Search This Blog

Saturday, June 2, 2018

Spaceflight radiation carcinogenesis

From Wikipedia, the free encyclopedia

The Phantom Torso, seen here in the Destiny laboratory on the International Space Station (ISS), is designed to measure the effects of radiation on organs inside the body by using a torso that is similar to those used to train radiologists on Earth. The torso is equivalent in height and weight to an average adult male. It contains radiation detectors that will measure, in real-time, how much radiation the brain, thyroid, stomach, colon, and heart and lung area receive on a daily basis. The data will be used to determine how the body reacts to and shields its internal organs from radiation, which will be important for longer duration space flights.

Astronauts are exposed to approximately 50-2,000 millisieverts (mSv) while on six-month-duration missions to the International Space Station (ISS), the moon and beyond. The risk of cancer caused by ionizing radiation is well documented at radiation doses beginning at 50 mSv and above (DJS -- in the reference for this claim, Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2, the Public Summary states,  "At doses less than 40 times the average yearly background exposure (100 mSv), statistical limitation make it difficult to evaluate cancer risk in humans").

Related radiological effect studies have shown that survivors of the atomic bomb explosions in Hiroshima and Nagasaki, nuclear reactor workers and patients who have undergone therapeutic radiation treatments have received low-linear energy transfer (LET) radiation (x-rays and gamma rays) doses in the same 50-2000 mSv range.

Composition of space radiation

While in space, astronauts are exposed to radiation which is mostly composed of high-energy protons, helium nuclei (alpha particles), and high-atomic-number ions (HZE ions), as well as secondary radiation from nuclear reactions from spacecraft parts or tissue.

The ionization patterns in molecules, cells, tissues and the resulting biological effects are distinct from typical terrestrial radiation (x-rays and gamma rays, which are low-LET radiation). Galactic cosmic rays (GCRs) from outside the Milky Way galaxy consist mostly of highly energetic protons with a small component of HZE ions.

Prominent HZE ions:
GCR energy spectra peaks (with median energy peaks up to 1,000 MeV/amu) and nuclei (energies up to 10,000 MeV/amu) are important contributors to the dose equivalent.

Uncertainties in cancer projections

One of the main roadblocks to interplanetary travel is the risk of cancer caused by radiation exposure. The largest contributors to this roadblock are: (1) The large uncertainties associated with cancer risk estimates, (2) The unavailability of simple and effective countermeasures and (3) The inability to determine the effectiveness of countermeasures. Operational parameters that need to be optimized to help mitigate these risks include:
  • length of space missions
  • crew age
  • crew gender
  • shielding
  • biological countermeasures

Major uncertainties

  • effects on biological damage related to differences between space radiation and x-rays
  • dependence of risk on dose-rates in space related to the biology of DNA repair, cell regulation and tissue responses
  • predicting solar particle events (SPEs)
  • extrapolation from experimental data to humans and between human populations
  • individual radiation sensitivity factors (genetic, epigenetic, dietary or "healthy worker" effects)

Minor uncertainties

  • data on galactic cosmic ray environments
  • physics of shielding assessments related to transmission properties of radiation through materials and tissue
  • microgravity effects on biological responses to radiation
  • errors in human data (statistical, dosimetry or recording inaccuracies)
Quantitative methods have been developed to propagate uncertainties that contribute to cancer risk estimates. The contribution of microgravity effects on space radiation has not yet been estimated, but it is expected to be small. The effects of changes in oxygen levels or in immune dysfunction on cancer risks are largely unknown and are of great concern during space flight.

Types of cancer caused by radiation exposure

Studies are being conducted on populations accidentally exposed to radiation (such as Chernobyl, production sites, and Hiroshima and Nagasaki). These studies show strong evidence for cancer morbidity as well as mortality risks at more than 12 tissue sites. The largest risks for adults who have been studied include several types of leukemia, including myeloid leukemia and acute lymphatic lymphoma  as well as tumors of the lung, breast, stomach, colon, bladder and liver. Inter-gender variations are very likely due to the differences in the natural incidence of cancer in males and females. Another variable is the additional risk for cancer of the breast, ovaries and lungs in females. There is also evidence of a declining risk of cancer caused by radiation with increasing age, but the magnitude of this reduction above the age of 30 is uncertain.

It is unknown whether high-LET radiation could cause the same types of tumors as low-LET radiation, but differences should be expected.

The ratio of a dose of high-LET radiation to a dose of x-rays or gamma rays that produce the same biological effect are called relative biological effectiveness (RBE) factors. The types of tumors in humans who are exposed to space radiation will be different from those who are exposed to low-LET radiation. This is evidenced by a study that observed mice with neutrons and have RBEs that vary with the tissue type and strain.

