Search This Blog

Monday, March 18, 2019

Pulsar

From Wikipedia, the free encyclopedia

PSR B1509-58X-rays from Chandra are gold; Infrared from WISE in red, green and blue/max.
 
A pulsar (from pulse and -ar as in quasar) is a highly magnetized rotating neutron star that emits a beam of electromagnetic radiation. This radiation can be observed only when the beam of emission is pointing toward Earth (much like the way a lighthouse can be seen only when the light is pointed in the direction of an observer), and is responsible for the pulsed appearance of emission. Neutron stars are very dense, and have short, regular rotational periods. This produces a very precise interval between pulses that ranges from milliseconds to seconds for an individual pulsar. Pulsars are believed to be one of the candidates for the source of ultra-high-energy cosmic rays (see also centrifugal mechanism of acceleration). 

The periods of pulsars make them very useful tools. Observations of a pulsar in a binary neutron star system were used to indirectly confirm the existence of gravitational radiation. The first extrasolar planets were discovered around a pulsar, PSR B1257+12. Certain types of pulsars rival atomic clocks in their accuracy in keeping time.

History of observation

Discovery

Chart on which Jocelyn Bell Burnell first recognised evidence of a pulsar, exhibited at Cambridge university Library
 
Composite optical/X-ray image of the Crab Nebula, showing synchrotron emission in the surrounding pulsar wind nebula, powered by injection of magnetic fields and particles from the central pulsar.
 
The first pulsar was observed on November 28, 1967, by Jocelyn Bell Burnell and Antony Hewish. They observed pulses separated by 1.33 seconds that originated from the same location in the sky, and kept to sidereal time. In looking for explanations for the pulses, the short period of the pulses eliminated most astrophysical sources of radiation, such as stars, and since the pulses followed sidereal time, it could not be man-made radio frequency interference

When observations with another telescope confirmed the emission, it eliminated any sort of instrumental effects. At this point, Bell Burnell said of herself and Hewish that "we did not really believe that we had picked up signals from another civilization, but obviously the idea had crossed our minds and we had no proof that it was an entirely natural radio emission. It is an interesting problem—if one thinks one may have detected life elsewhere in the universe, how does one announce the results responsibly?" Even so, they nicknamed the signal LGM-1, for "little green men" (a playful name for intelligent beings of extraterrestrial origin). 

It was not until a second pulsating source was discovered in a different part of the sky that the "LGM hypothesis" was entirely abandoned. Their pulsar was later dubbed CP 1919, and is now known by a number of designators including PSR 1919+21 and PSR J1921+2153. Although CP 1919 emits in radio wavelengths, pulsars have subsequently been found to emit in visible light, X-ray, and gamma ray wavelengths.

The word "pulsar" is a portmanteau of 'pulsating' and 'quasar', and first appeared in print in 1968: 

An entirely novel kind of star came to light on Aug. 6 last year and was referred to, by astronomers, as LGM (Little Green Men). Now it is thought to be a novel type between a white dwarf and a neutron [star]. The name Pulsar is likely to be given to it. Dr. A. Hewish told me yesterday: "… I am sure that today every radio telescope is looking at the Pulsars."

The existence of neutron stars was first proposed by Walter Baade and Fritz Zwicky in 1934, when they argued that a small, dense star consisting primarily of neutrons would result from a supernova. Based on the idea of magnetic flux conservation from magnetic main sequence stars, Lodewijk Woltjer proposed in 1964 that such neutron stars might contain magnetic fields as large as 10^14 to 10^16 G. In 1967, shortly before the discovery of pulsars, Franco Pacini suggested that a rotating neutron star with a magnetic field would emit radiation, and even noted that such energy could be pumped into a supernova remnant around a neutron star, such as the Crab Nebula. After the discovery of the first pulsar, Thomas Gold independently suggested a rotating neutron star model similar to that of Pacini, and explicitly argued that this model could explain the pulsed radiation observed by Bell Burnell and Hewish. The discovery of the Crab pulsar later in 1968 seemed to provide confirmation of the rotating neutron star model of pulsars. The Crab pulsar has a 33-millisecond pulse period, which was too short to be consistent with other proposed models for pulsar emission. Moreover, the Crab pulsar is so named because it is located at the center of the Crab Nebula, consistent with the 1933 prediction of Baade and Zwicky.

