Search This Blog

Friday, August 9, 2024

Ammonoidea

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Ammonoidea

Ammonoids
Temporal range: 409–65 Ma Devonian - Danian
(controversial early Paleocene records)
Specimen of Pleuroceras solare, from the Lower Jurassic of Bavaria, Germany
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Mollusca
Class: Cephalopoda
Clade: Neocephalopoda
Subclass: Ammonoidea
Zittel, 1884
Orders

Ammonoids are extinct spiral shelled cephalopods comprising the subclass Ammonoidea. They are more closely related to living coleoids (i.e., octopuses, squid and cuttlefish) than they are to shelled nautiloids (such as the living Nautilus). The earliest ammonoids appeared during the Devonian, with the last species vanishing during or soon after the Cretaceous–Paleogene extinction event. They are often called ammonites, which is most frequently used for members of the order Ammonitida, the only living group of ammonoids from the Jurassic up until their extinction.

Ammonites are excellent index fossils, and linking the rock layer in which a particular species or genus is found to specific geologic time periods is often possible. Their fossil shells usually take the form of planispirals, although some helically spiraled and nonspiraled forms (known as heteromorphs) have been found.

The name "ammonite", from which the scientific term is derived, was inspired by the spiral shape of their fossilized shells, which somewhat resemble tightly coiled rams' horns. Pliny the Elder (d. 79 AD near Pompeii) called fossils of these animals ammonis cornua ("horns of Ammon") because the Egyptian god Ammon (Amun) was typically depicted wearing rams' horns. Often, the name of an ammonite genus ends in -ceras, which is from κέρας (kéras) meaning "horn".

Diagnostic characters

Ammonites (subclass Ammonoidea) can be distinguished by their septa, the dividing walls that separate the chambers in the phragmocone, by the nature of their sutures where the septa join the outer shell wall, and in general by their siphuncles.

Septa and suture patterns

Ammonoid septa characteristically have bulges and indentations and are to varying degrees convex when seen from the front, distinguishing them from nautiloid septa, which are typically simple concave, dish-shaped structures. The topology of the septa, especially around the rim, results in the various suture patterns found. The septal curvature in nautiloids and ammonoids also differ in that the septa curves towards the opening in nautiloids, and away from the opening in ammenoids.

Regions of the suture line and variants in suture patterns
Ammonite clean cut

While nearly all nautiloids show gently curving sutures, the ammonoid suture line (the intersection of the septum with the outer shell) is variably folded, forming saddles ("peaks" that point towards the aperture) and lobes ("valleys" which point away from the aperture). The suture line has four main regions.

Placenticeras sp. showing sutures.

The external or ventral region refers to sutures along the lower (outer) edge of the shell, where the left and right suture lines meet. The external (or ventral) saddle, when present, lies directly on the lower midline of the shell. As a result, it is often called the median saddle. On suture diagrams the median saddle is supplied with an arrow which points towards the aperture. The median saddle is edged by fairly small external (or ventral) lobes. The earliest ammonoids lacked a median saddle and instead had a single midline ventral lobe, which in later forms is split into two or more components.

The lateral region involves the first saddle and lobe pair past the external region as the suture line extends up the side of the shell. The lateral saddle and lobe are usually larger than the ventral saddle and lobe. Additional lobes developing towards the inner edge of a whorl are labelled umbilical lobes, which increase in number through ammonoid evolution as well as an individual ammonoid's development. In many cases the distinction between the lateral and umbilical regions are unclear; new umbilical features can develop from subdivisions of other umbilical features, or from subdivisions of lateral features. Lobes and saddles which are so far towards the center of the whorl that they are covered up by succeeding whorls are labelled internal (or dorsal) lobes and saddles.

Three major types of suture patterns are found in the Ammonoidea:

  • Goniatitic – numerous undivided lobes and saddles. This pattern is characteristic of the Paleozoic ammonoids (orders Agoniatitida, Clymeniida, Goniatitida, and Prolecanitida).
  • Ceratitic – lobes have subdivided tips, giving them a saw-toothed appearance. The saddles are rounded and undivided. This suture pattern is characteristic of Triassic ammonoids in the order Ceratitida. It appears again in the Cretaceous "pseudoceratites".
  • Ammonitic – lobes and saddles are much subdivided (fluted); subdivisions are usually rounded instead of saw-toothed. Ammonoids of this type are the most important species from a biostratigraphical point of view. This suture type is characteristic of Jurassic and Cretaceous ammonoids, but extends back all the way to the Permian.

Siphuncle

The siphuncle in most ammonoids is a narrow tubular structure that runs along the shell's outer rim, known as the venter, connecting the chambers of the phragmocone to the body or living chamber. This distinguishes them from living nautiloides (Nautilus and Allonautilus) and typical Nautilida, in which the siphuncle runs through the center of each chamber. However the very earliest nautiloids from the Late Cambrian and Ordovician typically had ventral siphuncles like ammonites, although often proportionally larger and more internally structured. The word "siphuncle" comes from the Neo-Latin siphunculus, meaning "little siphon".

Classification

An ammonite shell viewed in section, revealing the internal chambers and septa. Large polished examples are prized for both their aesthetic and scientific value.

Originating from within the bactritoid nautiloids, the ammonoid cephalopods first appeared in the Devonian (circa 409 million years ago (Mya)) and became extinct shortly after Cretaceous (66 Mya). The classification of ammonoids is based in part on the ornamentation and structure of the septa comprising their shells' gas chambers.

Orders and suborders

An ammonitic ammonoid with the body chamber missing, showing the septal surface (especially at right) with its undulating lobes and saddles.
Iridescent ancient ammonite fossil on display at the American Museum of Natural History, New York City, around 2 feet in diameter

The Ammonoidea can be divided into six orders, listed here starting with the most primitive and going to the more derived:

In some classifications, these are left as suborders, included in only three orders: Goniatitida, Ceratitida and Ammonitida.

Taxonomy of the Treatise on Invertebrate Paleontology

The Treatise on Invertebrate Paleontology (Part L, 1957) divides the Ammonoidea, regarded simply as an order, into eight suborders, the Anarcestina, Clymeniina, Goniatitina and Prolecanitina from the Paleozoic; the Ceratitina from the Triassic; and the Ammonitina, Lytoceratina and Phylloceratina from the Jurassic and Cretaceous. In subsequent taxonomies, these are sometimes regarded as orders within the subclass Ammonoidea.