Approaches for setting acceptable risk levels

The various approaches to setting acceptable levels of radiation risk are summarized below:


Comparison of Radiation Doses - includes the amount detected on the trip from Earth to Mars by the RAD on the MSL (2011 - 2013).
  • Unlimited Radiation Risk - NASA management, the families of loved ones of astronauts, and taxpayers would find this approach unacceptable.
  • Comparison to Occupational Fatalities in Less-safe Industries - The life-loss from attributable radiation cancer death is less than that from most other occupational deaths. At this time, this comparison would also be very restrictive on ISS operations because of continued improvements in ground-based occupational safety over the last 20 years.
  • Comparison to Cancer Rates in General Population - The number of years of life-loss from radiation-induced cancer deaths can be significantly larger than from cancer deaths in the general population, which often occur late in life (> age 70 years) and with significantly less numbers of years of life-loss.
  • Doubling Dose for 20 Years Following Exposure - Provides a roughly equivalent comparison based on life-loss from other occupational risks or background cancer fatalities during a worker's career, however, this approach negates the role of mortality effects later in life.
  • Use of Ground-based Worker Limits - Provides a reference point equivalent to the standard that is set on Earth, and recognizes that astronauts face other risks. However, ground workers remain well below dose limits, and are largely exposed to low-LET radiation where the uncertainties of biological effects are much smaller than for space radiation.
NCRP Report No. 153 provides a more recent review of cancer and other radiation risks. This report also identifies and describes the information needed to make radiation protection recommendations beyond LEO, contains a comprehensive summary of the current body of evidence for radiation-induced health risks and also makes recommendations on areas requiring future experimentation.

Current permissible exposure limits

Career cancer risk limits

Astronauts' radiation exposure limit is not to exceed 3% of the risk of exposure-induced death (REID) from fatal cancer over their career. It is NASA's policy to ensure a 95% confidence level (CL) that this limit is not exceeded. These limits are applicable to all missions in low Earth orbit (LEO) as well as lunar missions that are less than 180 days in duration. In the United States, the legal occupational exposure limits for adult workers is set at an effective dose of 50 mSv.

Cancer risk to dose relationship

The relationship between radiation exposure and risk is both age- and gender-specific due to latency effects and differences in tissue types, sensitivities, and life spans between genders. These relationships are estimated using the methods that are recommended by the NCRP and more recent radiation epidemiology information. The principle of As Low As Reasonably Achievable

The as low as reasonably achievable (ALARA) principle is a legal requirement intended to ensure astronaut safety. An important function of ALARA is to ensure that astronauts do not approach radiation limits and that such limits are not considered as "tolerance values." ALARA is especially important for space missions in view of the large uncertainties in cancer and other risk projection models. Mission programs and terrestrial occupational procedures resulting in radiation exposures to astronauts are required to find cost-effective approaches to implement ALARA.

Evaluating career limits

Organ (T)Tissue weighting factor (wT)
Gonads 0.20
Bone Marrow (red) 0.12
Colon 0.12
Lung 0.12
Stomach 0.12
Bladder 0.05
Breast 0.05
Liver 0.05
Esophagus 0.05
Thyroid 0.05
Skin 0.01
Bone Surface 0.01
Remainder* 0.05
*Adrenals, brain, upper intestine, small intestine,
kidney, muscle, pancreas, spleen, thymus and uterus.






















The risk of cancer is calculated by using radiation dosimetry and physics methods.

For the purpose of determining radiation exposure limits at NASA, the probability of fatal cancer is calculated as shown below:
  1. The body is divided into a set of sensitive tissues, and each tissue, T, is assigned a weight, wT, according to its estimated contribution to cancer risk.
  2. The absorbed dose, Dγ, that is delivered to each tissue is determined from measured dosimetry. For the purpose of estimating radiation risk to an organ, the quantity characterizing the ionization density is the LET (keV/μm).
  3. For a given interval of LET, between L and ΔL, the dose-equivalent risk (in units of sievert) to a tissue, T, Hγ(L) is calculated as
    H_{\gamma }(L)=Q(L)D_{\gamma }(L)
    where the quality factor, Q(L), is obtained according to the International Commission on Radiological Protection (ICRP).
  4. The average risk to a tissue, T, due to all types of radiation contributing to the dose is given by H_{\gamma }=\int D_{\gamma }(L)Q(L)dL
    or, since D_{\gamma }(L)=LF_{\gamma }(L), where Fγ(L) is the fluence of particles with LET=L, traversing the organ,
    H_{\gamma }=\int dLQ(L)F_{\gamma }(L)L
  5. The effective dose is used as a summation over radiation type and tissue using the tissue weighting factors, wγ
    E=\sum _{\gamma }w_{\gamma }H_{\gamma }
  6. For a mission of duration t, the effective dose will be a function of time, E(t), and the effective dose for mission i will be
    E_{i}=\int E(t)dt
  7. The effective dose is used to scale the mortality rate for radiation-induced death from the Japanese survivor data, applying the average of the multiplicative and additive transfer models for solid cancers and the additive transfer model for leukemia by applying life-table methodologies that are based on U.S. population data for background cancer and all causes of death mortality rates. A dose-dose rate effectiveness factor (DDREF) of 2 is assumed.

