential to mitigate climate change. Since the late 2010s, the renewable energy transition is also driven by the rapidly increasing competitiveness of both. Another motivation for the transition is to limit other environmental impact of the energy industry.

The renewable energy transition includes a shift from internal combustion engine powered vehicles to more public transport, reduced air travel and electric vehicles. Electrification also regards the buildings sector, with heat pumps as the most efficient technology by far. For electrical grid scale flexibility, energy storage and super grids are vital to allow for variable, weather-dependent technologies.

Definition

An energy transition designates a significant change for an energy system related to resources, system structure, scale, economics, end use behaviour and energy policy. A prime example is the change from a pre-industrial system relying on traditional biomass, wind, water and muscle power to an industrial system characterized by pervasive mechanization, steam power and the use of coal.

After the 1973 oil crisis, the term was coined by politicians and media. It was popularised by US President Jimmy Carter in his 1977 Address on the Nation on Energy, calling to "look back into history to understand our energy problem. Twice in the last several hundred years, there has been a transition in the way people use energy ... Because we are now running out of gas and oil, we must prepare quickly for a third change--to strict conservation and to the renewed use of coal and to permanent renewable energy sources like solar power." The term was later globalised after the 1979 second oil shock, during the 1981 United Nations in Nairobi on new and renewable sources of energy.

From the 1990s, debates on energy transition have increasingly taken climate change mitigation into account. Since the adoption of the COP21 Paris Agreement in 2015, all 196 participating parties have agreed to reach carbon neutrality by mid-century. Parties to the agreement committed "to limit global warming to "well below 2 °C, preferably 1.5 °C compared to pre-industrial levels". This requires a rapid energy transition with a downshift of fossil fuel production to stay within the carbon emissions budget.

In this context, the term 'energy transition' encompasses a reorientation of energy policy. This could imply a shift from centralized to distributed generation. It also includes attempts to replace overproduction and avoidable energy consumption with energy-saving measures and increased efficiency. In a broader sense the energy transition could also entail a democratization of energy.

History of energy transitions and energy additions

An example of a long-term historic energy transition: share of primary energy by source in Portugal

Historic approaches to past energy transitions are shaped by two main discourses. One argues that humankind experienced several energy transitions in its past, while the other suggests the term "energy additions" as better reflecting the changes in global energy supply in the last three centuries.

The chronologically first discourse was most broadly described by Vaclav Smil. It underlines the change in the energy mix of countries and the global economy. By looking at data in percentages of the primary energy source used in a given context, it paints a picture of the world's energy systems as having changed significantly over time, going from biomass to coal, to oil, and now a mix of mostly coal, oil and natural gas. Until the 1950s, the economic mechanism behind energy systems was local rather than global.

The second discourse was most broadly described by Jean-Baptiste Fressoz. It emphasises that the term "energy transition" was first used by politicians, not historians, to describe a goal to achieve in the future – not as a concept to analyse past trends. When looking at the sheer amount of energy being used by humankind, the picture is one of an ever-increasing energy consumption that is met by an ever-increasing consumption of all the main energy sources available to humankind. For instance, the increased use of coal in the 19th century indeed did not replace wood consumption, but came on top of increased wood consumption. Another example is the deployment of passenger cars in the 20th century. This evolution triggered an increase in both oil consumption (to drive the car) and coal consumption (to make the steel needed for the car). In other words, according to this approach, humankind never performed a single energy transition in its history but performed several energy additions.

Contemporary energy transitions differ in terms of motivation and objectives, drivers and governance. As development progressed, different national systems became more and more integrated becoming the large, international systems seen today. Historical changes of energy systems have been extensively studied. While historical energy changes were generally protracted affairs, unfolding over many decades, this does not necessarily hold true for the present energy transition, which is unfolding under very different policy and technological conditions.

For current energy systems, many lessons can be learned from history. The need for large amounts of firewood in early industrial processes in combination with prohibitive costs for overland transportation led to a scarcity of accessible (e.g. affordable) wood and it has been found that eighteenth century glass-works "operated like a forest clearing enterprise". When Britain had to resort to coal after largely having run out of wood, the resulting fuel crisis triggered a chain of events that two centuries later culminated in the Industrial Revolution. Similarly, increased use of peat and coal were vital elements paving the way for the Dutch Golden Age, roughly spanning the entire 17th century. Another example where resource depletion triggered technological innovation and a shift to new energy sources in 19th Century whaling and how whale oil eventually became replaced by kerosene and other petroleum-derived products. With the success of a rapid energy transition it is also conceivable that there will be government buyouts or bailouts of coal mining regions.

Factors driving the low carbon energy transition

The Climate Change Performance Index is based on GHG emissions, renewable energy, energy use and climate policy.
 
With increasing implementation of renewable energy sources, costs have declined, most notably for energy generated by solar panels. Levelized cost of energy (LCOE) is a measure of the average net present cost of electricity generation for a generating plant over its lifetime.

A rapid energy transition to very-low or zero-carbon sources is required to mitigate the existential effects of climate change. The rise in weather and climate extremes has already led to irreversible impacts as natural and human systems are pushed beyond their ability to adapt. Coal, oil and gas combustion account for 89% of CO2 emissions while they still provide 78% of primary energy consumption. By 2050, burning coal must be reduced by 95%, oil by 60% and gas by 45% compared to 2019 in order to achieve a 50% chance to meet the Paris Agreement target of limiting global heating to 1.5 °C. This refers to pathways with no or limited overshoot.

In spite of the knowledge about the risks of climate change since the 1980s and the vanishing carbon budget for a 1.5 °C path, the global deployment of renewable energy could not catch up with the increasing energy demand for many years. Coal, oil and gas were cheaper. Only in countries with special tariffs and subsidies, wind and solar power gained a considerable share, limited to the power sector.

From 2010-2019, competitiveness of wind and solar power has massively increased. Unit costs of solar energy dropped sharply by 85%, wind energy by 55%, and lithium-ion batteries by 85%, making wind and solar power the cheapest form for new installations in many regions. Levelized costs for combined photovoltaics with storage for a few hours are already lower than for gas peaking power plants. In 2021, the new electricity generating capacity of renewables exceeded 80% of all installed power.

Another important driver is energy security and independence, with increasing importance in Europe from the background of the 2022 Russian invasion of Ukraine.

The deployment of renewable energy can also include co-benefits of climate change mitigation: positive socio-economic effects on employment, industrial development, health and energy access. Depending on the country and the deployment scenario, replacing coal power plants can more than double the number of jobs per average MW capacity. In non-electrified rural areas, the deployment of solar mini-grids can significantly improve electricity access. Employment opportunities by the green transition are associated with the use of renewable energy sources or building activity for infrastructure improvements and renovations. Additionally, the replacement of coal-based energy with renewables can lower the number of premature deaths caused by air pollution and reduce health costs.

Current technologies

Gold Ray Dam on the Rogue River (Oregon)
 
Wind farm in Idaho, United States.
 
Photovoltaic array in Colorado.
 
Salt tanks at Solana CSP in Arizona provide 1 GWh thermal energy storage.

Renewable energy

Global renewable energy capacity additions in 2020 included a 90% rise in global wind capacity (green) and a 23% expansion of new photovoltaic installations (yellow).
 
Companies, governments and households committed $501.3 billion to decarbonization in 2020, including solar, wind, electric vehicles, charging infrastructure, storage, heating systems, CCS and hydrogen.

The energy sources that are considered the most important in the low carbon energy transition are wind power and solar power. Both offer the potential to reduce net emissions by 4 Gt CO2 equivalents per year each, half of it with lower net lifetime costs than the reference.

By 2022, hydroelectricity is the largest source of renewable electricity in the world, providing 16% of the world's total electricity in 2019. However, because of its heavy dependence on geography and the generally high environmental and social impact of hydroelectric power plants, the growth potential of this technology is limited. Wind and solar power are considered more scalable, but still require vast quantities of land and materials. They have higher potential for growth. These sources have grown nearly exponentially in recent decades thanks to rapidly decreasing costs. In 2019, wind power supplied 5.3% worldwide electricity while solar power supplied 2.6%.

While production from most types of hydropower plants can be actively controlled, production from wind and solar power depends on the weather. Electrical grids must be extended and adjusted to avoid wastage. Hydropower is therefore considered a dispatchable source, while solar and wind are variable renewable energy sources. These sources require dispatchable backup generation or energy storage to provide continuous and reliable electricity. For this reason, storage technologies also play a key role in the renewable energy transition. As of 2020, the largest scale storage technology is pumped storage hydroelectricity, accounting for the great majority of energy storage capacity installed worldwide. Other important forms of energy storage are electric batteries and power to gas.

