December 2, 2010 by Judith Curry
Original link: https://judithcurry.com/2010/12/02/best-of-the-greenhouse/
On this thread, I try to synthesize the main issues
and arguments that were made and pull some of what I regard to be the
highlights from the comments.
The problem with explaining the atmospheric greenhouse effect is eloquently described by Nullius in Verba:
A great deal of confusion is caused in this debate by the fact
that there are two distinct explanations for the greenhouse effect: one
based on that developed by Fourier, Tyndall, etc. which works for purely
radiative atmospheres (i.e. no convection), and the
radiative-convective explanation developed by Manabe and Wetherald
around the 1970s, I think. (It may be earlier, but I don’t know of any
other references.)
Climate scientists do know how the basic greenhouse physics
works, and they model it using the Manabe and Wetherald approach. But
almost universally, when they try to explain it, they all use the purely
radiative approach, which is incorrect, misleading, contrary to
observation, and results in a variety of inconsistencies when people try
to plug real atmospheric physics into a bad model. It is actually
internally consistent, and it would happen like that if convection could
somehow be prevented, but it isn’t how the real atmosphere works.
This leads to a tremendous amount of wasted effort and confusion.
The G&T paper in particular got led down the garden path by picking
up several ‘popular’ explanations of the greenhouse effect and pursuing
them ad absurdam. A tremendous amount of debate is expended on
questions of the second law of thermodynamics, and whether back
radiation from a cold sky can warm the surface.
The Tyndall gas effect
John Nielsen-Gammon focuses in on the radiative explanation, which he refers to as the “Tyndall gas effect,” in a concurrent post on his blog Climate Abyss.
Vaughan Pratt succintly describes the Tyndall gas effect:
The proof of infrared absorption by CO2 was found by John Tyndall
in the 1860s and measured at 972 times the absorptivity of air. Since
then we have learned how to measure not only the strength of its
absorption but also how the strength depends on the absorbed wavelength.
The physics of infrared absorption by CO2 is understood in great
detail, certainly enough to predict what will happen to thermal
radiation passed through any given quantity of CO2, regardless of
whether that quantity is in a lab or overhead in the atmosphere.
In a second post,
John Nielsen-Gammon describes the Tyndall gas effect from the
perspective of weather satellites that measure infrared radiation at
different wavelengths.
In a slightly more technical treatment, Chris Colose explains the
physics behind what the weather satellites are seeing in terms of
infrared radiative transfer:
An interesting question to ask is to take a beam of energy going
from the surface to space, and ask how much of it is received by a
sensor in space. The answer is obviously the intensity of the upwelling
beam multiplied by that fractional portion of the beam which is
transmitted to space, where the transmissivity is given as
1-absorptivity (neglecting scattering) or exp(-τ), where τ is the
optical depth. This relation is known as Beer’s Law, and works for
wavelengths where the medium itself (the atmosphere) is not emitting
(such as in the visble wavelengths). In the real atmosphere of course,
you have longwave contribution from the outgoing flux not only from the
surface, but integrated over the depth of the atmosphere, with various
contributions from different layers, which in turn radiate locally in
accord with the Planck function for a given temperature. The combination
of these terms gives the so-called Schwartzchild equation of radiative
transfer.
In the optically thin limit (of low infrared opacity) , a sensor
from space will see the bulk of radiation emanating from the relatively
warm surface. This is the case in desert regions or Antarctica for
example, where opacity from water vapor is feeble. As you gradually add
more opacity to the atmosphere, the sensor in space will see less
upwelling surface radiation, which will be essentially “replaced” by
emission from colder, higher levels of the atmosphere. This is all
wavelength dependent in the real world, since some regions in the
spectrum are pretty transparent, and some are very strongly absorbing.
In the 15 micron band of CO2, an observer looking down is seeing
emission from the stratosphere, while outward toward ~10 microns, the
emission is from much lower down.