Evaluating cumulative radiation risks

The cumulative cancer fatality risk (%REID) to an astronaut for occupational radiation exposures, N, is found by applying life-table methodologies that can be approximated at small values of %REID by summing over the tissue-weighted effective dose, Ei, as
Risk=\sum _{{i=1}}^{N}E_{i}R_{0}(age_{i},gender)
where R0 are the age- and gender- specific radiation mortality rates per unit dose.

For organ dose calculations, NASA uses the model of Billings et al. to represent the self-shielding of the human body in a water-equivalent mass approximation. Consideration of the orientation of the human body relative to vehicle shielding should be made if it is known, especially for SPEs.

Confidence levels for career cancer risks are evaluated using methods that are specified by the NPRC in Report No. 126. These levels were modified to account for the uncertainty in quality factors and space dosimetry.

The uncertainties that were considered in evaluating the 95% confidence levels are the uncertainties in:
  • Human epidemiology data, including uncertainties in
    • statistics limitations of epidemiology data
    • dosimetry of exposed cohorts
    • bias, including misclassification of cancer deaths, and
    • the transfer of risk across populations.
  • The DDREF factor that is used to scale acute radiation exposure data to low-dose and dose-rate radiation exposures.
  • The radiation quality factor (Q) as a function of LET.
  • Space dosimetry
The so-called "unknown uncertainties" from the NCRP report No. 126 are ignored by NASA.

Models of cancer risks and uncertainties

Life-table methodology

The double-detriment life-table approach is what is recommended by the NPRC to measure radiation cancer mortality risks. The age-specific mortality of a population is followed over its entire life span with competing risks from radiation and all other causes of death described.

For a homogenous population receiving an effective dose E at age aE, the probability of dying in the age-interval from a to a+1 is described by the background mortality-rate for all causes of death, M(a), and the radiation cancer mortality rate, m(E,aE,a), as:
q(E,a_{E},a)={\frac  {M(a)+m(E,a_{E},a)}{1+{\frac  {1}{2}}\left[M(a)+m(E,a_{E},a)\right]}}
The survival probability to age, a, following an exposure, E at age aE, is:
S(E,a_{E},a)=\prod _{{u=a_{E}}}^{{a-1}}\left[1-q(E,a_{E},u)\right]
The excessive lifetime risk (ELR - the increased probability that an exposed individual will die from cancer) is defined by the difference in the conditional survival probabilities for the exposed and the unexposed groups as:
ELR=\sum _{{a=a_{E}}}^{\infty }\left[M(a)+m(E,a_{E},a)\right]S(E,a_{E},a)-\sum _{{a=a_{E}}}^{\infty }M(a)S(0,a_{E},a)



A minimum latency-time of 10 years is often used for low-LET radiation. Alternative assumptions should be considered for high-LET radiation. The REID (the lifetime risk that an individual in the population will die from cancer caused by radiation exposure) is defined by:
REID=\sum _{{a=a_{E}}}^{\infty }m(E,a_{E},a)S(E,a_{E},a)
Generally, the value of the REID exceeds the value of the ELR by 10-20%.

The average loss of life-expectancy, LLE, in the population is defined by:
LLE=\sum _{{a=a_{E}}}^{\infty }S(0,a_{E},a)-\sum _{{a=a_{E}}}^{\infty }S(E,a_{E},a)
The loss of life-expectancy among exposure-induced-deaths (LLE-REID) is defined by:
LLE-REID={\frac  {LLE}{REID}}

Uncertainties in low-LET epidemiology data

The low-LET mortality rate per sievert, mi is written
m(E,a_{x},a)={\frac  {m_{0}(E,a_{x},a)}{DDREF}}{\frac  {x_{D}x_{s}x_{T}x_{B}}{x_{{Dr}}}}
where m0 is the baseline mortality rate per sievert and xα are quantiles (random variables) whose values are sampled from associated probability distribution functions (PDFs), P(Xa).