In 1974, Antony Hewish and Martin Ryle became the first astronomers to be awarded the Nobel Prize in Physics, with the Royal Swedish Academy of Sciences noting that Hewish played a "decisive role in the discovery of pulsars". Considerable controversy is associated with the fact that Hewish was awarded the prize while Bell, who made the initial discovery while she was his PhD student, was not. Bell claims no bitterness upon this point, supporting the decision of the Nobel prize committee.

Milestones

The Vela Pulsar and its surrounding pulsar wind nebula.
 
In 1974, Joseph Hooton Taylor, Jr. and Russell Hulse discovered for the first time a pulsar in a binary system, PSR B1913+16. This pulsar orbits another neutron star with an orbital period of just eight hours. Einstein's theory of general relativity predicts that this system should emit strong gravitational radiation, causing the orbit to continually contract as it loses orbital energy. Observations of the pulsar soon confirmed this prediction, providing the first ever evidence of the existence of gravitational waves. As of 2010, observations of this pulsar continue to agree with general relativity. In 1993, the Nobel Prize in Physics was awarded to Taylor and Hulse for the discovery of this pulsar.

In 1982, Don Backer led a group which discovered PSR B1937+21, a pulsar with a rotation period of just 1.6 milliseconds (38,500 rpm). Observations soon revealed that its magnetic field was much weaker than ordinary pulsars, while further discoveries cemented the idea that a new class of object, the "millisecond pulsars" (MSPs) had been found. MSPs are believed to be the end product of X-ray binaries. Owing to their extraordinarily rapid and stable rotation, MSPs can be used by astronomers as clocks rivaling the stability of the best atomic clocks on Earth. Factors affecting the arrival time of pulses at Earth by more than a few hundred nanoseconds can be easily detected and used to make precise measurements. Physical parameters accessible through pulsar timing include the 3D position of the pulsar, its proper motion, the electron content of the interstellar medium along the propagation path, the orbital parameters of any binary companion, the pulsar rotation period and its evolution with time. (These are computed from the raw timing data by Tempo, a computer program specialized for this task.) After these factors have been taken into account, deviations between the observed arrival times and predictions made using these parameters can be found and attributed to one of three possibilities: intrinsic variations in the spin period of the pulsar, errors in the realization of Terrestrial Time against which arrival times were measured, or the presence of background gravitational waves. Scientists are currently attempting to resolve these possibilities by comparing the deviations seen between several different pulsars, forming what is known as a pulsar timing array. The goal of these efforts is to develop a pulsar-based time standard precise enough to make the first ever direct detection of gravitational waves. In June 2006, the astronomer John Middleditch and his team at LANL announced the first prediction of pulsar glitches with observational data from the Rossi X-ray Timing Explorer. They used observations of the pulsar PSR J0537-6910

In 1992, Aleksander Wolszczan discovered the first extrasolar planets around PSR B1257+12. This discovery presented important evidence concerning the widespread existence of planets outside the Solar System, although it is very unlikely that any life form could survive in the environment of intense radiation near a pulsar. 

In 2016, AR Scorpii was identified as the first pulsar in which the compact object is a white dwarf instead of a neutron star. Because its moment of inertia is much higher than that of a neutron star, the white dwarf in this system rotates once every 1.97 minutes, far slower than neutron-star pulsars. The system displays strong pulsations from ultraviolet to radio wavelengths, powered by the spin-down of the strongly magnetized white dwarf.

Nomenclature

Initially pulsars were named with letters of the discovering observatory followed by their right ascension (e.g. CP 1919). As more pulsars were discovered, the letter code became unwieldy, and so the convention then arose of using the letters PSR (Pulsating Source of Radio) followed by the pulsar's right ascension and degrees of declination (e.g. PSR 0531+21) and sometimes declination to a tenth of a degree (e.g. PSR 1913+16.7). Pulsars appearing very close together sometimes have letters appended (e.g. PSR 0021-72C and PSR 0021-72D). 

The modern convention prefixes the older numbers with a B (e.g. PSR B1919+21), with the B meaning the coordinates are for the 1950.0 epoch. All new pulsars have a J indicating 2000.0 coordinates and also have declination including minutes (e.g. PSR J1921+2153). Pulsars that were discovered before 1993 tend to retain their B names rather than use their J names (e.g. PSR J1921+2153 is more commonly known as PSR B1919+21). Recently discovered pulsars only have a J name (e.g. PSR J0437-4715). All pulsars have a J name that provides more precise coordinates of its location in the sky.