Other renewable energy sources include bioenergy, geothermal energy and tidal energy.

Regarding energy use and efficiency the electrification of road transport is one key technology.

Nuclear power

Timeline of commissioned and decommissioned nuclear capacity since the 1950s.

In the 1970s and 1980s, nuclear power gained a large share in some countries. In France and Slovakia more than half of the electrical power is still nuclear. It is regarded as a low carbon energy source but comes with risks and increasing costs. Since the late 1990s, deployment has slowed down. Decommissioning increases as many reactors are close to the end of their lifetime. Germany has announced to stop its last three nuclear power plants by the end of 2022. On teh other hand, the China General Nuclear Power Group has articulated the goal of 200 GW by 2035, produced by 150 additional reactors.

Economic aspects

A shift in energy sources has the potential to redefine relations and dependencies between countries, stakeholders and companies. Countries or land owners with resources - fossil or renewable - face massive losses or gains depending on the development of any energy transition. In 2021, energy costs reached 13% of the global gross domestic product. Global rivalries have contributed to the driving forces of the economics behind the low carbon energy transition. Technological innovations developed within a country have the potential to become an economic force.

Social aspects

Influences

The energy transition discussion is heavily influenced by contributions from the oil industry. The oil industry controls the larger part of the world's energy supply and needs as petroleum continues to be the most accessible and available resource present today. With a history of continued success and sustained demand, the oil industry has become a stable aspect of society, the economy and the energy sector. To transition to renewable energy technologies, the government and economy must address the oil industry and its control of the energy sector.

A booth for the Citizens' Climate Lobby, at a rally for science in Minnesota, 2018.

One way that oil companies are able to continue their work despite growing environmental, social and economic concerns is through lobbying efforts within local and national government systems. Lobbying is defined as to conduct activities aimed at influencing public officials and especially members of a legislative body on legislation

Historically, the fossil fuel lobby has been highly successful in limiting regulations on the oil industry and enabling business-as-usual techniques. From 1988 to 2005, Exxon Mobil, one of the largest oil companies in the world, spent nearly $16 million in anti-climate change lobbying and providing misleading information about climate change to the general public. The oil industry acquires significant support through the existing banking and investment structure. By investing in the fossil fuel industry, it is provided with financial support to continue its business ventures. The concept that the industry should no longer be financially supported has led to the social movement known as divestment. Divestment is defined as the removal of investment capital from stocks, bonds or funds in oil, coal and gas companies for both moral and financial reasons

Banks, investing firms, governments, universities, institutions and businesses are all being challenged with this new moral argument against their existing investments in the fossil fuel industry and many such as Rockefeller Brothers Fund, the University of California, New York City and more have begun making the shift to more sustainable, eco-friendly investments.

Impacts

The low carbon energy transition has many benefits and challenges that are associated with it. One of the positive social impacts that is predicted is the use of local energy sources to provide stability and economic stimulation to local communities. Not only does this benefit local utilities through portfolio diversification, but it also creates opportunities for energy trade between communities, states and regions. Additionally, energy security has been a struggle worldwide that has led to many issues in the OPEC countries and beyond. Energy security is evaluated by analyzing the accessibility, availability, sustainability, regulatory and technological opportunity of our energy portfolio. Renewable Energy presents an opportunity to increase our energy security by becoming energy independent and have localized grids that decrease energy risks geopolitically. In this sense, the benefits and positive outcomes of the renewable energy transition are profound.

There are also risks and negative impacts on society because of the renewable energy transition that need to be mitigated. The coal mining industry plays a large part in the existing energy portfolio and is one of the biggest targets for climate change activists due to the intense pollution and habitat disruption that it creates. The transition to renewable is expected to have decrease the need and viability of coal mining in the future. This is a positive for climate change action, but can have severe impacts on the communities that rely on this business. Coal mining communities are considered vulnerable to the renewable energy transition. Not only do these communities face energy poverty already, but they also face economic collapse when the coal mining businesses move elsewhere or disappear altogether. These communities need to quickly transition to alternative forms of work to support their families, but lack the resources and support to invest in themselves. This broken system perpetuates the poverty and vulnerability that decreases the adaptive capacity of coal mining communities. Potential mitigation could include expanding the program base for vulnerable communities to assist with new training programs, opportunities for economic development and subsidies to assist with the transition. Ultimately, the social impacts of the renewable energy transition will be extensive, but with mitigation strategies, governments can ensure that it becomes a positive opportunity for all citizens.

Mineral extraction

The renewable energy transition has begun to stimulate debate considering it requires a significant increase in extraction of some kinds of minerals and therefore will lead to an increase of the mining processes themselves and of the associated environmental and societal impacts. A potential solution that has arisen for this energy transition dilemma is to explore collection of minerals from new sources like polymetallic nodules lying on the seabed, but this could damage biodiversity. Ongoing research is exploring this as a way to facilitate the energy transition in a more sustainable manner.

Reasons for a fast energy transition

6 advantages of an energy transition (for example in Europe) - Energy Atlas 2018

Solving the global warming problem is regarded as the most important challenge facing humankind in the 21st century, and under the Paris climate agreement emissions must cease by 2040 or 2050. Barring a breakthrough in carbon sequestration technologies, this requires an energy transition away from fossil fuels such as oil, natural gas, lignite, and coal. This energy transition is also known as the decarbonization of the energy system or "energy turnaround". Available technologies are nuclear power (fission), wind, hydropower, solar power, geothermal, and marine energy.

A timely implementation of the energy transition requires multiple approaches in parallel. Energy conservation and improvements in energy efficiency thus play a major role. Smart electric meters can schedule energy consumption for times when electricity is abundant, reducing consumption at times when the more variable renewable energy sources are scarce (night time and lack of wind).

Technology has been identified as an important but difficult-to-predict driver of change within energy systems. Published forecasts have systematically tended to overestimate the potential of new energy and conversion technologies and underestimated the inertia in energy systems and energy infrastructure (e.g. power plants, once built, characteristically operate for many decades). The history of large technical systems is very useful for enriching debates about energy infrastructures by detailing many of their long-term implications. The speed at which a transition in the energy sector needs to take place will be historically rapid. Moreover, the underlying technological, political, and economic structures will need to change radically — a process one author calls regime shift.

Risks and barriers

Despite the widespread understanding that a transition to low carbon energy is necessary, there are a number of risks and barriers to making it more appealing than conventional energy. Low carbon energy rarely comes up as a solution beyond combating climate change, but has wider implications for food security and employment. This further supports the recognized dearth of research for clean energy innovations, which may lead to quicker transitions. Overall, the transition to renewable energy requires a shift among governments, business, and the public. Altering public bias may mitigate the risk of subsequent administrations de-transitioning - through perhaps public awareness campaigns or carbon levies.

Amongst the key issues to consider in relation to the pace of the global transition to renewables is how well individual electric companies are able to adapt to the changing reality of the power sector. For example, to date, the uptake of renewables by electric utilities has remained slow, hindered by their continued investment in fossil fuel generation capacity.

Labour

A large portion of the global workforce works directly or indirectly for the fossil fuel economy. Moreover, many other industries are currently dependent on unsustainable energy sources (such as the steel industry or cement and concrete industry). Transitioning these workforces during the rapid period of economic change requires considerable forethought and planning. The international labor movement has advocated for a just transition that addresses these concerns.

Predictions

Possible energy transition timeline. The energy transition on this timeline is too slow to correspond with the Paris Agreement.

After a transitional period, renewable energy production is expected to make up most of the world's energy production. In 2018, the risk management firm, DNV GL, forecasts that the world's primary energy mix will be split equally between fossil and non-fossil sources by 2050. A 2011 projection by the International Energy Agency expects solar PV to supply more than half of the world's electricity by 2060, dramatically reducing the emissions of greenhouse gases.

The GeGaLo index of geopolitical gains and losses assesses how the geopolitical position of 156 countries may change if the world fully transitions to renewable energy resources. Former fossil fuels exporters are expected to lose power, while the positions of former fossil fuel importers and countries rich in renewable energy resources is expected to strengthen.

Status in specific countries

Global energy consumption by source.
 
Global energy consumption by source (in %).