Life

Asteroceras, a Jurassic ammonite from England

Because ammonites and their close relatives are extinct, little is known about their way of life. Their soft body parts are very rarely preserved in any detail. Nonetheless, much has been worked out by examining ammonoid shells and by using models of these shells in water tanks.

Many ammonoids probably lived in the open water of ancient seas, rather than at the sea bottom, because their fossils are often found in rocks laid down under conditions where no bottom-dwelling life is found. In general, they appear to have inhabited the upper 250 meters of the water column. Many of them (such as Oxynoticeras) are thought to have been good swimmers, with flattened, discus-shaped, streamlined shells, although some ammonoids were less effective swimmers and were likely to have been slow-swimming bottom-dwellers. Synchrotron analysis of an aptychophoran ammonite revealed remains of isopod and mollusc larvae in its buccal cavity, indicating at least this kind of ammonite fed on plankton. They may have avoided predation by squirting ink, much like modern cephalopods; ink is occasionally preserved in fossil specimens.

The soft body of the creature occupied the largest segments of the shell at the end of the coil. The smaller earlier segments were walled off and the animal could maintain its buoyancy by filling them with gas. Thus, the smaller sections of the coil would have floated above the larger sections.

Many ammonite shells have been found with round holes once interpreted as a result of limpets attaching themselves to the shells. However, the triangular formation of the holes, their size and shape, and their presence on both sides of the shells, corresponding to the upper and lower jaws, is more likely evidence of the bite of a medium-sized mosasaur preying upon ammonites.

Some ammonites appear to have lived in cold seeps and even reproduced there.

Shell anatomy and diversity

Fossil shell of ammonite Placenticeras whitfieldi showing punctures caused by the bite of a mosasaur, Peabody Museum of Natural History, Yale
Orthosphynctes, a Jurassic ammonite from Portugal

Basic shell anatomy

Jeletzkytes, a Cretaceous ammonite from South Dakota, US
A variety of ammonite forms, from Ernst Haeckel's 1904 Kunstformen der Natur (Art Forms of Nature)
Polished fossil ammonite

The chambered part of the ammonite shell is called a phragmocone. It contains a series of progressively larger chambers, called camerae (sing. camera) that are divided by thin walls called septa (sing. septum). Only the last and largest chamber, the body chamber, was occupied by the living animal at any given moment. As it grew, it added newer and larger chambers to the open end of the coil. Where the outer whorl of an ammonite shell largely covers the preceding whorls, the specimen is said to be involute (e.g., Anahoplites). Where it does not cover those preceding, the specimen is said to be evolute (e.g., Dactylioceras).

A thin living tube called a siphuncle passed through the septa, extending from the ammonite's body into the empty shell chambers. Through a hyperosmotic active transport process, the ammonite emptied water out of these shell chambers. This enabled it to control the buoyancy of the shell and thereby rise or descend in the water column.

A primary difference between ammonites and nautiloids is the siphuncle of ammonites (excepting Clymeniina) runs along the ventral periphery of the septa and camerae (i.e., the inner surface of the outer axis of the shell), while the siphuncle of nautiloids runs more or less through the center of the septa and camerae.

Sexual dimorphism

Discoscaphites iris, Owl Creek Formation (Upper Cretaceous), Ripley, Mississippi, US

One feature found in shells of the modern Nautilus is the variation in the shape and size of the shell according to the sex of the animal, the shell of the male being slightly smaller and wider than that of the female. This sexual dimorphism is thought to be an explanation for the variation in size of certain ammonite shells of the same species, the larger shell (the macroconch) being female, and the smaller shell (the microconch) being male. This is thought to be because the female required a larger body size for egg production. A good example of this sexual variation is found in Bifericeras from the early part of the Jurassic period of Europe.

Only recently has sexual variation in the shells of ammonites been recognized. The macroconch and microconch of one species were often previously mistaken for two closely related but different species occurring in the same rocks. However, because the dimorphic sizes are so consistently found together, they are more likely an example of sexual dimorphism within the same species.

Whorl width in the body chamber of many groups of ammonites, as expressed by the width:diameter ratio, is another sign of dimorphism. This character has been used to separate "male" (Largiventer conch "L") from "female" (Leviventer conch "l").

Variations in shape

The majority of ammonite species feature planispiral shells, tightly coiled in a flat plane. The most fundamental difference in spiral form is how strongly successive whorls expand and overlap their predecessors. This can be inferred by the size of the umbilicus, the sunken-in inner part of the coil, exposing older and smaller whorls. Evolute shells have very little overlap, a large umbilicus, and many exposed whorls. Involute shells have strong overlap, a small umbilicus, and only the largest and most recent whorls are exposed. Shell structure can be broken down further by the width of the shell, with implications for hydrodynamic efficiency.

Major shell forms include:

  • Oxycone – Strongly involute and very narrow, with sharp ventral keels and a streamlined, lenticular (lens-shaped) cross-section. These ammonoids are estimated to be nektonic (well-adapted to rapid active swimming), as their shell form incurs very little drag and allows for efficient, stable coasting even in turbulent flow regimes.
  • Serpenticone – Strongly evolute and fairly narrow (discoidal) in width. Historically assumed to be primarily planktonic (free-floating drifters), a nektonic lifestyle is also plausible for many species. Thanks to their flattened shape, these ammonoids accelerate effectively, though their large umbilicus introduces more drag in successive thrusts. Relative to oxycones, serpenticones take less effort to rotate around the transverse axis (pitch). Serpenticone ammonites resemble coiled snakes and are abundant in the Jurassic rocks of Europe. Carved serpenticones fulfill the role of the "snakestones" in medieval folklore.
  • Spherocone – Moderately involute and quite broad, globular (nearly spherical) in overall shape. Their semi-spherical shape is the most efficient for moving in laminar water (with a low Reynolds number) or migrating vertically through the water column. Though less hydrodynamically stable than other forms, this may be advantageous in certain situations, as spherocones can easily rotate around both the transverse axis and the vertical axis (yaw).
  • Platycone – Intermediate between serpenticones and oxycones: narrow and moderately involute.
  • Discocone – Intermediate between oxycones and spherocones: involute and moderately broad. The modern Nautilus is an example of a discocone cephalopod.
  • Planorbicone – Intermediate between serpenticones and spherocones: Moderately broad, evolute to involute. Wider and more involute ammonoids on the serpenticone-spherocone spectrum are termed Cadicones.