Formation, mechanism, turn off

Schematic view of a pulsar. The sphere in the middle represents the neutron star, the curves indicate the magnetic field lines, the protruding cones represent the emission beams and the green line represents the axis on which the star rotates.
 
The events leading to the formation of a pulsar begin when the core of a massive star is compressed during a supernova, which collapses into a neutron star. The neutron star retains most of its angular momentum, and since it has only a tiny fraction of its progenitor's radius (and therefore its moment of inertia is sharply reduced), it is formed with very high rotation speed. A beam of radiation is emitted along the magnetic axis of the pulsar, which spins along with the rotation of the neutron star. The magnetic axis of the pulsar determines the direction of the electromagnetic beam, with the magnetic axis not necessarily being the same as its rotational axis. This misalignment causes the beam to be seen once for every rotation of the neutron star, which leads to the "pulsed" nature of its appearance. 

In rotation-powered pulsars, the beam originates from the rotational energy of the neutron star, which generates an electrical field from the movement of the very strong magnetic field, resulting in the acceleration of protons and electrons on the star surface and the creation of an electromagnetic beam emanating from the poles of the magnetic field. This rotation slows down over time as electromagnetic power is emitted. When a pulsar's spin period slows down sufficiently, the radio pulsar mechanism is believed to turn off (the so-called "death line"). This turn-off seems to take place after about 10–100 million years, which means of all the neutron stars born in the 13.6 billion year age of the universe, around 99% no longer pulsate.

Though the general picture of pulsars as rapidly rotating neutron stars is widely accepted, Werner Becker of the Max Planck Institute for Extraterrestrial Physics said in 2006, "The theory of how pulsars emit their radiation is still in its infancy, even after nearly forty years of work."

Categories

Three distinct classes of pulsars are currently known to astronomers, according to the source of the power of the electromagnetic radiation:
  1. Rotation-powered pulsars, where the loss of rotational energy of the star provides the power,
  2. Accretion-powered pulsars (accounting for most but not all X-ray pulsars), where the gravitational potential energy of accreted matter is the power source (producing X-rays that are observable from the Earth).
  3. Magnetars, where the decay of an extremely strong magnetic field provides the electromagnetic power.
Although all three classes of objects are neutron stars, their observable behavior and the underlying physics are quite different. There are, however, connections. For example, X-ray pulsars are probably old rotationally-powered pulsars that have already lost most of their power, and have only become visible again after their binary companions had expanded and began transferring matter on to the neutron star. The process of accretion can in turn transfer enough angular momentum to the neutron star to "recycle" it as a rotation-powered millisecond pulsar. As this matter lands on the neutron star, it is thought to "bury" the magnetic field of the neutron star (although the details are unclear), leaving millisecond pulsars with magnetic fields 1000-10,000 times weaker than average pulsars. This low magnetic field is less effective at slowing the pulsar's rotation, so millisecond pulsars live for billions of years, making them the oldest known pulsars. Millisecond pulsars are seen in globular clusters, which stopped forming neutron stars billions of years ago.

Of interest to the study of the state of the matter in a neutron star are the glitches observed in the rotation velocity of the neutron star. This velocity is decreasing slowly but steadily, except by sudden variations. One model put forward to explain these glitches is that they are the result of "starquakes" that adjust the crust of the neutron star. Models where the glitch is due to a decoupling of the possibly superconducting interior of the star have also been advanced. In both cases, the star's moment of inertia changes, but its angular momentum does not, resulting in a change in rotation rate.

Disrupted recycled pulsar

When two massive stars are born close together from the same cloud of gas, they can form a binary system and orbit each other from birth. If those two stars are at least a few times as massive as our sun, their lives will both end in supernova explosions. The more massive star explodes first, leaving behind a neutron star. If the explosion does not kick the second star away, the binary system survives. The neutron star can now be visible as a radio pulsar, and it slowly loses energy and spins down. Later, the second star can swell up, allowing the neutron star to suck up its matter. The matter falling onto the neutron star spins it up and reduces its magnetic field. This is called "recycling" because it returns the neutron star to a quickly-spinning state. Finally, the second star also explodes in a supernova, producing another neutron star. If this second explosion also fails to disrupt the binary, a double neutron star binary is formed. Otherwise, the spun-up neutron star is left with no companion and becomes a "disrupted recycled pulsar", spinning between a few and 50 times per second.