The U.S. Energy Information Administration (EIA) estimates that, in 2013, total global primary energy supply (TPES) was 157.5 petawatt hours or 1.575×1017 Wh (157.5 thousand TWh; 5.67×1020 J; 13.54 billion toe) or about 18 TW-year. From 2000–2012 coal was the source of energy with the total largest growth. The use of oil and natural gas also had considerable growth, followed by hydropower and renewable energy. Renewable energy grew at a rate faster than any other time in history during this period. The demand for nuclear energy decreased, in part due to fear mongering and inaccurate media portrayal of some nuclear disasters (Three Mile Island in 1979, Chernobyl in 1986, and Fukushima in 2011). More recently, consumption of coal has declined relative to low carbon energy. Coal dropped from about 29% of the global total primary energy consumption in 2015 to 27% in 2017, and non-hydro renewables were up to about 4% from 2%.

Australia

Australia has one of the fastest deployment rates of renewable energy worldwide. The country has deployed 5.2 GW of solar and wind power in 2018 alone and at this rate, is on track to reach 50% renewable electricity in 2024 and 100% in 2032. However, Australia may be one of the leading major economies in terms of renewable deployments, but it is one of the least prepared at a network level to make this transition, being ranked 28th out of the list of 32 advanced economies on the World Economic Forum's 2019 Energy Transition Index. Nuclear energy is banned in Australia.

China

China is the largest emitter of greenhouse gases, and plays a key role in the low carbon energy transition and climate change mitigation. China has a goal to be carbon neutral by 2060.

European Union

The European Green Deal is a set of policy initiatives by the European Commission with the overarching aim of making Europe climate neutral in 2050. An impact assessed plan will also be presented to increase the EU's greenhouse gas emission reductions target for 2030 to at least 50% and towards 55% compared with 1990 levels. The plan is to review each existing law on its climate merits, and also introduce new legislation on the circular economy, building renovation, biodiversity, farming and innovation. The president of the European Commission, Ursula von der Leyen, stated that the European Green Deal would be Europe's "man on the Moon moment", as the plan would make Europe the first climate-neutral continent.

A survey found that digitally advanced companies put more money into energy-saving strategies. In the European Union, 59% of companies that have made investments in both basic and advanced technologies have also invested in energy efficiency measures, compared to only 50% of US firms in the same category. Overall, there is a significant disparity between businesses' digital profiles and investments in energy efficiency.

Austria

Austria electricity supply by source
 

Austria embarked on its energy transition (Energiewende) some decades ago. Due to geographical conditions, electricity production in Austria relies heavily on renewable energies, specifically hydropower. 78.4% of domestic electricity production in 2013 came from low carbon energy, 9.2% from natural gas and 7.2% from petroleum. On the basis of the Federal Constitutional Law for a Nuclear-Free Austria, no nuclear power stations are in operation in Austria.

Domestic energy production makes up only 36% of Austria's total energy consumption, which among other things encompasses transport, electricity production, and heating. In 2013, oil accounts for about 36.2% of total energy consumption, renewable energies 29.8%, gas 20.6%, and coal 9.7%. In the past 20 years, the structure of gross domestic energy consumption has shifted from coal and oil to new renewables. The EU target for Austria require a renewables share of 34% by 2020 (gross final energy consumption).

Energy transition in Austria can be also seen on the local level, in some villages, towns and regions. For example, the town of Güssing in the state of Burgenland is a pioneer in independent and sustainable energy production. Since 2005, Güssing has already produced significantly more heating (58 gigawatt hours) and electricity (14 GWh) from renewable resources than the city itself needs.

Denmark

Denmark electricity generation by source

Denmark, as a country reliant on imported oil, was impacted particularly hard by the 1973 oil crisis. This roused public discussions on building nuclear power stations to diversify energy supply. A strong anti-nuclear movement developed, which fiercely criticized nuclear power plans taken up by the government, and this ultimately led to a 1985 resolution not to build any nuclear power stations in Denmark. The country instead opted for renewable energy, focusing primarily on wind power. Wind turbines for power generation already had a long history in Denmark, as far back as the late 1800s. As early as 1974 a panel of experts declared "that it should be possible to satisfy 10% of Danish electricity demand with wind power, without causing special technical problems for the public grid." Denmark undertook the development of large wind power stations — though at first with little success (like with the Growian project in Germany).

Small facilities prevailed instead, often sold to private owners such as farms. Government policies promoted their construction; at the same time, positive geographical factors favored their spread, such as good wind power density and Denmark's decentralized patterns of settlement. A lack of administrative obstacles also played a role. Small and robust systems came on line, at first in the power range of only 50-60 kilowatts — using 1940s technology and sometimes hand-crafted by very small businesses. In the late seventies and the eighties a brisk export trade to the United States developed, where wind energy also experienced an early boom. In 1986 Denmark already had about 1200 wind power turbines, though they still accounted for just barely 1% of Denmark's electricity. This share increased significantly over time. In 2011, renewable energies covered 41% of electricity consumption, and wind power facilities alone accounted for 28%. The government aims to increase wind energy's share of power generation to 50% by 2020, while at the same time reducing carbon dioxide emissions by 40%. On 22 March 2012, the Danish Ministry of Climate, Energy and Building published a four-page paper titled "DK Energy Agreement," outlining long-term principles for Danish energy policy.

The installation of oil and gas heating is banned in newly constructed buildings from the start of 2013; beginning in 2016 this will also apply to existing buildings. At the same time an assistance program for heater replacement was launched. Denmark's goal is to reduce the use of fossil fuels 33% by 2020. The country is scheduled to attain complete independence from petroleum and natural gas by 2050.

France

Electricity production in France.

Since 2012, political discussions have been developing in France about the energy transition and how the French economy might profit from it.

In September 2012, Minister of the Environment Delphine Batho coined the term "ecological patriotism." The government began a work plan to consider starting the energy transition in France. This plan should address the following questions by June 2013:

  • How can France move towards energy efficiency and energy conservation? Reflections on altered lifestyles, changes in production, consumption, and transport.
  • How to achieve the energy mix targeted for 2025? France's climate protection targets call for reducing greenhouse gas emissions 40% by 2030, and 60% by 2040.
  • Which renewable energies should France rely on? How should the use of wind and solar energy be promoted?
  • What costs and funding models will likely be required for alternative energy consulting and investment support? And how about for research, renovation, and expansion of district heating, biomass, and geothermal energy? One solution could be a continuation of the CSPE, a tax that is charged on electricity bills.

The Environmental Conference on Sustainable Development on 14 and 15 September 2012 treated the issue of the environmental and energy transition as its main theme.

On 8 July 2013, the national debate leaders submits some proposals to the government. Among them, there were environmental taxation, and smart grid development.

In 2015, the National Assembly has adopted legislation for the transition to low emission vehicles.

France is second only to Denmark as having the world's lowest carbon emissions in relation to gross domestic product.

Germany

Gross generation of electricity by source in Germany 1990–2020

Germany has played an outsized role in the transition away from fossil fuels and nuclear power to renewables. The energy transition in Germany is known as die Energiewende (literally, "the energy turn") indicating a turn away from old fuels and technologies to new one. The key policy document outlining the Energiewende was published by the German government in September 2010, some six months before the Fukushima nuclear accident; legislative support was passed in September 2010.

The policy has been embraced by the German federal government and has resulted in a huge expansion of renewables, particularly wind power. Germany's share of renewables has increased from around 5% in 1999 to 17% in 2010, reaching close to the OECD average of 18% usage of renewables. Producers have been guaranteed a fixed feed-in tariff for 20 years, guaranteeing a fixed income. Energy co-operatives have been created, and efforts were made to decentralize control and profits. The large energy companies have a disproportionately small share of the renewables market. Nuclear power stations were closed, and the existing nine stations will close earlier than necessary, in 2022.

The reduction of reliance on nuclear stations has had the consequence of increased reliance on fossil fuels. One factor that has inhibited efficient employment of new renewable energy has been the lack of an accompanying investment in power infrastructure to bring the power to market. It is believed 8300 km of power lines must be built or upgraded.

Different Länder have varying attitudes to the construction of new power lines. Industry has had their rates frozen and so the increased costs of the Energiewende have been passed on to consumers, who have had rising electricity bills. Germans in 2013 had some of the highest electricity costs in Europe. Nonetheless, for the first time in more than ten years, electricity prices for household customers fell at the beginning of 2015.

South Korea

The South Korean Ministry of Trade, Industry, and Energy (MOTIE) has claimed that an energy transition is necessary in order to comply with the public's demands for their lives, their safety, and the environment. In addition, the ministry has stated that the direction of the future energy policy is "to transition (from conventional energy sources) to safe and clean energy sources." Unlike in the past, the keynote of the policy is to put emphasis on safety and the environment rather than on stability of supply and demand and economic feasibility and is to shift its reliance on nuclear power and coal to clean energy sources like renewables.