Ammonites vary greatly in the ornamentation (surface relief) of their shells. Some may be smooth and relatively featureless, except for growth lines, resembling that of the modern Nautilus. In others, various patterns of spiral ridges, ribs, nodes, or spines are presented. This type of complex ornamentation of the shell is especially evident in the later ammonites of the Cretaceous.

Heteromorphs

Baculites ammonite from the Late Cretaceous of Wyoming, US: The original aragonite of the outer conch and inner septa has dissolved away, leaving this articulated internal mold.
Heteromorph ammonite Didymoceras stevensoni

Ammonoids with a shell shape diverging from the typical planispiral form are known as heteromorphs, instead forming a conch with detached whorls (open coiling) or non-planispiral coiling. These types of shells evolved four times in ammonoids, with the first forms appearing already in the Devonian period. In late Norian age in Triassic the first heteromorph ammonoid fossils belongs to the genus Rhabdoceras. The three other heteromorphic genera were Hannaoceras, Cochloceras and Choristoceras. All of them went extinct at the end of Triassic. In the Jurassic an uncoiled shell was found in the Spiroceratoidea, but by the end of Cretaceous the only heteromorph ammonites remaining belonged to the suborder Ancyloceratina. One example is Baculites, which has a nearly straight shell convergent with the older orthocone nautiloids. Still other species' shells are coiled helically (in two dimensions), similar in appearance to some gastropods (e.g., Turrilites and Bostrychoceras). Some species' shells are even initially uncoiled, then partially coiled, and finally straight at maturity (as in Australiceras).

Perhaps the most extreme and bizarre-looking example of a heteromorph is Nipponites, which appears to be a tangle of irregular whorls lacking any obvious symmetric coiling. Upon closer inspection, though, the shell proves to be a three-dimensional network of connected "U" shapes. Nipponites occurs in rocks of the upper part of the Cretaceous in Japan and the United States.

Aptychus

A drawing of an aptychus which was mistakenly described as a bivalve and given the name "Trigonellites latus", from the Kimmeridge Clay Formation in England

Some ammonites have been found in association with a single horny plate or a pair of calcitic plates. In the past, these plates were assumed to serve in closing the opening of the shell in much the same way as an operculum, but more recently they are postulated to have been a jaw apparatus.

The plates are collectively termed the aptychus or aptychi in the case of a pair of plates, and anaptychus in the case of a single plate. The paired aptychi were symmetric to one another and equal in size and appearance.

Anaptychi are relatively rare as fossils. They are found representing ammonites from the Devonian period through those of the Cretaceous period.

Calcified aptychi only occur in ammonites from the Mesozoic era. They are almost always found detached from the shell, and are only very rarely preserved in place. Still, sufficient numbers have been found closing the apertures of fossil ammonite shells as to leave no doubt as to their identity as part of the anatomy of an ammonite.

Large numbers of detached aptychi occur in certain beds of rock (such as those from the Mesozoic in the Alps). These rocks are usually accumulated at great depths. The modern Nautilus lacks any calcitic plate for closing its shell, and only one extinct nautiloid genus is known to have borne anything similar. Nautilus does, however, have a leathery head shield (the hood) which it uses to cover the opening when it retreats inside.

There are many forms of aptychus, varying in shape and the sculpture of the inner and outer surfaces, but because they are so rarely found in position within the shell of the ammonite it is often unclear to which species of ammonite one kind of aptychus belongs. A number of aptychi have been given their own genus and even species names independent of their unknown owners' genus and species, pending future discovery of verified occurrences within ammonite shells.

Soft-part anatomy

Although ammonites do occur in exceptional lagerstatten such as the Solnhofen Limestone, their soft-part record is surprisingly sparse. Beyond a tentative ink sac and possible digestive organs, no soft parts were known until 2021. When neutron imaging was used on a fossil found in 1998, part of the musculature became visible and showed they were able to retract themselves into the shell for protection, and that the retractor muscles and hyponome that work together to enable jet propulsion in nautilus worked independently in ammonites. The reproductive organs show possible traces of spermatophores, which would support the hypothesis that the microconchs were males. They likely bore a radula and beak, a marginal siphuncle and ten arms. They operated by direct development with sexual reproduction, were carnivorous, and had a crop for food storage. They are unlikely to have dwelt in fresh or brackish water. Many ammonites were likely filter feeders, so adaptations associated with this lifestyle like sieves probably occurred.

A 2021 study found ammonite specimens with preserved hook-like suckers, providing a general shape to ammonite tentacles. A contemporary study found an ammonite isolated body, offering for the first time a glimpse into these animals' organs.

Size

2-metre (6.6 ft) Parapuzosia seppenradensis cast in Germany

The smallest ammonoid was Maximites from the Upper Carboniferous. Adult specimens reached only 10 mm (0.39 in) in shell diameter. Few of the ammonites occurring in the lower and middle part of the Jurassic period reached a size exceeding 23 cm (9.1 in) in diameter. Much larger forms are found in the later rocks of the upper part of the Jurassic and the lower part of the Cretaceous, such as Titanites from the Portland Stone of Jurassic of southern England, which is often 53 cm (1.74 ft) in diameter, and Parapuzosia seppenradensis of the Cretaceous period of Germany, which is one of the largest-known ammonites, sometimes reaching 2 m (6.6 ft) in diameter. The largest-documented North American ammonite is Parapuzosia bradyi from the Cretaceous, with specimens measuring 137 cm (4.5 ft) in diameter.

Distribution

An ammonoid from Iran

Starting from the mid-Devonian, ammonoids were extremely abundant, especially as ammonites during the Mesozoic era. Many genera evolved and ran their course quickly, becoming extinct in a few million years. Due to their rapid evolution and widespread distribution, ammonoids are used by geologists and paleontologists for biostratigraphy. They are excellent index fossils, and it is often possible to link the rock layer in which they are found to specific geologic time periods.

Due to their free-swimming and/or free-floating habits, ammonites often happened to live directly above seafloor waters so poor in oxygen as to prevent the establishment of animal life on the seafloor. When upon death the ammonites fell to this seafloor and were gradually buried in accumulating sediment, bacterial decomposition of these corpses often tipped the delicate balance of local redox conditions sufficiently to lower the local solubility of minerals dissolved in the seawater, notably phosphates and carbonates. The resulting spontaneous concentric precipitation of minerals around a fossil, a concretion, is responsible for the outstanding preservation of many ammonite fossils.