Applications

The discovery of pulsars allowed astronomers to study an object never observed before, the neutron star. This kind of object is the only place where the behavior of matter at nuclear density can be observed (though not directly). Also, millisecond pulsars have allowed a test of general relativity in conditions of an intense gravitational field.

Maps

Relative position of the Sun to the center of the Galaxy and 14 pulsars with their periods denoted
 
Pulsar maps have been included on the two Pioneer Plaques as well as the Voyager Golden Record. They show the position of the Sun, relative to 14 pulsars, which are identified by the unique timing of their electromagnetic pulses, so that our position both in space and in time can be calculated by potential extraterrestrial intelligences. Because pulsars are emitting very regular pulses of radio waves, its radio transmissions do not require daily corrections. Moreover, pulsar positioning could create a spacecraft navigation system independently, or be used in conjunction with satellite navigation.

Precise clocks

Generally, the regularity of pulsar emission does not rival the stability of atomic clocks. However, for some millisecond pulsars, the regularity of pulsation is even more precise than an atomic clock. For example, J0437-4715 has a period of 0.005757451936712637 s with an error of 1.7×10−17 s. This stability allows millisecond pulsars to be used in establishing ephemeris time or in building pulsar clocks.

Timing noise is the name for rotational irregularities observed in all pulsars. This timing noise is observable as random wandering in the pulse frequency or phase. It is unknown whether timing noise is related to pulsar glitches.

Probes of the interstellar medium

The radiation from pulsars passes through the interstellar medium (ISM) before reaching Earth. Free electrons in the warm (8000 K), ionized component of the ISM and H II regions affect the radiation in two primary ways. The resulting changes to the pulsar's radiation provide an important probe of the ISM itself.

Because of the dispersive nature of the interstellar plasma, lower-frequency radio waves travel through the medium slower than higher-frequency radio waves. The resulting delay in the arrival of pulses at a range of frequencies is directly measurable as the dispersion measure of the pulsar. The dispersion measure is the total column density of free electrons between the observer and the pulsar,
where is the distance from the pulsar to the observer and is the electron density of the ISM. The dispersion measure is used to construct models of the free electron distribution in the Milky Way.

Additionally, turbulence in the interstellar gas causes density inhomogeneities in the ISM which cause scattering of the radio waves from the pulsar. The resulting scintillation of the radio waves—the same effect as the twinkling of a star in visible light due to density variations in the Earth's atmosphere—can be used to reconstruct information about the small scale variations in the ISM. Due to the high velocity (up to several hundred km/s) of many pulsars, a single pulsar scans the ISM rapidly, which results in changing scintillation patterns over timescales of a few minutes.

Probes of space-time

Pulsars orbiting within the curved space-time around Sgr A*, the supermassive black hole at the center of the Milky Way, could serve as probes of gravity in the strong-field regime. Arrival times of the pulses would be affected by special- and general-relativistic Doppler shifts and by the complicated paths that the radio waves would travel through the strongly curved space-time around the black hole. In order for the effects of general relativity to be measurable with current instruments, pulsars with orbital periods less than about 10 years would need to be discovered; such pulsars would orbit at distances inside 0.01 pc from Sgr A*. Searches are currently underway; at present, five pulsars are known to lie within 100 pc from Sgr A*.

Gravitational waves detectors

There are 3 consortia around the world which use pulsars to search for gravitational waves. In Europe, there is the European Pulsar Timing Array (EPTA); there is the Parkes Pulsar Timing Array (PPTA) in Australia; and there is the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) in Canada and the US. Together, the consortia form the International Pulsar Timing Array (IPTA). The pulses from Millisecond Pulsars (MSPs) are used as a system of Galactic clocks. Disturbances in the clocks will be measurable at Earth. A disturbance from a passing gravitational wave will have a particular signature across the ensemble of pulsars, and will be thus detected.