In 1981, the primary energy was sourced predominantly by oil and coal with oil accounting for 58.1% and coal 33.3%. As the shares of nuclear power and liquefied natural gas have increased over the years, the share of oil has decreased gradually. The primary energy broke down as follows in 1990: 54% oil, 26% coal, 14% nuclear power, 3% liquefied natural gas, and 3% renewables. Later on, with efforts to reduce greenhouse gas emissions in the country through international cooperation and to improve environmental and safety performances, it broke down as follows in 2017: 40% oil, 29% coal, 16% liquefied natural gas, 10% nuclear power, and 5% renewables. Under the 8th Basic Plan for Long-term Electricity Supply and Demand, presented at the end of 2017, the shares of nuclear and coal are getting decreased while the share of renewables is expanding.

In June 2019, the Korean government confirmed the Third Energy Master Plan, also called a constitutional law of the energy sector and renewed every five years. Its goal is to achieve sustainable growth and enhance the quality of life through energy transition. There are five major tasks to achieve this goal. First, with regards to consumption, the goal is to improve energy consumption efficiency by 38% compared to the level of 2017 and to reduce energy consumption by 18.6% below the BAU level by 2040. Second, with respect to generation, the task is to bring a transition towards a safe and clean energy mix by raising the share of renewable energy in power generation (30~35% by 2040) and by implementing a gradual phase-out of nuclear power and a drastic reduction of coal. Third, regarding the systems, the task is to raise the share of distributed generation nearby where demand is created with renewables and fuel cells and to enhance the roles and responsibility of local governments and residents. Fourth, with regards to the industry, the task is to foster businesses related to renewables, hydrogen, and energy efficiency as a future energy industry, to help the conventional energy industry develop higher value-added businesses, and to support the nuclear power industry to maintain its main ecosystem. The fifth task is to improve the energy market system of electricity, gas, and heat in order to promote energy transition and is to develop an energy big data platform in order to create new businesses.

Switzerland

Due to the high share of hydroelectricity (59.6%) and nuclear power (31.7%) in electricity production, Switzerland's per capita energy-related CO2 emissions are 28% lower than the European Union average and roughly equal to those of France. On 21 May 2017, Swiss voters accepted the new Energy Act establishing the 'energy strategy 2050'. The aims of the energy strategy 2050 are: to reduce energy consumption; to increase energy efficiency ; and to promote renewable energies (such as water, solar, wind and geothermal power as well as biomass fuels). The Energy Act of 2006 forbids the construction of new nuclear power plants in Switzerland.

United Kingdom

Primary energy mix in the United Kingdom over time, differentiated by energy source (in % of the total energy consumption)

By law production of greenhouse gas emissions by the United Kingdom will be reduced to net zero by 2050. To help in reaching this statutory goal national energy policy is mainly focusing on the country's off-shore wind power and delivering new and advanced nuclear power. The increase in national renewable power - particularly from biomass - together with the 20% of electricity generated by nuclear power in the United Kingdom meant that by 2019 low carbon British electricity had overtaken that generated by fossil fuels.

In order to meet the net zero target energy networks must be strengthened. Electricity is only a part of energy in the United Kingdom, so natural gas used for industrial and residential heat and petroleum used for transport in the United Kingdom must also be replaced by either electricity or another form of low-carbon energy, such as sustainable bioenergy crops or green hydrogen.

Although the need for the energy transition is not disputed by any major political party, in 2020 there is debate about how much of the funding to try and escape the COVID-19 recession should be spent on the transition, and how many jobs could be created, for example in improving energy efficiency in British housing. Some believe that due to post-covid government debt that funding for the transition will be insufficient. Brexit may significantly affect the energy transition, but this is unclear as of 2020. The government is urging UK business to sponsor the climate change conference in 2021, possibly including energy companies but only if they have a credible short term plan for the energy transition.

United States

U.S. energy consumption by source.
 
The Shepherds Flat Wind Farm is an 845 megawatt (MW) wind farm in the U.S. state of Oregon.
 
The 550 MW Desert Sunlight Solar Farm in California.
 
The 392 MW Ivanpah Solar Power Facility in California: The facility's three towers.
 
Parabolic trough power station for electricity production, near the town of Kramer Junction in California's San Joaquin Valley

The Obama administration made a large push for green jobs, particularly in his first term. The Trump administration, however, took action to reverse the pro-environmental policies of his predecessor, including withdrawing the United States from the Paris Climate Accords.

In the United States, the share of renewable energy in electricity generation has grown to 21% (2020). Oil use is expected to decline in the US owing to the increasing efficiency of the vehicle fleet and replacement of crude oil by natural gas as a feedstock for the petrochemical sector. One forecast is that the rapid uptake of electric vehicles will reduce oil demand drastically, to the point where it is 80% lower in 2050 compared with today.

In December 2016, Block Island Wind Farm became the first commercial US offshore wind farm. It consists of five 6 MW turbines (together 30 MW) located near-shore (3.8 miles (6.1 km) from Block Island, Rhode Island) in the Atlantic Ocean. At the same time, Norway-based oil major Statoil laid down nearly $42.5 million on a bid to lease a large offshore area off the coast of New York.

100% renewable energy

100% renewable energy is an energy system where all energy use is sourced from renewable energy sources. The endeavor to use 100% renewable energy for electricity, heating/cooling and transport is motivated by global warming, pollution and other environmental issues, as well as economic and energy security concerns. Shifting the total global primary energy supply to renewable sources requires a transition of the energy system, since most of today's energy is derived from non-renewable fossil fuels.

According to the Intergovernmental Panel on Climate Change there are few fundamental technological limits to integrating a portfolio of renewable energy technologies to meet most of total global energy demand. Renewable energy use has grown more quickly than even advocates anticipated. As of 2019, however, it needs to grow six times faster to limit global warming to 2 °C (3.6 °F).

100% renewable energy in a country is typically a more challenging goal than carbon neutrality. The latter is a climate mitigation target, politically decided by many countries, and may also be achieved by balancing the total carbon footprint of the country (not only emissions from energy and fuel) with carbon dioxide removal and carbon projects abroad.

As of 2018 according to REN21 transformation is picking up speed in the power sector, but urgent action is required in heating, cooling and transport. There are many places around the world with grids that are run almost exclusively on renewable energy. At the national level, at least 30 nations already have renewable energy contributing more than 20% of the energy supply.

According to a review of the 181 peer-reviewed papers on 100% renewable energy which were published until 2018, "[t]he great majority of all publications highlights the technical feasibility and economic viability of 100% RE systems." While there are still many publications which focus on electricity only, there is a growing number of papers that cover different energy sectors and sector-coupled, integrated energy systems. This cross-sectoral, holistic approach is seen as an important feature of 100% renewable energy systems and is based on the assumption "that the best solutions can be found only if one focuses on the synergies between the sectors" of the energy system such as electricity, heat, transport or industry.

Stephen W. Pacala and Robert H. Socolow of Princeton University have developed a series of "climate stabilization wedges" that can allow us to maintain our quality of life while avoiding catastrophic climate change, and "renewable energy sources," in aggregate, constitute the largest number of their "wedges."

Mark Z. Jacobson, professor of civil and environmental engineering at Stanford University and director of its Atmosphere and Energy program, says that producing all new energy with wind power, solar power, and hydropower by 2030 is feasible, and that existing energy supply arrangements could be replaced by 2050. Barriers to implementing the renewable energy plan are seen to be "primarily social and political, not technological or economic". Jacobson says that energy costs today with a wind, solar, and water system should be similar to today's energy costs from other optimally cost-effective strategies. The main obstacle against this scenario is the lack of political will. His conclusions have been disputed by other researchers. Jacobson published a response that disputed the piece point by point and claimed that the authors were motivated by allegiance to energy technologies that the 2015 paper excluded.

Similarly, in the United States, the independent National Research Council has noted that "sufficient domestic renewable resources exist to allow renewable electricity to play a significant role in future electricity generation and thus help confront issues related to climate change, energy security, and the escalation of energy costs ... Renewable energy is an attractive option because renewable resources available in the United States, taken collectively, can supply significantly greater amounts of electricity than the total current or projected domestic demand."

The main barriers to the widespread implementation of large-scale renewable energy and low-carbon energy strategies are political rather than technological. According to the 2013 Post Carbon Pathways report, which reviewed many international studies, the key roadblocks are: climate change denial, the fossil fuels lobby, political inaction, unsustainable energy consumption, outdated energy infrastructure, and financial constraints.