When ammonites are found in clays, their original mother-of-pearl coating is often preserved. This type of preservation is found in ammonites such as Hoplites from the Cretaceous Gault clay of Folkestone in Kent, England.

An iridescent ammonite from Madagascar

The Cretaceous Pierre Shale formation of the United States and Canada is well known for the abundant ammonite fauna it yields, including Baculites, Placenticeras, Scaphites, Hoploscaphites and Jeletzkytes, as well as many uncoiled forms. Many of these also have much or all of the original shell, as well as the complete body chamber, still intact. Many Pierre Shale ammonites, and indeed many ammonites throughout earth history, are found inside concretions.

Other fossils, such as many found in Madagascar and Alberta, Canada display iridescence. These iridescent ammonites are often of gem quality (ammolite) when polished. In no case would this iridescence have been visible during the animal's life; additional shell layers covered it.

The majority of ammonoid specimens, especially those of the Paleozoic era, are preserved only as internal molds; the outer shell (composed of aragonite) has been lost during the fossilization process. Only in these internal-mould specimens can the suture lines be observed; in life, the sutures would have been hidden by the outer shell.

The ammonoids as a group continued through several major extinction events, although often only a few species survived. Each time, however, this handful of species diversified into a multitude of forms. Ammonite fossils became less abundant during the latter part of the Mesozoic, and although they seemingly survived the Cretaceous–Paleogene extinction event, all known Paleocene ammonite lineages are restricted to the Paleocene epoch (65–61 Ma).

Evolutionary history

Goniatites, which were a dominant component of Early and Middle Permian faunas, became rare in the Late Permian, and no goniatite is thought to have crossed into the Triassic.

Ceratitida originated during the Middle Permian, likely from the Daraelitidae, and radiated in the Late Permian. In the aftermath of the Permian–Triassic extinction event, Ceratitids represent the dominant group of Triassic ammonites.

Ammonites were devastated by the end-Triassic extinction, with only a handful of genera belonging to the family Psiloceratidae of the suborder Phylloceratina surviving and becoming ancestral to all later Jurassic and Cretaceous ammonites. Ammonites explosively diversified during the Early Jurassic, with the orders Psiloceratina, Ammonitina, Lytoceratina, Haploceratina, Perisphinctina and Ancyloceratina all appearing during the Jurassic.

Heteromorph ammonites (ammonites with open or non-spiral coiling) of the order Ancyloceratina became common during the Cretaceous period.

Ammonites in the permanent collection of The Children's Museum of Indianapolis

At least 57 species of ammonites, which were widespread and belonged to six superfamilies, were extant during the last 500,000 years of the Cretaceous, indicating that ammonites remained highly diverse until the very end of their existence. All ammonites were wiped out during or shortly after the K-Pg extinction event, caused by the Chicxulub impact. It has been suggested that ocean acidification generated by the impact played a key role in their extinction, as the larvae of ammonites were likely small and planktonic, and would have been heavily affected. Nautiloids, exemplified by modern nautiluses, are conversely thought to have had a reproductive strategy in which eggs were laid in smaller batches many times during the lifespan, and on the sea floor well away from any direct effects of such a bolide strike, and thus survived. Many ammonite species were filter feeders, so they might have been particularly susceptible to marine faunal turnovers and climatic change. Some reports suggest that a few ammonite species may have persisted into the very early Danian stage of the Paleocene, before going extinct.

Cultural significance

In medieval Europe, fossilised ammonites were thought to be petrified coiled snakes, and were called "snakestones" or, more commonly in medieval England, "serpentstones". They were considered to be evidence for the actions of saints, such as Hilda of Whitby, a myth referenced in Sir Walter Scott's Marmion, and Saint Patrick, and were held to have healing or oracular powers. Traders would occasionally carve the head of a snake onto the empty, wide end of the ammonite fossil, and then sell them as petrified snakes. In other cases, the snake's head would be simply painted on.

Others believed ammonites, which they referred to as "salagrana" were composed of fossilized worm dung, and could be used to ward off witches.

Ammonites from the Gandaki River in Nepal are known as Shaligrams, and are believed by Hindus to be a concrete manifestation of Vishnu.

Nacre

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Nacre
The iridescent nacre inside a nautilus shell
Nacreous shell worked into a decorative object

Nacre (/ˈnkər/ NAY-kər, also /ˈnækrə/ NAK-rə), also known as mother of pearl, is an organic–inorganic composite material produced by some molluscs as an inner shell layer. It is also the material of which pearls are composed. It is strong, resilient, and iridescent.

Nacre is found in some of the most ancient lineages of bivalves, gastropods, and cephalopods. However, the inner layer in the great majority of mollusc shells is porcellaneous, not nacreous, and this usually results in a non-iridescent shine, or more rarely in non-nacreous iridescence such as flame structure as is found in conch pearls.

The outer layer of cultured pearls and the inside layer of pearl oyster and freshwater pearl mussel shells are made of nacre. Other mollusc families that have a nacreous inner shell layer include marine gastropods such as the Haliotidae, the Trochidae and the Turbinidae.

Physical characteristics

Structure and appearance

Schematic of the microscopic structure of nacre layers
Electron microscopy image of a fractured surface of nacre

Nacre is composed of hexagonal platelets of aragonite (a form of calcium carbonate) 10–20 μm wide and 0.5 μm thick arranged in a continuous parallel lamina. Depending on the species, the shape of the tablets differs; in Pinna, the tablets are rectangular, with symmetric sectors more or less soluble. Whatever the shape of the tablets, the smallest units they contain are irregular rounded granules. These layers are separated by sheets of organic matrix (interfaces) composed of elastic biopolymers (such as chitin, lustrin and silk-like proteins).

Nacre appears iridescent because the thickness of the aragonite platelets is close to the wavelength of visible light. These structures interfere constructively and destructively with different wavelengths of light at different viewing angles, creating structural colours.

The crystallographic c-axis points approximately perpendicular to the shell wall, but the direction of the other axes varies between groups. Adjacent tablets have been shown to have dramatically different c-axis orientation, generally randomly oriented within ~20° of vertical. In bivalves and cephalopods, the b-axis points in the direction of shell growth, whereas in the monoplacophora it is the a-axis that is this way inclined.