These “lines” that form in the spectrum, as seen from space,
require some vertical temperature gradient to exist, otherwise the flux
from all levels would be the same, even if you have opacity. The net
result is to take a “bite” out of a Earth spectrum (viewed from space),
see e.g., this image.
This reduces the total area under the curve of the outgoing emission,
which means the Earth’s outgoing energy is no longer balancing the
absorbed incoming stellar energy. It is therefore mandated to warm up
until the whole area under the spectrum is sufficiently increased to
allow a restoration of radiative equilibrium. Note that there’s some
exotic cases such as on Venus or perhaps ancient Mars where you can get a
substantial greenhouse effect from infrared scattering, as opposed to
absorption/emission, to which the above lapse rate issues are no longer
as relevant…but this physics is not really at play on Modern Earth.
A molecular perspective
Maxwell writes:
As a molecular physicist, I think it’s imperative to make sure
that the dynamics of each molecule come through in these mechanistic
explanations. A CO2 molecule absorbs an IR photon giving off by the
thermally excited surface of the earth (earthlight). The energy in that
photon gets redistributed by non-radiative relaxation processes
(collisions with other molecules mostly) and then emits a lower energy
IR photon in a random direction. A collection of excited CO2 molecules
will act like a point source, emitted IR radiation in all directions.
Some of that light is directed back at the surface of the earth where it
is absorbed and the whole thing happens over again.
All of this is very well understood, though in the context of the
CO2 laser. If you’re interested in these dynamics, there is a great
literature on the relaxation processes (radiative and otherwise) that
occur in an atmosphere-like gas.
Vaughan Pratt describes the underlying physics of the greenhouse effect from a molecular point of view:
The Sun heats the surface of the Earth with little interference
from Earth’s atmosphere except when there are clouds, or when the albedo
(reflectivity) is high. In the absence of greenhouse gases
like water vapor and CO2, Earth’s atmosphere allows all thermal
radiation from the Earth’s surface to escape into the void of outer
space.
The greenhouse gases, let’s say CO2 for definiteness, capture the
occasional escaping photon. This happens probabilistically: the
escaping photons are vibrating, and the shared electrons comprising the
bonds of a CO2 molecule are also vibrating. When a passing photon is in
close phase with a vibrating bond there is a higher-than-usual chance
that the photon will be absorbed by the bond and excite it into a higher
energy level.
This extra energy in the bond acts as though it were increasing
the spring constant, making for a stronger spring. The energy of the
captured photon now turns into vibrational energy in the CO2 molecule,
which it registers as an increase in its temperature.
This energy now bounces around between the various degrees of
freedom of the CO2 molecule. And when it collides with another
atmospheric molecule some transfer of energy takes place there too. In
equilibrium all the molecules of the atmosphere share the energy of the
photons being captured by the greenhouse gases.
By the same token the greenhouse gases radiate this energy. They do so isotropically, that is, in all directions.
The upshot is that the energy of photons escaping from Earth’s
surface is diverted to energy being radiated in all directions from
every point of the Earth’s atmosphere.
The higher the cooler, with a lapse rate of 5 °C per km for moist
air and 9 °C per km for dry air (the so-called dry adiabatic lapse rate
or DALR). (“Adiabatic” means changing temperature in response to a
pressure change so quickly that there is no time for the resulting heat
to leak elsewhere.)
Because of this lapse rate, every point in the atmosphere is
receiving slightly more photons from below than from above. There is
therefore a net flux of photonic energy from below to above. But because
the difference is slight, this flux is less than it would be if there
were no greenhouse gases. As a result greenhouse gases have the effect
of creating thermal resistance, slowing down the rate at which photons
can carry energy from the Earth’s surface to outer space.
This is not the usual explanation of what’s going on in the
atmosphere, which instead is described in terms of so-called “back
radiation.” While this is equivalent to what I wrote, it is harder to
see how it is consistent with the 2nd law of thermodynamics. Not that it
isn’t, but when described my way it is obviously thermodynamically
sound.