Wednesday, August 24, 2022

Microgeneration

From Wikipedia, the free encyclopedia
 
A group of small-scale wind turbines providing electricity to a community in Dali, Yunnan, China
 

Microgeneration is the small-scale generation of heat and electric power by individuals, small businesses and communities to meet their own needs, as alternatives or supplements to traditional centralized grid-connected power. Although this may be motivated by practical considerations, such as unreliable grid power or long distance from the electrical grid, the term is mainly used currently for environmentally-conscious approaches that aspire to zero or low-carbon footprints or cost reduction. It differs from micropower in that it is principally concerned with fixed power plants rather than for use with mobile devices.

History

Technologies and set-up

Microgeneration technologies include small-scale wind turbines, micro hydro, solar PV systems, microbial fuel cells, ground source heat pumps, and micro combined heat and power installations. These technologies are often combined to form a hybrid power solution that can offer superior performance and lower cost than a system based on one generator.

Power plant

In addition to the electricity production plant (e.g. wind turbine and solar panel), infrastructure for energy storage and power conversion and a hook-up to the regular electricity grid is usually needed and/or foreseen. Although a hookup to the regular electricity grid is not essential, it helps to decrease costs by allowing financial recompensation schemes. In the developing world however, the start-up cost for this equipment is generally too high, thus leaving no choice but to opt for alternative set-ups.

Extra equipment needed besides the power plant

A complete PV-solar system

The whole of the equipment required to set up a working system and for an off-the-grid generation and/or a hook up to the electricity grid herefore is termed a balance of system and is composed of the following parts with PV-systems:

Energy storage apparatus

A major issue with off-grid solar and wind systems is that the power is often needed when the sun is not shining or when the wind is calm, this is generally not required for purely grid-connected systems:

or other means of energy storage (e.g. hydrogen fuel cells, Flywheel energy storage, pumped-storage hydroelectricity, compressed air tanks, ...)

For converting DC battery power into AC as required for many appliances, or for feeding excess power into a commercial power grid:

Safety equipment

Usually, in microgeneration for homes in the developing world, prefabricated house-wiring systems (as wiring harnesses or prefabricated distribution units) are used instead . Simplified house-wiring boxes and cables, known as wiring harnesses, can simply be bought and mounted into the building without requiring much knowledge about the wiring itself. As such, even people without technical expertise are able to install them. In addition, they are also comparatively cheap and offer safety advantages.

Small-scale (DIY) generation system

Wind turbine specific

With wind turbines, hydroelectric plants, ... the extra equipment needed is more or less the same as with PV-systems (depending on the type of wind turbine used), yet also include:

  • a manual disconnect switch
  • foundation for the tower
  • grounding system
  • shutoff and/or dummy-load devices for use in high wind when power generated exceeds current needs and storage system capacity.
Vibro-wind power

A new wind energy technology is being developed that converts energy from wind energy vibrations to electricity. This energy, called Vibro-Wind technology, can use winds of less strength than normal wind turbines, and can be placed in almost any location.

A prototype consisted of a panel mounted with oscillators made out of pieces of foam. The conversion from mechanical to electrical energy is done using a piezoelectric transducer, a device made of a ceramic or polymer that emits electrons when stressed. The building of this prototype was led by Francis Moon, professor of mechanical and aerospace engineering at Cornell University. Moon's work in Vibro-Wind Technology was funded by the Atkinson Center for a Sustainable Future at Cornell. Vibro-wind power is not yet commercially viable and in early development stages. Significant progress will be needed to commercialize this early stage venture.

Possible set-ups

Several microgeneration set-ups are possible. These are:

  • Off-the-grid set-ups which include:
    • Off-the grid set-ups without energy storage (e.g., battery, ...)
    • Off-the grid set-ups with energy storage (e.g., battery, ...)
    • Battery charging stations 
  • Grid-connected set-ups which include:
    • Grid connected with backup to power critical loads
    • Grid-connected set-ups without financial recompensation scheme
    • Grid-connected set-ups with net metering
    • Grid connected set-ups with net purchase and sale

All set-ups mentioned can work either on a single power plant or a combination of power plants (in which case it is called a hybrid power system). For safety, grid-connected set-ups must automatically switch off or enter an "anti-islanding mode" when there is a failure of the mains power supply. For more about this, see the article on the condition of islanding.

Costs

Depending on the set-up chosen (financial recompensation scheme, power plant, extra equipment), prices may vary. According to Practical Action, microgeneration at home which uses the latest in cost saving-technology (wiring harnesses, ready boards, cheap DIY-power plants, e.g. DIY wind turbines) the household expenditure can be extremely low-cost. In fact, Practical Action mentions that many households in farming communities in the developing world spend less than $1 on electricity per month. However, if matters are handled less economically (using more commercial systems/approaches), costs will be dramatically higher. In most cases however, financial advantage will still be done using microgeneration on renewable power plants; often in the range of 50-90% as local production has no electricity transportation losses on long distance power lines or energy losses from the Joule effect in transformers where in general 8-15% of the energy is lost.

In the UK, the government offers both grants and feedback payments to help businesses, communities and private homes to install these technologies. Businesses can write the full cost of installation off against taxable profits whilst homeowners receive a flat-rate grant or payments per kW h of electricity generated and paid back into the national grid. Community organizations can also receive up to £200,000 in grant funding.

In the UK, the Microgeneration Certification Scheme provides approval for Microgeneration Installers and Products which is a mandatory requirement of funding schemes such as the Feed in Tariffs and Renewable Heat Incentive.

Grid parity

Grid parity (or socket parity) occurs when an alternative energy source can generate electricity at a levelized cost of energy (LCOE) that is less than or equal to the price of purchasing power from the electricity grid. Reaching grid parity is considered to be the point at which an energy source becomes a contender for widespread development without subsidies or government support. It is widely believed that a wholesale shift in a generation to these forms of energy will take place when they reach grid parity.

Grid parity has been reached in some locations with on-shore wind power around 2000, and with solar power it was achieved for the first time in Spain in 2013.

Comparison with large-scale generation


microgeneration large-scale generation Notes
Other names Distributed generation Centralized generation
Economy of scale Necessitates mass production of generators which will create an associated environmental impact. Systems are less expensive when produced in quantity. Depends on power source - generally more economical given the larger scale of the generators. Photovoltaics, similar panels are used in all applications are affected less by this whilst wind power, where power scales approximately as the squre of size is affected greatly.
Ability to meet needs supply within the limits of the installed generation or storage
  • For wind and solar energy, the actual production is only a fraction of nameplate capacity.
  • Fuel based systems are fully dispatchable
  • Solar panels are simple and reliable, they can provide a little electricity at a reasonable cost.
generally more flexible supply within the limits of local transmission as long as the grid is effectively maintained
Environmental impact larger number of smaller devices may lead to greater impact from device production especially with the wind. larger generators can have more local impact, transmission equipment can also disrupt areas, however, the overall impact is likely reduced due to economies of scale. Commentators claim that householders who buy their electricity with green energy tariffs can reduce their carbon usage further than with microgeneration and at a lower cost.
Transmission losses Proximity to end user typically closer resulting in potentially fewer losses. (Potentially, because the lack of scale at each individual installation may lead to use of less efficient transmission technologies.) A significant proportion of electrical power is lost during transmission (approximately 8% in the United Kingdom according to BBC Radio 4 Today programme in March 2006).
Changes to Grid reduces the transmission load, and thus reduces the need for grid upgrades increases the power transmitted, and thus increases the need for grid upgrades
Grid failure event Electricity may still be available to local area in many circumstances Electricity may be not available due to grid
Generator failure event Electricity will not be available except in hybrid scenario Electricity is very likely to be available due to grid redundancy
Consumer choices May choose to purchase any legal system May choose to purchase offerings of the power companies depending on market
Reliability and Maintenance requirements photovoltaics, Stirling engines, and certain other systems, are usually extremely reliable, and can generate electric power continuously for many thousands of hours with little or no maintenance. However, unreliable systems will incur additional maintenance labor and costs. Managed by power company. Grid reliability varies with location.
Waste Heat by-product Can be used for heating purposes in cold climates, thus greatly increasing efficiency and offsetting energy total costs. This method is known as micro combined heat and power (microCHP).

Used in some privately owned industrial combined heat and power (CHP) installations. It is also used in large-scale applications where it's called district heating and uses the heat that is normally exhausted by inefficient powerplants.


Most forms of microgeneration can dynamically balance the supply and demand for electric power, by producing more power during periods of high demand and high grid prices, and less power during periods of low demand and low grid prices. This "hybridized grid" allows both microgeneration systems and large power plants to operate with greater energy efficiency and cost effectiveness than either could alone.