Mechanical properties

This mixture of brittle platelets and the thin layers of elastic biopolymers makes the material strong and resilient, with a Young's modulus of 70 GPa and a yield stress of roughly 70 MPa (when dry). Strength and resilience are also likely to be due to adhesion by the "brickwork" arrangement of the platelets, which inhibits transverse crack propagation. This structure, spanning multiple length sizes, greatly increases its toughness, making it almost as strong as silicon. The mineral–organic interface results in enhanced resilience and strength of the organic interlayers. The interlocking of bricks of nacre has large impact on both the deformation mechanism as well as its toughness. Tensile, shear, and compression tests, Weibull analysis, nanoindentation, and other techniques have all been used to probe the mechanical properties of nacre. Theoretical and computational methods have also been developed to explain the experimental observations of nacre's mechanical behavior. Nacre is stronger under compressive loads than tensile ones when the force is applied parallel or perpendicular to the platelets. As an oriented structure, nacre is highly anisotropic and as such, its mechanical properties are also dependent on the direction.

A variety of toughening mechanisms are responsible for nacre's mechanical behavior. The adhesive force needed to separate the proteinaceous and the aragonite phases is high, indicating that there are molecular interactions between the components. In laminated structures with hard and soft layers, a model system that can be applied to understand nacre, the fracture energy and fracture strength are both larger than those values characteristic of the hard material only. Specifically, this structure facilitates crack deflection, since it is easier for the crack to continue into the viscoelastic and compliant organic matrix than going straight into another aragonite platelet. This results in the ductile protein phase deforming such that the crack changes directions and avoids the brittle ceramic phase. Based on experiments done on nacre-like synthetic materials, it is hypothesized that the compliant matrix needs to have a larger fracture energy than the elastic energy at fracture of the hard phase. Fiber pull-out, which occurs in other ceramic composite materials, contributes to this phenomenon. Unlike in traditional synthetic composites, the aragonite in nacre forms bridges between individual tablets, so the structure is not only held together by the strong adhesion of the ceramic phase to the organic one, but also by these connecting nanoscale features. As plastic deformation starts, the mineral bridges may break, creating small asperities that roughen the aragonite-protein interface. The additional friction generated by the asperities helps the material withstand shear stresses. In nacre-like composites, the mineral bridges have also been shown to increase the flexural strength of the material because they can transfer stress in the material. Developing synthetic composites that exhibit similar mechanical properties as nacre is of interest to scientists working on developing stronger materials. To achieve these effects, researchers take inspiration from nacre and use synthetic ceramics and polymers to mimic the "brick-and-mortar" structure, mineral bridges, and other hierarchical features.

When dehydrated, nacre loses much of its strength and acts as a brittle material, like pure aragonite. The hardness of this material is also negatively impacted by dehydration. Water acts as a plasticizer for the organic matrix, improving its toughness and reducing its shear modulus. Hydrating the protein layer also decreases its Young's modulus, which is expected to improve the fracture energy and strength of a composite with alternating hard and soft layers.

The statistical variation of the platelets has a negative effect on the mechanical performance (stiffness, strength, and energy absorption) because statistical variation precipitates localization of deformation. However, the negative effects of statistical variations can be offset by interfaces with large strain at failure accompanied by strain hardening. On the other hand, the fracture toughness of nacre increases with moderate statistical variations which creates tough regions where the crack gets pinned. But, higher statistical variations generates very weak regions which allows the crack to propagate without much resistance causing the fracture toughness to decrease. Studies have shown that this weak structural defects act as dissipative topological defects coupled by an elastic distortion.

Formation

The process of how nacre is formed is not completely clear. It has been observed in Pinna nobilis, where it starts as tiny particles (~50–80 nm) grouping together inside a natural material. These particles line up in a way that resembles fibers, and they continue to multiply. When there are enough particles, they come together to form early stages of nacre. The growth of nacre is regulated by organic substances that determine how and when the nacre crystals start and develop.

Each crystal, which can be thought of as a "brick", is thought to rapidly grow to match the full height of the layer of nacre. They continue to grow until they meet the surrounding bricks. This produces the hexagonal close-packing characteristic of nacre. The growth of these bricks can be initiated in various ways such as from randomly scattered elements within the organic layer, well-defined arrangements of proteins, or they may expand from mineral bridges coming from the layer underneath.

What sets nacre apart from fibrous aragonite, a similarly formed but brittle mineral, is the speed at which it grows in a certain direction (roughly perpendicular to the shell). This growth is slow in nacre, but fast in fibrous aragonite.

A 2021 paper in Nature Physics examined nacre from Unio pictorum, noting that in each case the initial layers of nacre laid down by the organism contained spiral defects. Defects that spiralled in opposite directions created distortions in the material that drew them towards each other as the layers built up until they merged and cancelled each other out. Later layers of nacre were found to be uniform and ordered in structure.

Function

Fossil nautiloid shell with original iridescent nacre in fossiliferous asphaltic limestone, Oklahoma. Dated to the late Middle Pennsylvanian, which makes it by far the oldest deposit in the world with aragonitic nacreous shelly fossils.

Nacre is secreted by the epithelial cells of the mantle tissue of various molluscs. The nacre is continuously deposited onto the inner surface of the shell, the iridescent nacreous layer, commonly known as mother of pearl. The layers of nacre smooth the shell surface and help defend the soft tissues against parasites and damaging debris by entombing them in successive layers of nacre, forming either a blister pearl attached to the interior of the shell, or a free pearl within the mantle tissues. The process is called encystation and it continues as long as the mollusc lives.

In different mollusc groups

The form of nacre varies from group to group. In bivalves, the nacre layer is formed of single crystals in a hexagonal close packing. In gastropods, crystals are twinned, and in cephalopods, they are pseudohexagonal monocrystals, which are often twinned.

Commercial sources

Nacre bracelet

The main commercial sources of mother of pearl have been the pearl oyster, freshwater pearl mussels, and to a lesser extent the abalone, popular for their sturdiness and beauty in the latter half of the 19th century.

Widely used for pearl buttons especially during the 1900s, were the shells of the great green turban snail Turbo marmoratus and the large top snail, Tectus niloticus. The international trade in mother of pearl is governed by the Convention on International Trade in Endangered Species of Wild Fauna and Flora, an agreement signed by more than 170 countries.