Significant pulsars

Pulsars within 300 pc
PSR Distance
(pc)
Age
(Myr)
J0030+0451 244 7,580
J0108−1431 238 166
J0437−4715 156 1,590
J0633+1746 156 0.342
J0659+1414 290 0.111
J0835−4510 290 0.0113
J0453+0755 260 17.5
J1045−4509 300 6,710
J1741−2054 250 0.387
J1856−3754 161 3.76
J2144−3933 165 272

Gamma-ray pulsars detected by the Fermi Gamma-ray Space Telescope.

The pulsars listed here were either the first discovered of its type, or represent an extreme of some type among the known pulsar population, such as having the shortest measured period.
  • The first radio pulsar "CP 1919" (now known as PSR B1919+21), with a pulse period of 1.337 seconds and a pulse width of 0.04-second, was discovered in 1967.
  • The first binary pulsar, PSR 1913+16, whose orbit is decaying at the exact rate predicted due to the emission of gravitational radiation by general relativity
  • The brightest radio pulsar, the Vela Pulsar.
  • The first millisecond pulsar, PSR B1937+21
  • The brightest millisecond pulsar, PSR J0437-4715
  • The first X-ray pulsar, Cen X-3
  • The first accreting millisecond X-ray pulsar, SAX J1808.4-3658
  • The first pulsar with planets, PSR B1257+12
  • The first pulsar observed to have been affected by asteroids: PSR J0738-4042
  • The first double pulsar binary system, PSR J0737−3039
  • The shortest period pulsar, PSR J1748-2446ad, with a period of ~0.0014 seconds or ~1.4 milliseconds (716 times a second).
  • The longest period pulsar, at 118.2 seconds, as well as the only known example of a white dwarf pulsar, AR Scorpii.
  • The longest period neutron star pulsar, PSR J0250+5854, with a period of 23.5 seconds.
  • The pulsar with the most stable period, PSR J0437-4715
  • The first millisecond pulsar with 2 stellar mass companions, PSR J0337+1715
  • PSR J1841-0500, stopped pulsing for 580 days. One of only two pulsars known to have stopped pulsing for more than a few minutes.
  • PSR B1931+24, has a cycle. It pulses for about a week and stops pulsing for about a month. One of only two pulsars known to have stopped pulsing for more than a few minutes.
  • PSR J1903+0327, a ~2.15 ms pulsar discovered to be in a highly eccentric binary star system with a Sun-like star.
  • PSR J2007+2722, a 40.8-hertz 'recycled' isolated pulsar was the first pulsar found by volunteers on data taken in February 2007 and analyzed by distributed computing project Einstein@Home.
  • PSR J1311–3430, the first millisecond pulsar discovered via gamma-ray pulsations and part of a binary system with the shortest orbital period.

Nebula

From Wikipedia, the free encyclopedia

The "Pillars of Creation" from the Eagle Nebula. Evidence from the Spitzer Telescope suggests that the pillars may already have been destroyed by a supernova explosion, but the light showing us the destruction will not reach the Earth for another millennium.
 
A nebula is an interstellar cloud of dust, hydrogen, helium and other ionized gases. Originally, the term was used to describe any diffuse astronomical object, including galaxies beyond the Milky Way. The Andromeda Galaxy, for instance, was once referred to as the Andromeda Nebula (and spiral galaxies in general as "spiral nebulae") before the true nature of galaxies was confirmed in the early 20th century by Vesto Slipher, Edwin Hubble and others. 

Most nebulae are of vast size; some are hundreds of light years in diameter. A nebula that is barely visible to the human eye from Earth would appear larger, but no brighter, from close by. The Orion Nebula, the brightest nebula in the sky and occupying an area twice the diameter of the full Moon, can be viewed with the naked eye but was missed by early astronomers. Although denser than the space surrounding them, most nebulae are far less dense than any vacuum created on Earth – a nebular cloud the size of the Earth would have a total mass of only a few kilograms. Many nebulae are visible due to fluorescence caused by embedded hot stars, while others are so diffuse they can only be detected with long exposures and special filters. Some nebulae are variably illuminated by T Tauri variable stars. Nebulae are often star-forming regions, such as in the "Pillars of Creation" in the Eagle Nebula. In these regions the formations of gas, dust, and other materials "clump" together to form denser regions, which attract further matter, and eventually will become dense enough to form stars. The remaining material is then believed to form planets and other planetary system objects.