Domestic self-sufficiency

Horizontal Axis Micro-Windmill in Lahore, 1000Watt Rated Output

Microgeneration can be integrated as part of a self-sufficient house and is typically complemented with other technologies such as domestic food production systems (permaculture and agroecosystem), rainwater harvesting, composting toilets or even complete greywater treatment systems. Domestic microgeneration technologies include: photovoltaic solar systems, small-scale wind turbines, micro combined heat and power installations, biodiesel and biogas.

A small Quietrevolution QR5 Gorlov type vertical axis wind turbine in Bristol, England. Measuring 3 m in diameter and 5 m high, it has a nameplate rating of 6.5 kW to the grid.

Private generation decentralizes the generation of electricity and may also centralize the pooling of surplus energy. While they have to be purchased, solar shingles and panels are both available. Capital cost is high, but saves in the long run. With appropriate power conversion, solar PV panels can run the same electric appliances as electricity from other sources.

Passive solar water heating is another effective method of utilizing solar power. The simplest method is the solar (or a black plastic) bag. Set between 5 to 20 litres (1 to 5 US gal) out in the sun and allow to heat. Perfect for a quick warm shower.

The ‘breadbox’ heater can be constructed easily with recycled materials and basic building experience. Consisting of a single or array of black tanks mounted inside a sturdy box insulated on the bottom and sides. The lid, either horizontal or angled to catch the most sun, should be well sealed and of a transparent glazing material (glass, fiberglass, or high temp resistant molded plastic). Cold water enters the tank near the bottom, heats and rises to the top where it is piped back into the home.

Ground source heat pumps exploit stable ground temperatures by benefiting from the thermal energy storage capacity of the ground. Typically ground source heat pumps have a high initial cost and are difficult to install by the average homeowner. They use electric motors to transfer heat from the ground with a high level of efficiency. The electricity may come from renewable sources or from external non-renewable sources.

Fuel

Biodiesel is an alternative fuel that can power diesel engines and can be used for domestic heating. Numerous forms of biomass, including soybeans, peanuts, and algae (which has the highest yield), can be used to make biodiesel. Recycled vegetable oil (from restaurants) can also be converted into biodiesel.

Biogas is another alternative fuel, created from the waste product of animals. Though less practical for most homes, a farm environment provides a perfect place to implement the process. By mixing the waste and water in a tank with space left for air, methane produces naturally in the airspace. This methane can be piped out and burned, and used for a cookfire.

Government policy

Policymakers were accustomed to an energy system based on big, centralised projects like nuclear or gas-fired power stations. A change of mindsets and incentives are bringing microgeneration into the mainstream. Planning regulations may also require streamlining to facilitate the retrofitting of microgenerating facilities onto homes and buildings.

Most of developed countries, including Canada (Alberta), the United Kingdom, Germany, Poland, Israel and USA have laws allowing microgenerated electricity to be sold into the national grid.

Alberta, Canada

In January 2009, the Government of Alberta's Micro-Generation Regulation came into effect, setting rules that allow Albertans to generate their own environmentally friendly electricity and receive credit for any power they send into the electricity grid.

Poland

In December 2014, the Polish government will vote on a bill which calls for microgeneration, as well as large scale wind farms in the Baltic Sea as a solution to cut back on CO2 emissions from the country's coal plants as well as to reduce Polish dependence on Russian gas. Under the terms of the new bill, individuals and small businesses which generate up to 40 kW of 'green' energy will receive 100% of market price for any electricity they feed back into the grid, and businesses who set up large-scale offshore wind farms in the Baltic will be eligible for subsidization by the state. Costs of implementing these new policies will be offset by the creation of a new tax on non-sustainable energy use.

United States

The United States has inconsistent energy generation policies across its 50 states. State energy policies and laws may vary significantly with location. Some states have imposed requirements on utilities that a certain percentage of total power generation be from renewable sources. For this purpose, renewable sources include wind, hydroelectric, and solar power whether from large or microgeneration projects. Further, in some areas transferable "renewable source energy" credits are needed by power companies to meet these mandates. As a result, in some portions of the United States, power companies will pay a portion of the cost of renewable source microgeneration projects in their service areas. These rebates are in addition to any Federal or State renewable-energy income-tax credits that may be applicable. In other areas, such rebates may differ or may not be available.

United Kingdom

The UK Government published its Microgeneration Strategy in March 2006, although it was seen as a disappointment by many commentators. In contrast, the Climate Change and Sustainable Energy Act 2006 has been viewed as a positive step. To replace earlier schemes, the Department of Trade and Industry (DTI) launched the Low Carbon Buildings Programme in April 2006, which provided grants to individuals, communities and businesses wishing to invest in microgenerating technologies. These schemes have been replaced in turn by new proposals from the Department for Energy and Climate Change (DECC) for clean energy cashback via Feed-In Tariffs  for generating electricity from April 2010 and the Renewable Heat Incentive  for generating renewable heat from 28 November 2011.

Feed-In Tariffs are intended to incentivise small-scale (less than 5MW), low-carbon electricity generation. These feed-in tariffs work alongside the Renewables Obligation (RO), which will remain the primary mechanism to incentivise deployment of large-scale renewable electricity generation. The Renewable Heat Incentive (RHI) in intended to incentivise the generation of heat from renewable sources. They also currently offer up to 21p per kWh from December 2011 in the Tariff for photovoltaics plus another 3p for the Export Tariff - an overall figure which could see a household earning back double what they currently pay for their electricity.

On 31 October 2011, the government announced a sudden cut in the feed-in tariff from 43.3p/kWh to 21p/kWh with the new tariff to apply to all new solar PV installations with an eligibility date on or after 12 December 2011.

Prominent British politicians who have announced they are fitting microgenerating facilities to their homes include the Conservative party leader, David Cameron, and the Labour Science Minister, Malcolm Wicks. These plans included small domestic sized wind turbines. Cameron, before becoming Prime Minister in the 2010 general elections, had been asked during an interview on BBC One's The Politics Show on October 29, 2006, if he would do the same should he get to 10 Downing Street. “If they’d let me, yes,” he replied.

In the December 2006 Pre-Budget Report the government announced that the sale of surplus electricity from installations designed for personal use, would not be subject to Income Tax. Legislation to this effect has been included in the Finance Bill 2007.

In popular culture

Several movies and TV shows such as The Mosquito Coast, Jericho, The Time Machine and Beverly Hills Family Robinson have done a great deal in raising interest in microgeneration among the general public. Websites such as Instructables and Practical Action propose DIY solutions that can lower the cost of microgeneration, thus increasing its popularity. Specialised magazines such as OtherPower and Home Power also provide practical advice and guidance.

Environmental impact of the petroleum industry

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Environmental_impact_of_the_petroleum_industry

Flaring of gas from offshore oil extraction platforms
 
A beach after an oil spill.
 
Accumulation of plastic waste on a beach.

The environmental impact of the petroleum industry is extensive and expansive due to petroleum having many uses. Crude oil and natural gas are primary energy and raw material sources that enable numerous aspects of modern daily life and the world economy. Their supply has grown quickly over the last 150 years to meet the demands of rapidly increasing human population, creativity, and consumerism.

Substantial quantities of toxic and non-toxic waste are generated during the extraction, refinement, and transportation stages of oil and gas. Some industry by-products, such as volatile organic compounds, nitrogen & sulfur compounds, and spilled oil can pollute air, water, and soil at levels that are harmful to life where improperly managed. Climate warming, ocean acidification, and sea level rise are global changes enhanced by the industry's emissions of greenhouse gases like carbon dioxide (CO2) and methane, and micro-particulate aerosols like black carbon.

Among all human activities, fossil fuel combustion is the largest contributor to the ongoing buildup of carbon in the earth's biosphere. The International Energy Agency and others report that oil & gas use comprised over 55% (18 Billion Tons) of the record 32.8 Billion Tons (BT) of CO2 released into the atmosphere from all energy sources during year 2017. Coal use comprised most of the remaining 45%. Total emissions continue to rise nearly every year: up another 1.7% to 33.1 BT in 2018.

Through its own operations, the petroleum industry directly contributed about 8% (2.7 BT) of the 32.8 BT in 2017. Also, due to its intentional and other releases of natural gas, the industry directly contributed at least 79 Million Tons of methane (2.4 BT CO2-equivalent) that same year; an amount equal to about 14% of all known anthropogenic and natural emissions of the potent warming gas.

Along with fuels like gasoline and liquified natural gas, petroleum enables many consumer chemicals and products, such as fertilizers and plastics. Most alternative technologies for energy generation, transportation, and storage can only be realized at this time because of its diverse usefulness. Conservation, efficiency, and minimizing waste impacts of petroleum products are effective industry and consumer actions toward achieving better environmental sustainability.