Radiative-convective perspective
In what was arguably the most lauded comment on the two threads, Nullius in Verba provides this eloquent explanation:
The greenhouse effect requires the understanding of two effects:
first, the temperature of a heated object in a vacuum, and second, the
adiabatic lapse rate in a convective atmosphere.
For the first, you need to know that the hotter the surface of an
object is, the faster it radiates heat. This acts as a sort of feedback
control, so that if the temperature falls below the equilibrium level
it radiates less heat than it absorbs and hence heats up, and if the
temperature rises above the equilibrium it radiates more heat than it is
absorbing and hence cools down. The average radiative temperature for
the Earth is easily calculated to be about -20 C, which is close enough
although a proper calculation taking non-uniformities into account would
be more complicated.
However, the critical point of the above is the question of what
“surface” we are talking about. The surface that radiates heat to space
is not the solid surface of the Earth. If you could see in infra-red,
the atmosphere would be a fuzzy opaque mist, and the surface you could
see would actually be high up in the atmosphere. It is this surface that
approaches the equilibrium temperature by radiation to space. Emission
occurs from all altitudes from the ground up to about 10 km, but the
average is at about 5 km.
The second thing you need to know doesn’t involve radiation or
greenhouse gases at all. It is a simply physical property of gases, that
if you compress them they get hot, and if you allow them to expand they
cool down. As air rises in the atmosphere due to convection the
pressure drops and hence so does its temperature. As it descends again
it is compressed and its temperature rises. The temperature changes are
not due to the flow of heat in to or out of the air; they are due to the
conversion of potential energy as air rises and falls in a
gravitational field.
This sets up a constant temperature gradient in the atmosphere.
The surface is at about 15 C on average, and as you climb the
temperature drops at a constant rate until you reach the top of the
troposphere where it has dropped to a chilly -54 C. Anyone who flies
planes will know this as the standard atmosphere.
Basic properties of gases would mean that dry air would change
temperature by about 10 C/km change in altitude. This is modified
somewhat by the latent heat of water vapour, which reduces it to about 6
C/km.
And if you multiply 6 C/km by 5 km between the layer at
equilibrium temperature and the surface, you get the 30 C greenhouse
effect.
It really is that simple, and this really is what the
peer-reviewed technical literature actually uses for calculation. (See
for example Soden and Held 2000, the discussion just below figure 1.)
It’s just that when it comes to explaining what’s going on, this other
version with back radiation getting “trapped” gets dragged out again and
set up in its place.
If an increase in back radiation tried to exceed this temperature
gradient near the surface, convection would simply increase until the
constant gradient was achieved again. Back radiation exists, and is very
large compared to other heat flows, but it does not control the surface
temperature.
Increasing CO2 in the atmosphere makes the fuzzy layer thicker,
increases the altitude of the emitting layer, and hence its distance
from the ground. The surface temperature is controlled by this height
and the gradient, and the gradient (called the adiabatic lapse rate) is
affected only by humidity.
I should mention for completeness that there are a couple of
complications. One is that if convection stops, as happens on windless
nights, and during the polar winters, you can get a temperature
inversion and the back radiation can once again become important. The
other is that the above calculation uses averages as being
representative, and that’s not valid when the physics is non-linear. The
heat input varies by latitude and time of day. The water vapour content
varies widely. There are clouds. There are great convection cycles in
air and ocean that carry heat horizontally. I don’t claim this to be the
entire story. But it’s a better place to start from.
Andy Lacis describes in general terms how this is determined in climate models:
While we speak of the greenhouse effect primarily in radiative
transfer terms, the key component is the temperature profile that has to
be defined in order to perform the radiative transfer calculations. So,
it is the Manabe-Moller concept that is being used. In 1-D model
calculations, such as those by Manabe-Moller, the temperature profile is
prescribed with the imposition of a “critical” lapse rate that
represents convective energy transport in the troposphere when the
radiative lapse rate becomes too steep to be stable. In 3-D climate GCMs
no such assumption is made. The temperature profile is determined
directly as the result of numerically solving the atmospheric
hydrodynamic and thermodynamic behavior. Radiative transfer calculations
are then performed for each (instantaneous) temperature profile at each
grid box.