Uses

Decorative

Architecture

Both black and white nacre are used for architectural purposes. The natural nacre may be artificially tinted to almost any color. Nacre tesserae may be cut into shapes and laminated to a ceramic tile or marble base. The tesserae are hand-placed and closely sandwiched together, creating an irregular mosaic or pattern (such as a weave). The laminated material is typically about 2 millimetres (0.079 in) thick. The tesserae are then lacquered and polished creating a durable and glossy surface. Instead of using a marble or tile base, the nacre tesserae can be glued to fiberglass. The result is a lightweight material that offers a seamless installation and there is no limit to the sheet size. Nacre sheets may be used on interior floors, exterior and interior walls, countertops, doors and ceilings. Insertion into architectural elements, such as columns or furniture is easily accomplished.

Musical instruments

Nacre inlay is often used for music keys and other decorative motifs on musical instruments. Many accordion and concertina bodies are completely covered in nacre, and some guitars have fingerboard or headstock inlays made of nacre (or imitation pearloid plastic inlays). The bouzouki and baglamas (Greek plucked string instruments of the lute family) typically feature nacre decorations, as does the related Middle Eastern oud (typically around the sound holes and on the back of the instrument). Bows of stringed instruments such as the violin and cello often have mother of pearl inlay at the frog. It is traditionally used on saxophone keytouches, as well as the valve buttons of trumpets and other brass instruments. The Middle Eastern goblet drum (darbuka) is commonly decorated by mother of pearl.

Indian mother of pearl art

At the end of 19th century, Anukul Munsi was the first accomplished artist who successfully carved the shells of oysters to give a shape of human being which led to the invention of new horizon in Indian contemporary art. For the British Empire Exhibition in 1924, he received a gold medal. His eldest son Annada Munshi is credited with drawing Indian Swadesi Movement in the form of Indian advertising. Anukul Charan Munshi's third son Manu Munshi was one of the finest mother of pearl artists in the middle of 20th century. As the best example of "Charu and Karu art of Bengal," the former Chief Minister of West Bengal, Dr. Bidhan Chandra Roy, sent Manu's artwork, "Gandhiji's Noakhali Abhiyan", to the United States. Numerous illustrious figures, such as Satyajit Ray, Bidhan Chandra Roy, Barrister Subodh Chandra Roy, Subho Tagore, Humayun Kabir, Jehangir Kabir, as well as his elder brother Annada Munshi, were among the patrons of his works of art. "Indira Gandhi" was one of his famous mother of pearl works of art. He is credited with portraying Tagore in various creative stances that were skillfully carved into metallic plates. His cousin Pratip Munshi was also a famed mother of pearl artist.

Other

Mother of pearl buttons are used in clothing either for functional or decorative purposes. The Pearly Kings and Queens are an elaborate example of this.

It is sometimes used in the decorative grips of firearms, and in other gun furniture.

Mother of pearl is sometimes used to make spoon-like utensils for caviar (i.e. caviar servers) so as to not spoil the taste with metallic spoons.

Biomedical use

The biotech company Marine Biomedical, formed by a collaboration between the University of Western Australia Medical School and a Broome pearling business, is as of 2021 developing a product nacre to create "PearlBone", which could be used on patients needing bone grafting and reconstructive surgery. The company is applying for regulatory approval in Australia and several other countries, and is expecting it to be approved for clinical use around 2024–5. It is intended to build a factory in the Kimberley region, where pearl shells are plentiful, which would grind the nacre into a product fit for use in biomedical products. Future applications could include dental fillings and spinal surgery.

Manufactured nacre

In 2012, researchers created calcium-based nacre in the laboratory by mimicking its natural growth process.

In 2014, researchers used lasers to create an analogue of nacre by engraving networks of wavy 3D "micro-cracks" in glass. When the slides were subjected to an impact, the micro-cracks absorbed and dispersed the energy, keeping the glass from shattering. Altogether, treated glass was reportedly 200 times tougher than untreated glass.

Ammolite

From Wikipedia, the free encyclopedia
 
Ammolite
Unprocessed sample of ammolite; a "dragon skin" pattern is apparent
General
Categoryfossilized, mineralized Ammonite shell
Formula
(repeating unit)
CaCO
3
aragonite polymorph, with minor amounts of calcite, pyrite, silica, and other impurities
Identification
ColorGray to brown, can be radiant blue, with primarily red to green iridescence.
Cleavageno true cleavage
Fractureuneven to granular
Mohs scale hardness3.5 - 4.5
Lustergreasy to dull
Specific gravityusually about 2.70 (varies with mineral content)
Polish lustervitreous
Optical propertiesanomalous aggregate reaction
Refractive indexusually 1.52 - 1.68 (varies with mineral content)
Birefringence0.135 - 0.145
Pleochroismnone
Ultraviolet fluorescencevariable

Ammolite is an opal-like organic gemstone found primarily along the eastern slopes of the Rocky Mountains of North America. It is made of the fossilized shells of ammonites, which in turn are composed primarily of aragonite, the same mineral contained in nacre, with a microstructure inherited from the shell. It is one of few biogenic gemstones; others include amber and pearl. In 1981, ammolite was given official gemstone status by the World Jewellery Confederation (CIBJO), the same year commercial mining of ammolite began. It was designated the official gemstone of Lethbridge, Alberta, Canada in 2007, and was subsequently designated as Alberta's official gemstone in April 2022.

Ammolite is also known as aapoak (Kainah for "small, crawling stone"), gem ammonite, calcentine, and korite. The latter is a trade name given to the gemstone by the Alberta-based mining company Korite. Marcel Charbonneau and his business partner Mike Berisoff were the first to create commercial doublets of the gem in 1967. They went on to form Ammolite Minerals Ltd.

Properties

The chemical composition of ammolite is variable, and aside from aragonite may include calcite, silica, pyrite, or other minerals. The shell itself may contain a number of trace elements, including: Aluminium, barium, chromium, copper, iron, magnesium, manganese, strontium, titanium, and vanadium.

An iridescent opal-like play of color is shown in fine specimens, mostly in shades of green and red; all the spectral colors are possible, however. The iridescence is due to the microstructure of the aragonite: Unlike most other gems, whose colors come from light absorption, the iridescent color of ammolite comes from interference with the light that rebounds from stacked layers of thin platelets that make up the aragonite. The thicker the layers, the more reds and greens are produced; the thinner the layers, the more blues and violets predominate. Reds and greens are the most commonly seen colors, owing to the greater fragility of the finer layers responsible for the blues. When freshly quarried, these colors are not especially dramatic; the material requires polishing and possibly other treatments in order to reveal the colors' full potential.