General Issues

Toxic compounds

Petroleum distillates can create a sheen on the surface of water as a thin layer creating an optical phenomenon called interphase.

Petroleum is a complex mixture of many components . These components include straight chained, branched, cyclic, monocyclic aromatic and polycyclic aromatic hydrocarbons. The toxicity of oils can be understood using the toxic potential or the toxicity of each individual component of oil at the water solubility of that component. There are many methods that can be used to measure the toxicity of crude oil and other petroleum related products. Certain studies analyzing levels of toxicity can use the target lipid model or colorimetric analysis using colored-dyes in order to assess toxicity and biodegradability.

Different oils and petroleum-related products have different levels of toxicity. Levels of toxicity are influenced by many factors such as weathering, solubility, as well as chemical properties such as persistence. Increased weathering tends to decrease levels of toxicity as more soluble and lower molecular weight substances are removed. Highly soluble substances tend to have higher levels of toxicity than substances that are not very soluble in water. Generally oils that have longer carbon chains and with more benzene rings have higher levels of toxicity. Benzene is the petroleum-related product with the highest level of toxicity. Other substances other than benzene which are highly toxic are toluene, methylbenzene and xylenes (BETX). Substances with the lowest toxicity are crude oil and motor oil.

Despite varying levels of toxicity amongst different variants of oil, all petroleum -derived products have adverse impacts on human health and the ecosystem. Examples of adverse effects are oil emulsions in digestive systems in certain mammals might result in decreased ability to digest nutrients that might lead to death of certain mammals. Further symptoms include capillary ruptures and hemorrhages. Ecosystem food chains can be affected due to a decrease in algae productivity therefore threatening certain species. Oil is "acutely lethal" to fish - that is, it kills fish quickly, at a concentration of 4000 parts per million (ppm) (0.4%). The toxicity of petroleum related products threaten human health. Many compounds found in oil are highly toxic and can cause cancer (carcinogenic) as well as other diseases. Studies in Taiwan link proximity to oil refineries to premature births. Crude oil and petroleum distillates cause birth defects.

Benzene is present in both crude oil and gasoline and is known to cause leukaemia in humans. The compound is also known to lower the white blood cell count in humans, which would leave people exposed to it more susceptible to infections. "Studies have linked benzene exposure in the mere parts per billion (ppb) range to terminal leukaemia, Hodgkin's lymphoma, and other blood and immune system diseases within 5-15 years of exposure."

Fossil gas and oil naturally contain small amounts of radioactive elements which are released during mining. High concentration of these elements in brine is a technological and environmental concern.

Greenhouse gases

Carbon dioxide emissions and partitioning
Emissions of CO2 have been caused by different sources ramping up one after the other (Global Carbon Project)
 
Partitioning of CO2 emissions show that most emissions are being absorbed by carbon sinks, including plant growth, soil uptake, and ocean uptake (Global Carbon Project)

Petroleum extraction disrupts the equilibrium of earth's carbon cycle by transporting sequestered geologic carbon into the biosphere. The carbon is used by consumers in various forms and a large fraction is combusted into the atmosphere; thus creating massive amounts of the greenhouse gas, carbon dioxide, as a waste product. Natural gas (mostly methane) is an even more potent greenhouse house when it escapes into the atmosphere prior to being burned.

Since the industrial age began circa 1750–1850 with growing wood and coal use, the atmospheric concentration of carbon dioxide and methane have increased about 50% and 150%, respectively, above their relatively stable levels of the prior 800,000+ years. Each is currently increasing at a rate of about 1% every year, since about half of the added carbon has been absorbed by Earth's land vegetation and ocean sinks. The growth in annual emissions has also been so rapid that the total amount of fossil carbon extracted in the last 30 years exceeds the total amount extracted during all prior human history.

Microplastics

Microplastics in Mljet National Park, Croatia

Petroleum has enabled plastics to be used to create a wide range and massive quantity of consumer items at extremely low production costs. Annual growth rates in production have been near 10%, and are driven largely by single-use plastics for which improper disposal is common.

The majority of plastic is not recycled, and it fragments into smaller and smaller pieces over time. Microplastics are particles that are smaller than 5 mm in size. Microplastics are observable in air, water, and soil samples gathered from nearly every location on earth's surface, and also increasingly within biological samplings. Long-term effects from the environmental buildup of plastic waste are under scientific evaluation but thus far mostly unknown. Microplastics are concern because they have a tendency to adsorb pollutants on their surface, as well as an ability to bioaccumulate.

Microplastics can be found in the ocean and marine habitats.

When particles are ingested by marine organisms they usually end up in tissues such as the digestive glands, circulatory system, gills and guts. When these organisms are consumed and shifted upwards in the food chain, they end up creating an exposure risk towards bigger organisms and ultimately humans. Microplastics possess many risks to various organisms. They are known to disrupt algal feeding, increase mortality and lower fertility in copepods. Amongst mussels, microplastics are known to interrupt filtration and induce inflammatory responses. There is still a lack of data in how these particles ultimately affect humans because most marine organisms are gutted before consumed. In spite of that, their environmental effects are well documented and the extent of their damage is well understood.

Local and regional impacts

Some harmful impacts of petroleum can be limited to the geographic locations where it is produced, consumed, and/or disposed. In many cases, the impacts may be reduced to safe levels when consumers practice responsible use and disposal. Producers of specific products can further reduce the impacts through life cycle assessment and environmental design practices.

Air pollution

Petroleum diesel exhaust from a truck

Exhaust emissions

Emissions from the petroleum industry occur in every chain of the oil-producing process from the extraction to the consumption phase . In the extraction phase, gas venting and flaring release not only methane and carbon dioxide, but various other pollutants like nitrous oxides and aerosols. Certain by-products include carbon monoxide and methanol. When oil or petroleum distillates are combusted, usually the combustion is not complete and the chemical reaction leaves by-products which are not water or carbon dioxide. However, despite the large amounts of pollutants, there is variation in the amount and concentration of certain pollutants. In the refinement stages of petroleum also contributes to large amounts of pollution in urban areas. This increase in pollution has adverse effects on human health due to the toxicity of oil. A study investigating the effects of oil refineries in Taiwan. The study found an increased occurrence of premature births in mothers that lived in close proximity to oil refineries than mothers who lived away from oil refineries. There were also differences observed in sex ratios and the birth weight of the children. Also, fine particulates of soot blacken humans' and other animals' lungs and cause heart problems or death. Soot is cancer causing (carcinogenic).

Vapor intrusion

Volatile organic compounds (VOCs) are gases or vapours emitted by various solids and liquids." Petroleum hydrocarbons such as gasoline, diesel, or jet fuel intruding into indoor spaces from underground storage tanks or brownfields threaten safety (e.g., explosive potential) and causes adverse health effects from inhalation.

Acid rain

Trees killed by acid rain, an unwanted side effect of burning petroleum

The combustion process of petroleum , coal , and wood is responsible for increased occurrence of acid rain. Combustion causes an increased amount of nitrous oxide, along with sulfur dioxide from the sulfur in the oil. These by-products combine with water in the atmosphere to create acid rain. The increased concentrations of nitrates and other acidic substances have significant effects on the pH levels of rainfall. Data samples analyzed from the United States and Europe from the past 100 years and showed an increase in nitrous oxide emissions from combustion. The emissions were large enough to acidify the rainfall. The acid rain has adverse impacts on the larger ecosystem. For example, acid rain can kill trees, and can kill fish by acidifying lakes. Coral reefs are also destroyed by acid rain. Acid rain also leads to the corrosion of machinery and structures (large amounts of capital) and to the slow destruction of archeological structures like the marble ruins of Rome and Greece.

Oil spills

An oil spill is the release of a liquid petroleum hydrocarbon into the environment, especially marine areas, due to human activity, and is a form of pollution. The term is usually applied to marine oil spills, where oil is released into the ocean or coastal waters, but spills may also occur on land. Oil spills may be due to releases of crude oil from tankers, pipelines, railcars, offshore platforms, drilling rigs and wells, as well as spills of refined petroleum products (such as gasoline, diesel) and their by-products, heavier fuels used by large ships such as bunker fuel, or the spill of any oily refuse or waste oil.

Major oil spills include, Lakeview Gusher, Gulf War oil spill, and the Deepwater Horizon oil spill. Spilt oil penetrates into the structure of the plumage of birds and the fur of mammals, reducing its insulating ability, and making them more vulnerable to temperature fluctuations and much less buoyant in the water. Cleanup and recovery from an oil spill is difficult and depends upon many factors, including the type of oil spilled, the temperature of the water (affecting evaporation and biodegradation), and the types of shorelines and beaches involved. Other factors influencing the rate of long-term contamination is the continuous inputs of petroleum residues and the rate at which the environment can clean itself. Spills may take weeks, months or even years to clean up.