Observational history

Portion of the Carina Nebula
 
Around 150 AD, Claudius Ptolemaeus (Ptolemy) recorded, in books VII–VIII of his Almagest, five stars that appeared nebulous. He also noted a region of nebulosity between the constellations Ursa Major and Leo that was not associated with any star. The first true nebula, as distinct from a star cluster, was mentioned by the Persian astronomer Abd al-Rahman al-Sufi, in his Book of Fixed Stars (964). He noted "a little cloud" where the Andromeda Galaxy is located. He also cataloged the Omicron Velorum star cluster as a "nebulous star" and other nebulous objects, such as Brocchi's Cluster. The supernova that created the Crab Nebula, the SN 1054, was observed by Arabic and Chinese astronomers in 1054.

In 1610, Nicolas-Claude Fabri de Peiresc discovered the Orion Nebula using a telescope. This nebula was also observed by Johann Baptist Cysat in 1618. However, the first detailed study of the Orion Nebula was not performed until 1659, by Christiaan Huygens, who also believed he was the first person to discover this nebulosity.

In 1715, Edmund Halley published a list of six nebulae. This number steadily increased during the century, with Jean-Philippe de Cheseaux compiling a list of 20 (including eight not previously known) in 1746. From 1751 to 1753, Nicolas Louis de Lacaille cataloged 42 nebulae from the Cape of Good Hope, most of which were previously unknown. Charles Messier then compiled a catalog of 103 "nebulae" (now called Messier objects, which included what are now known to be galaxies) by 1781; his interest was detecting comets, and these were objects that might be mistaken for them.

The number of nebulae was then greatly increased by the efforts of William Herschel and his sister Caroline Herschel. Their Catalogue of One Thousand New Nebulae and Clusters of Stars was published in 1786. A second catalog of a thousand was published in 1789 and the third and final catalog of 510 appeared in 1802. During much of their work, William Herschel believed that these nebulae were merely unresolved clusters of stars. In 1790, however, he discovered a star surrounded by nebulosity and concluded that this was a true nebulosity, rather than a more distant cluster.

Beginning in 1864, William Huggins examined the spectra of about 70 nebulae. He found that roughly a third of them had the emission spectrum of a gas. The rest showed a continuous spectrum and thus were thought to consist of a mass of stars. A third category was added in 1912 when Vesto Slipher showed that the spectrum of the nebula that surrounded the star Merope matched the spectra of the Pleiades open cluster. Thus the nebula radiates by reflected star light.

About 1923, following the Great Debate, it had become clear that many "nebulae" were in fact galaxies far from our own. 

Slipher and Edwin Hubble continued to collect the spectra from many different nebulae, finding 29 that showed emission spectra and 33 that had the continuous spectra of star light. In 1932, Hubble announced that nearly all nebula are associated with stars, and their illumination comes from star light. He also discovered that the emission spectrum nebulae are nearly always associated with stars having spectral classifications of B or hotter (including all O-type main sequence stars), while nebulae with continuous spectra appear with cooler stars. Both Hubble and Henry Norris Russell concluded that the nebulae surrounding the hotter stars are transfomed in some manner.

Formation

The Triangulum Emission Garren Nebula NGC 604
 
There are a variety of formation mechanisms for the different types of nebulae. Some nebulae form from gas that is already in the interstellar medium while others are produced by stars. Examples of the former case are giant molecular clouds, the coldest, densest phase of interstellar gas, which can form by the cooling and condensation of more diffuse gas. Examples of the latter case are planetary nebulae formed from material shed by a star in late stages of its stellar evolution

Star-forming regions are a class of emission nebula associated with giant molecular clouds. These form as a molecular cloud collapses under its own weight, proceeding stars. Massive stars may form in the center, and their ultraviolet radiation ionizes the surrounding gas, making it visible at optical wavelengths. The region of ionized hydrogen surrounding the massive stars is known as an H II region while the shells of neutral hydrogen surrounding the H II region are known as photodissociation region. Examples of star-forming regions are the Orion Nebula, the Rosette Nebula and the Omega Nebula. Feedback from star-formation, in the form of supernova explosions of massive stars, stellar winds or ultraviolet radiation from massive stars, or outflows from low-mass stars may disrupt the cloud, destroying the nebula after several million years. 