The ammolite itself is actually a very thin sheet, c. 0.5–0.8 mm (0.02–0.03 inches) in thickness. Rarely is ammolite without its matrix, which is typically a grey to brown shale, chalky clay, or limestone. So-called "frost shattering" is common; exposed to the elements and compressed by sediments, the thin ammolite tends to crack and flake; prolonged exposure to sunlight can also lead to bleaching. The cracking results in a tessellated appearance, sometimes described as a "dragon skin" or "stained glass window" pattern. Ammolite mined from deeper deposits may be entirely smooth or with a rippled surface.

Occasionally a complete ammonite shell is recovered with its structure well-preserved: fine, convoluted lines delineate the shell chambers, and the overall shape is suggestive of a nautilus. While these shells may be as large as 90 cm (35.5 inches) in diameter, the iridescent ammonites (as opposed to the pyritized variety) are typically much smaller. Most fossilized shells have had their aragonite pseudomorphously replaced by calcite or pyrite, making the presence of ammolite particularly uncommon.

Origin

An iridescent ammonite from Madagascar
Map of North America highlighting the shallow inland sea present during the mid-Cretaceous period.

Ammolite comes from the fossil shells of the Upper Cretaceous disk-shaped ammonites Placenticeras meeki and Placenticeras intercalare, and (to a lesser degree) the cylindrical baculite, Baculites compressus. Ammonites were cephalopods, that thrived in tropical seas until becoming extinct along with the dinosaurs at the end of the Mesozoic era.

The ammonites that form ammolite inhabited a prehistoric, inland subtropical sea that bordered the Rocky Mountains—this area is known today as the Cretaceous or Western Interior Seaway. As the ammonites died, they sank to the bottom and were buried by layers of bentonitic mud that eventually became shale. Many gem-quality ammonites are found within siderite concretions. These sediments preserved the aragonite of the shells, preventing it from converting to calcite.

Occurrence

Korite's mechanized mining operations are fairly basic, involving the excavation of shallow pits with backhoes.

Significant deposits of gem-quality ammolite have only been found in the Bearpaw Formation that extends from Alberta to Saskatchewan in Canada and south to Montana in the USA. However, small deposits have been found as far south as Central Utah which also contains gem-quality ammolite.

The best grade of gem quality ammolite is along high energy river systems on the eastern slopes of the Rockies in southern Alberta. Most commercial mining operations have been conducted along the banks of the St. Mary River, in an area south of and between the town of Magrath and the city of Lethbridge. Roughly half of all ammolite deposits are contained within the Kainah (Kainaiwa) reserve, and its inhabitants play a major role in ammolite mining.

Since its founding in 1979, Korite has operated primarily within the reservation. The company had an agreement with the Kainah (Blood) tribe, with Korite paying the tribe royalties based on how much land the company has mined. This agreement has expired. It prohibited the Blood Tribe members from surface mining along the banks and cliffs of the St. Mary River. There were about 35 licensed Blood surface miners in 2018. The surface miners are self employed mining in all kinds of weather. Some miners also restore the fossils they find or resell their finds to other fabricators.

Extraction

Another view of Korite's open-pit mining operations in Alberta, Canada.

Commercial extraction is mechanized but fairly basic: shallow open pits are dug with an excavator and the excavated material is screened for its potential gem contents. The pits are further examined by hand, and commercial production is supplemented by individuals who sell their surface-picked findings to Korite and several other producers. Approximately 50% of the ammolite mined is suitable for jewelry. Korite, the largest miner of ammolite, produces over 90% of the world's supply.

The ammolite deposits are stratified into several layers: the shallowest of these layers, named the "K zone", lies some 15 meters below the surface and extends 30 meters down. The ammolite within this layer is covered by siderite concretions and is usually cracked — this is the crush material. It is the most common and (generally speaking) the least valuable form of ammolite. Beginning twenty meters below the crush material is the "blue zone"; ammolite from this zone, which extends 65 meters, is usually compressed with a thin layer of pyrite rather than siderite concretions. This is the sheet material; due to its depth it is rarely mined. It is also much less fractured, and therefore a more valuable form of ammolite.

As of 2015, Korite has mined over 100 acres of ammolite deposits. The company employs over 280 people and accounts for approximately 90 percent of world gem ammolite production. Prospectors who wish to mine ammolite deposits on Crown land must apply to the Alberta Department of Energy for a lease. These leases are not regularly offered; as of 2004, there was a CAD $625 application fee, with an annual rental fee of CAD$3.50 per hectare.

Gemstone quality

Placenticeras ammolite specimen, from Bearpaw Formation, Campanian Stage, upper Upper Cretaceous, ~70-75 Ma.

The quality of gem ammolite is communicated via a letter grade system, from most desirable to least desirable: AA; A+; A; and A−. However, this system is not yet standardized and some vendors may use their own systems. The grade and therefore the value of an ammolite gemstone is determined by the following criteria:

The number of primary colors
A large array of color is displayed in ammolite, including all the spectral colors found in nature. Red and green are far more common than blue or purple due to the latter's fragility (see properties). There are also certain hues, like crimson or violet or gold, which are derived from a combination of the primary colors, that are the rarest and in highest demand. The most valuable grades have three or more primary colors or 1–2 bright and even colors, with the lowest grades having one comparatively dull color predominant.
The way the colors "play" (chromatic shift and rotational range)
Chromatic shift is how the colors vary with the angle of viewing and the angle of light striking the gemstone. In higher grades this variation is almost prismatic in its scope, while lower grades show very little variation. Rotational range is how far the specimen can be turned while maintaining its play of color; the best rotate 360° uncompromised, while lesser stones may exhibit highly directional colors that are only visible within a narrow rotational range, down to 90° or less. Intermediate grades have ranges of 240°–180°.
Brightness of colors and iridescence
The brightness of colors and their iridescence is essentially dependent on how well-preserved the nacreous shell is, and how fine and orderly the layers of aragonite are. The quality of the polish is also a factor. The "dragon skin" cracking usually hinders its value ; the most prized ammolite is the sheet type (see formation) that has broad, uninterrupted swathes of color similar to the "broad flash" category of opal. The matrix is not visible in finer grades, and there should be no foreign minerals breaking up or diminishing the iridescence.

