From Wikipedia, the free encyclopedia
 
The measurement problem in quantum mechanics is the problem of how (or whether) wave function collapse occurs. The inability to observe this process directly has given rise to different interpretations of quantum mechanics, and poses a key set of questions that each interpretation must answer. The wave function in quantum mechanics evolves deterministically according to the Schrödinger equation as a linear superposition of different states, but actual measurements always find the physical system in a definite state. Any future evolution is based on the state the system was discovered to be in when the measurement was made, meaning that the measurement "did something" to the system that is not obviously a consequence of Schrödinger evolution.

To express matters differently (to paraphrase Steven Weinberg[1][2]), the Schrödinger wave equation determines the wave function at any later time. If observers and their measuring apparatus are themselves described by a deterministic wave function, why can we not predict precise results for measurements, but only probabilities? As a general question: How can one establish a correspondence between quantum and classical reality?[3]

Schrödinger's cat