Other nebulae form as the result of supernova explosions; the death throes of massive, short-lived stars. The materials thrown off from the supernova explosion are then ionized by the energy and the compact object that its core produces. One of the best examples of this is the Crab Nebula, in Taurus. The supernova event was recorded in the year 1054 and is labeled SN 1054. The compact object that was created after the explosion lies in the center of the Crab Nebula and its core is now a neutron star.
Still other nebulae form as planetary nebulae. This is the final stage of a low-mass star's life, like Earth's Sun. Stars with a mass up to 8–10 solar masses evolve into red giants and slowly lose their outer layers during pulsations in their atmospheres. When a star has lost enough material, its temperature increases and the ultraviolet radiation it emits can ionize the surrounding nebula that it has thrown off. Our Sun will produce a planetary nebula and its core will remain behind in the form of white dwarf.

Types of nebulae

Classical types

Objects named nebulae belong to 4 major groups. Before their nature was understood, galaxies ("spiral nebulae") and star clusters too distant to be resolved as stars were also classified as nebulae, but no longer are.
Not all cloud-like structures are named nebulae; Herbig–Haro objects are an example.

Diffuse nebulae

The Carina Nebula is a diffuse nebula
 
Most nebulae can be described as diffuse nebulae, which means that they are extended and contain no well-defined boundaries. Diffuse nebulae can be divided into emission nebula, reflection nebulae and "dark nebulae." Visible light nebulae may be divided into emission nebulae that emit spectral line radiation from excited or ionized gas (mostly ionized hydrogen); they are often called HII regions (the term "HII" refers to ionized hydrogen). Reflection nebulae are visible primarily due to the light they reflect. Reflection nebulae themselves do not emit significant amounts of visible light, but are near stars and reflect light from them. Similar nebulae not illuminated by stars do not exhibit visible radiation, but may be detected as opaque clouds blocking light from luminous objects behind them; they are called "dark nebulae".

Although these nebulae have different visibility at optical wavelengths, they are all bright sources of infrared emission, chiefly from dust within the nebulae.

Planetary nebulae

The Oyster Nebula is a planetary nebula located in the constellation of Camelopardalis
 
Planetary nebulae are the remnants of the final stages of stellar evolution for lower-mass stars. Evolved asymptotic giant branch stars expel their outer layers outwards due to strong stellar winds, thus forming gaseous shells, while leaving behind the star's core in the form of a white dwarf. The hot white dwarf illuminates the expelled gases producing emission nebulae with spectra similar to those of emission nebulae found in star formation regions. Technically they are HII regions, because most hydrogen are ionized, but are denser and more compact than nebulae found in star formation regions. Planetary nebulae were given their name by the first astronomical observers who were initially unable to distinguish them from planets, and who tended to confuse them with planets, which were of more interest to them. Our Sun is expected to spawn a planetary nebula about 12 billion years after its formation.

Protoplanetary nebula

The Red Rectangle Nebula is an example of a protoplanetary nebula located in the constellation of Monoceros

A protoplanetary nebula (PPN) is an astronomical object at the short-lived episode during a star's rapid stellar evolution between the late asymptotic giant branch (LAGB) phase and the following planetary nebula (PN) phase. During the AGB phase, the star undergoes mass loss, emitting a circumstellar shell of hydrogen gas. When this phase comes to an end, the star enters the PPN phase.

The PPN is energized by the central star, causing it to emit strong infrared radiation and become a reflection nebula. Collimated stellar winds from the central star shape and shock the shell into an axially symmetric form, while producing a fast moving molecular wind. The exact point when a PPN becomes a planetary nebula (PN) is defined by the temperature of the central star. The PPN phase continues until the central star reaches a temperature of 30,000 K, after which it is hot enough to ionize the surrounding gas.

Supernova remnants

The Crab Nebula, an example of a supernova remnant
 
A supernova occurs when a high-mass star reaches the end of its life. When nuclear fusion in the core of the star stops, the star collapses. The gas falling inward either rebounds or gets so strongly heated that it expands outwards from the core, thus causing the star to explode. The expanding shell of gas forms a supernova remnant, a special diffuse nebula. Although much of the optical and X-ray emission from supernova remnants originates from ionized gas, a great amount of the radio emission is a form of non-thermal emission called synchrotron emission. This emission originates from high-velocity electrons oscillating within magnetic fields.

Notable named nebulae

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...