The thickness of the ammolite layer is also an important factor: after polishing, the ammolite is only 0.1–0.3 millimeters thick. The rarest and most valuable are thick enough to stand alone, with only a thin portion of its original matrix (not exceeding 1.5 mm); but the vast majority require some sort of supportive backing. Other treatments are also commonly undertaken; all other factors being equal, the less treatment an ammolite gem has received, the more valuable it is. Calibrated stones—that is, stones fashioned into standard dimensions that will fit most jewelry settings—may also command a higher price.

Treatments

Ammolite is often damaged due to environmental exposure, even though it is fully mineralized and contains no water — therefore it is not subject to dehydration and subsequent crazing seen in opals. The thin, delicate sheets in which ammolite occurs are also problematic; for these reasons, most material is impregnated with a clear epoxy or other synthetic resin to stabilize the flake-prone ammolite prior to cutting. Although the tessellated cracking cannot be repaired, the epoxy prevents further flaking and helps protect the relatively soft surface from scratching.

The impregnation process was developed over a number of years by Korite in partnership with the Alberta Research Council. Impregnated and epoxy-coated ammolite first entered the market in 1989 and the treatment significantly increased the availability and durability of the gem.

Because the ammolite layer is usually mere fractions of a millimeter in thickness, most ammolite gems are in fact composite stones: These usually take the form of two-part doublets, with the ammolite layer adhered to a dark backing material. This is usually the matrix or mother rock from which the ammolite was quarried; black onyx or glass could also be used as backing. In composites where the ammolite layer is exceptionally thin, a third component is used: This constitutes a triplet, with a durable and transparent convex topping piece. This cap may be either synthetic spinel, synthetic corundum, synthetic quartz, or in lower-end productions, glass. The convex cap acts as a lens and has the effect of enhancing the ammolite's iridescent display.

The detection of these treated and composite stones is relatively simple via inspection with a loupe; however, certain jewelry setting styles—such as those with closed backs—can complicate things. A triplet can be identified by inspecting the stone in profile; the top of the stone can then be seen to be domed and transparent, with no play of color. If the dome is made of glass, bubbles, swirl marks, and scratches may be present; the harder synthetic materials are optically flawless.

Although the vast majority of commercial-grade ammolite has been treated in some way, a small fraction of production requires no treatment other than cutting and polishing. Ideally, any treatments should be disclosed at the time of sale.

Imitations

The iridescent flashes (labradorescence) of labradorite may lead to its confusion with ammolite by the unfamiliar, but the overall appearance is unconvincing as an imitation.

Ammolite is neither easily nor often imitated; however, a few materials have a passing resemblance that may deceive the unfamiliar. These include: labradorite (also known as spectrolite), an iridescent feldspar that may also be of Canadian origin; and broad-flash black opal. Neither are convincing substitutes, and the latter is actually of greater value than ammolite. Indeed, ammolite is often used as an imitation of black opal. An even less convincing possibility is Slocum stone, a common glass-based imitation of opal. Blues and purples are much more pervasive in labradorite, and in both it and opal the play of color is seen to roll across the stone unlike the comparatively restricted play of color in ammolite. In Slocum stone, the play of color takes the form of tinsel-like patches. The visible structure is also considerably different; in the imitations, the body of the stone is transparent to translucent from certain angles, whereas ammolite is entirely opaque.

Gemologically speaking, ammolite can be grouped with the shell-based marbles. This group includes lumachella or "fire marble", a similarly iridescent marble composed of fossilized clam and snail shells. Found in Italy and Austria, lumachella is rarely if ever used in jewelry; rather, it is used as a decorative facing stone or in mosaics. The iridescence of lumachella is fragmentary and not nearly as brilliant as that of ammolite. Despite these differences, lumachella may be considered synonymous with ammolite in some circles.

The predominantly blue-green iridescent shell of abalone (or paua; genus Haliotis) is one last possible imitation. Abalone shell is inexpensive and plentiful owing to the commercial mariculture of these gastropods for their meat. The shell's structure is distinctive: sinuous bands of blue, green, and rose iridescence are delineated by dark brown lines of conchiolin, a proteinaceous material that holds the shell together. The luster of abalone shell is silky rather than the near vitreous luster of polished ammolite, and the colors of the two materials do not closely approximate. However, some abalone shell has been dyed and given a transparent cap of synthetic quartz, forming a doublet in the same fashion as ammolite. These doublets are perhaps the most deceptive, and have also been used to imitate opal. Under magnification most abalone doublets will show dye concentrated along certain areas and air bubbles trapped at the shell-quartz interface.

Use in jewelry

Ammolite jewelry by Korite. The ammolite gems are triplets, as evidenced by their convex profiles. Ammolite is best used in pendants, earrings, and brooches due to its fragility.

Compared to most other gems, ammolite has a rather scant history of use; it did not begin to garner interest in Western society until the 1970s after entering the market (to a limited degree) in 1969. The Blackfeet tribe know ammolite as iniskim, meaning "buffalo stone", and have long believed it to possess amuletic powers; specifically, the gem is believed to aid in the buffalo hunt, and to draw the buffalo within tracking distance. The Blackfeet also believe ammolite to possess healing powers and incorporate the gem into their medicine bundles for use in ceremonies.

In the late 1990s, practitioners of feng shui began to promote ammolite as an "influential" stone with what they believe is the power to enhance well-being and detoxify the body by improving its flow of energy or "chi".[citation needed] Named the "seven color prosperity stone", each color is believed by feng shui practitioners to influence the wearer in different and positive ways; a combination of ruby red, emerald green, and amber yellow is most sought after for this purpose, the colors being said to enhance growth, wisdom, and wealth, respectively.[citation needed]

Ammolite is usually fashioned into freeform cabochons and mounted in gold, with diamonds as accents. Due to its delicacy, ammolite is best reserved for use in pendants, earrings, and brooches; if used as a ring stone, ammolite should be given a hard protective cap, namely one of synthetic spinel as used in triplets. Whole polished ammonites of appropriately small size may also be mounted in jewelry. Nothing harsher than mild soap and warm water should be used to clean ammolite jewelry; ultrasonic cleaning should be avoided.

Japan is the largest market for ammolite; this may be due to its use as an imitation of increasingly scarce black opal, or its aforementioned use in feng shui. Secondary markets include Canada, where it is used both by artisans and fine jewelry producers who sell their creations to tourists of Banff National Park and Jasper National Park. It is also crafted in the Southwest United States, where it is used by Zuni and other Native American craftspeople.

Renaissance philosophy

From Wikipedia, the free encyclopedia   Renaissance The School of Athens (15...