Waste oil

Waste oil in the form of motor oil

Waste oil is oil containing not only breakdown products but also impurities from use. Some examples of waste oil are used oils such as hydraulic oil, transmission oil, brake fluids, motor oil, crankcase oil, gear box oil and synthetic oil. Many of the same problems associated with natural petroleum exist with waste oil. When waste oil from vehicles drips out engines over streets and roads, the oil travels into the water table bringing with it such toxins as benzene. This poisons both soil and drinking water. Runoff from storms carries waste oil into rivers and oceans, poisoning them as well.

Produced water and drilling waste discharges

North Sea Oil Rig

Produced water (PW) discharges from petroleum extraction results in PAH (Poly-aromatic Hydrocarbon) emission in the ocean. Approximately 400 million tons of PW discharge is released annually from oil-fields in the North Sea, UK and Norwegian discharges combined. PW discharge is the largest emission event in the marine environment world and it is a result of offshore oil and gas production. The composition of materials in the PW depends on the characteristics of the region. However, PW mainly contains a mixture of a few select products such as formation water, oil, gas, brine water and added chemicals. Just like PW, formation water composition also depends on its surroundings although, it mainly consists of dissolved inorganic and organic compounds. PW was responsible for releasing 129 tons of PAHs in 2017. Due to the presence of harmful chemicals in PW, it is responsible for evoking toxic responses in the surrounding environment. For example, surveys done in the Norwegian Continental Shelf (NCS) found that PAHs released by PW were responsible for biological changes in mussel and Atlantic cod. Formation of PAH burden caused DNA damage and digestive-gland histochemistry in mussel. PAHs also pose a serious threat to human health. Long term exposure to PAHs have been linked to a series of health problems such as lung, skin, bladder, gastrointestinal cancer.

Global impacts

Climate change

The emissions from the extraction, refinement, transportation, and consumption of petroleum have caused changes in our environment's natural greenhouse gas levels, most significantly our carbon dioxide emissions. Carbon dioxide is a greenhouse gas that attracts heat in order to keep our planet's temperature from below freezing but the excess amount of carbon dioxide in our atmosphere from things like the petroleum industry have caused an imbalance. Swedish Nobel chemist Svante Arrhenius created a mathematical model that showed an increase of carbon dioxide results in an increase in surface temperature. Furthermore, these emissions are at a record high and the IPCC (2007) states that earth's climate system will heat up by 3 degrees Celsius for a doubling of carbon dioxide. These numbers are troubling as the resulting climate change will cause more intense hurricanes and storms, increased droughts and heat waves, frequent flooding, and more severe wildfires.

Ocean acidification

Following the carbon cycle, carbon dioxide enters our oceans where it reacts with the water molecules and produces a substance called carbonic acid. This increase in carbonic acid had dropped the pH of our oceans, causing increased acidity. Since the Industrial Revolution, the start of the petroleum industry, the pH of our oceans have dropped from 8.21 to 8.10. It may not seem like much but this change shows a 30% increase in acidity which has caused a lot of problems for our sea life. As our oceans continue to acidify there are less carbonate ions available for calcifying meaning that organisms have a hard time building and maintaining their shells and skeletons. Based on of our current levels of carbon dioxide our oceans could have a pH level of 7.8 by the end of this century.

Subsidies

Modern human societies utilize cheap and abundant energy to promote economic growth and maintain political stability. Government's and economic institutions around the world lower prices and increase supplies of fossil fuels for both consumers and producers by providing various forms of financial support to the industry. These include such traditional subsidies as direct payments, tax preferences, depletion allowances, research & development grants, and the removal of existing environmental protections. Considering all forms of support, the largest assistance to fossil fuels arises from the failure of governments to pass along most costs from the environmental and human-health impacts of the waste.

Accounting by the International Energy Agency and OECD indicates that traditional subsidies throughout the world amounted to about $400–600 Billion annually during years 2010–2015, and remained near $400 Billion in year 2018 with 40% going to oil. By comparison, a working group at the International Monetary Fund estimates that all support to the fossil-fuel industry totaled about $5.2 Trillion (6.4% of global gross domestic product) during year 2017. The largest subsidizers were China, the United States, Russia, the European Union, and India which together accounted for about 60% of the total.

According to the theory of ideal market competition, accurate prices could act to drive more responsible industry and consumer choices that reduce waste and long-term scarcity. Eliminating subsidies and implementing carbon fees to realize accurate prices would have their most direct effects from the supply side of the industry. By contrast, the objective of some carbon tax and carbon trading mechanisms is to enforce pricing accuracy from the consumption side.

Mitigation

Conservation and phasing out

Many countries across the World have subsidies and policies designed to reduce the use of petroleum and fossil fuels. Examples include China which switched from providing subsidies for fossil fuels to providing subsidies for renewable energy. Other examples include Sweden which created laws which are designed to eventually phase out the use of petroleum, which is known as the 15-year plan. These policies have their benefits and their challenges and every country has had their different experiences. In China, positive benefits were observed in the energy system due to higher renewable energy subsidies in three ways. It made consumption of energy cleaner due to moving for cleaner sources. Secondly, it helped increase the efficiency and third it resolved the issue of imbalanced distribution and consumption. However, from the Chinese experience, there were challenges observed. These challenges included economic challenges like initially lower economic benefits for subsidies from renewable energy than for oil. Other challenges included a high cost of research and development, the uncertainty of cost and potentially high-risk investments. These factors make the development of renewable energy very dependent on government support. However, aims of phasing out fossil fuels and petroleum use may also present economic benefits such as increased investment. This strategy may help achieve social goals for example reduction in pollution which might translate to better environmental and health outcomes.

Another option for conserving energy and phasing out petroleum use is adopting new technologies in order to increase efficiency. This can include changing production methods and modes of transportation.

Substitution of other energy sources

Alternatives to petroleum can include using other “cleaner” energy sources such as renewable energy, natural gas or biodiesel. Some of the alternatives have their strengths and limitations that might impact on the possibility of adopting them in the future.

Using corn-based ethanol might be an alternative to using petroleum. However, studies that concluded that corn-based ethanol uses less net energy do not factor in the co-products of production. Current corn-ethanol technologies are much less petroleum intensive than gasoline however have the GHG emission levels similar to gasoline. The literature is mainly unclear what the GHG emission changes would be by adopting corn-based ethanol for biodiesel. Some studies report a 20% increase in GHG emissions and some report a 32% decrease. However, the actual number might be a 13% decrease in GHG emissions which is not a significant decrease. The future of biodiesel might be adopting cellulose ethanol technology to produce biodiesel as that technology will contribute to a decrease in emissions.

Renewable energy alternatives also exist. These include solar energy, wind energy, geothermal and hydroelectricity as well as other sources. These sources are said to have much lower emissions, and almost minimal secondary by products. The production of renewable energy is projected to grow in nearly every region in the World. Natural gas is also seen as a potential alternative to oil. Natural gas is much cleaner than oil in terms of emissions. However natural gas has its limitation in terms of mass production. For example, in order to switch from crude oil to natural gas there are technical and network changes that need to occur before the implementation can be complete. Two possible strategies are to first develop the end use technology first or second is to completely change the fuel infrastructure.

Use of biomass instead of petroleum

Biomass is becoming a potential option as a substitute for petroleum. This is due to the increased environmental impacts of petroleum and the desire to reduce the use of petroleum. Potential substitutes include cellulose from fibrous plant materials as a substitute for oil-based products. Plastics can be created by cellulose instead of oil and plant fat can be substituted for oil to fuel cars. In order for biomass to succeed there needs to be an integration of different technologies to different biomass feedstock in to produce different bioproducts. Incentives for biomass are a decrease of carbon dioxide, need for a new energy supply and need to revitalize rural areas.

Safety measures

There is also the potential to implement many technologies as safety measures to mitigate safety and health risks of the petroleum industry. These include measures to reduce oil spills, false floors to prevent gasoline drips in the water table and double-hulled tanker ships. A relatively new technology that can mitigate air pollution is called bio-filtration. Bio filtration is where off-gasses that have biodegradable VOCs or inorganic air toxins are vented out through a biologically active material. This technology successfully used in Germany and the Netherlands mainly for odor control. There are lower costs and environmental benefits include low energy requirements.

Lie point symmetry

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Lie_point_symmetry     ...