It is these radiative transfer calculations that give the 33 K
(or 150 W/m2) measure of the terrestrial greenhouse effect. If radiative
equilibrium was calculated without the convective/advective temperature
profile input (radiative energy transport only), the radiative only
greenhouse effect would be about 66 K (for the same atmospheric
composition), instead of the current climate value of 33 K.
Skeptical perspectives
The skeptical perspectives on the greenhouse effect that were most
widely discussed were papers by Gerlich and Tscheuschner, Claes Johnson,
and (particularly) Miskolczi. The defenses put forward of these papers
did not stand up at all to the examinations by the radiative transfer
experts that participated in this discussion. Andy Lacis summarizes the
main concerns with the skeptical arguments:
Actually, the Gerlich and Tscheuschner, Claes Johnson, and
Miskolczi papers are a good test to evaluate one’s understanding of
radiative transfer. If you looked through these papers and did not
immediately realize that they were nonsense, then it is very likely that
you are simply not up to speed on radiative transfer. You should then
go and check the Georgia Tech’s radiative transfer course that was
recommended by Judy, or check the discussion of the greenhouse effect on
Real Climate or Chris Colose science blogs.
The notion by Gerlich and Tscheuschner that the second law of
thermodynamics forbids the operation of a greenhouse effect is nonsense.
The notion by Claes Johnson that “backradiation is unphysical because
it is unstable and serves no role” is beyond bizarre. A versatile LW
spectrometer used at the DoE ARM site in Oklahoma sees downwelling
“backradiation” (water vapor lines in emission) when pointed upward.
When looking downward from an airplane it sees upwelling thermal
radiation (water vapor lines in absorption). When looking horizontally
it sees a continuum spectrum since the water vapor and background light
source are both at the same temperature. Miskolczi, on the other hand,
acknowledges and includes downwelling backradiation in his calculations,
but he then goes and imposes an unphysical constraint to maintain a
constant atmospheric optical depth such that if CO2 increases water
vapor must decrease, a constraint that is not supported by observations.
Summary
While there is much uncertainty about the magnitude of the climate
sensitivity to doubling CO2 and the magnitude and nature of the various
feedback processes, the fundamental underlying physics of the
atmospheric greenhouse effect (radiative plus convective heat transfer)
is well understood.
That said, the explanation of the atmospheric greenhouse effect is
often confusing, and the terminology “greenhouse effect” is arguably
part of the confusion. We need better ways to communicate this. I
think the basic methods of explaining the greenhouse effect that have
emerged from this discussion are right on target; now we need some good
visuals/animations, and translations of this for an audience that is
less sophisticated in terms of understanding science. Your thoughts on
how to proceed with this?
And finally, I want to emphasize again that our basic understanding
of the underlying physics of the atmospheric greenhouse effect does not
direct translate into quantitative understanding of the sensitivity of
the Earth’s energy balance to doubling CO2, which remains a topic of
substantial debate and ongoing research. And it does not say anything
about other processes that cause climate change, such as solar and the
internal ocean oscillations.
So that is my take home message from all this. I am curious to hear
the reactions from the commenters that were asking questions or others
lurking on these threads. Did the dialogue clarify things for you or
confuse you? Do the explanations that I’ve highlighted make sense to
you? What do you see as the outstanding issues in terms of public
understanding of the basic mechanism behind the greenhouse effect?
A Medley of Potpourri is just what it says; various thoughts, opinions, ruminations, and contemplations on a variety of subjects.
Search This Blog
Environmental engineering
From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Environmental_engineering Environmental eng...
-
From Wikipedia, the free encyclopedia Islamic State of Iraq and the Levant الدولة الإسلامية في العراق والشام ( ...
-
From Wikipedia, the free encyclopedia A reproduction of the palm -leaf manuscript in Siddham script ...