NCRP, in Report No. 126, defines the following subjective PDFs, P(Xa), for each factor that contributes to the acute low-LET risk projection:
  1. Pdosimetry is the random and systematic errors in the estimation of the doses received by atomic-bomb blast survivors.
  2. Pstatistical is the distribution in uncertainty in the point estimate of the risk coefficient, r0.
  3. Pbias is any bias resulting for over- or under-reporting cancer deaths.
  4. Ptransfer is the uncertainty in the transfer of cancer risk following radiation exposure from the Japanese population to the U.S. population.
  5. PDr is the uncertainty in the knowledge of the extrapolation of risks to low dose and dose-rates, which are embodied in the DDREF.

Risk in context of exploration mission operational scenarios

The accuracy of galactic cosmic ray environmental models, transport codes and nuclear interaction cross sections allow NASA to predict space environments and organ exposure that may be encountered on long-duration space missions. The lack of knowledge of the biological effects of radiation exposure raise major questions about risk prediction.

The cancer risk projection for space missions is found by
m_{J}(E,a_{E},a)_{{lJ}}(E,a_{E},a)\int dL{\frac  {dF}{dL}}LQ_{{trial-J}}(L)X_{{L-J}}



where {\frac  {dF}{dL}} represents the folding of predictions of tissue-weighted LET spectra behind spacecraft shielding with the radiation mortality rate to form a rate for trial J.

Alternatively, particle-specific energy spectra, Fj(E), for each ion, j, can be used.
m_{J}(E,a_{E},a)=m_{{lJ}}(E,a_{E},a)\sum _{j}(E)L(E)Q_{{trial-J}}(L(E))x_{{L-J}}



The result of either of these equations is inserted into the expression for the REID.

Related probability distribution functions (PDFs) are grouped together into a combined probability distribution function, Pcmb(x). These PDFs are related to the risk coefficient of the normal form (dosimetry, bias and statistical uncertainties). After a sufficient number of trials have been completed (approximately 105), the results for the REID estimated are binned and the median values and confidence intervals are found.

The chi-squared (χ2) test is used for determining whether two separate PDFs are significantly different (denoted p1(Ri) and p2(Ri), respectively). Each p(Ri) follows a Poisson distribution with variance {\sqrt  {p(R_{i})}}.

The χ2 test for n-degrees of freedom characterizing the dispersion between the two distributions is
\chi ^{2}=\sum _{n}{\frac  {\left[p_{1}(R_{n})-p_{2}(R_{n})\right]^{2}}{{\sqrt  {p_{1}^{2}(R_{n})+p_{2}^{2}(R_{n})}}}}.
The probability, P(ņχ2), that the two distributions are the same is calculated once χ2 is determined.

Radiation carcinogenesis mortality rates

Age-and gender-dependent mortality rare per unit dose, multiplied by the radiation quality factor and reduced by the DDREF is used for projecting lifetime cancer fatality risks. Acute gamma ray exposures are estimated. The additivity of effects of each component in a radiation field is also assumed.

Rates are approximated using data gathered from Japanese atomic bomb survivors. There are two different models that are considered when transferring risk from Japanese to U.S. populations.
  • Multiplicative transfer model - assumes that radiation risks are proportional to spontaneous or background cancer risks.
  • Additive transfer model - assumes that radiation risk acts independently of other cancer risks.
The NCRP recommends a mixture model to be used that contains fractional contributions from both methods.[9]

The radiation mortality rate is defined as:
m(E,a_{E},a)=\left[ERR(a_{E},a)M_{c}(a)+(1-v)EAR(a_{E},a)\right]{{\frac  {\sum _{L}Q(L)F(L)L}{DDREF}}}



Where:
  • ERR = excess relative risk per sievert
  • EAR = excess additive risk per sievert
  • Mc(a) = the gender- and age-specific cancer mortality rate in the U.S. population
  • F = the tissue-weighted fluence
  • L = the LET
  • v = the fractional division between the assumption of the multiplicative and additive risk transfer models. For solid cancer, it is assumed that v=1/2 and for leukemia, it is assumed that v=0.

Biological and physical countermeasures

Identifying effective countermeasures that reduce the risk of biological damage is still a long-term goal for space researchers. These countermeasures are probably not needed for extended duration lunar missions, but will be needed for other long-duration missions to Mars and beyond. On 31 May 2013, NASA scientists reported that a possible manned mission to Mars may involve a great radiation risk based on the amount of energetic particle radiation detected by the RAD on the Mars Science Laboratory while traveling from the Earth to Mars in 2011-2012.

There are three fundamental ways to reduce exposure to ionizing radiation:
  • increasing the distance from the radiation source
  • reducing the exposure time
  • shielding (i.e.: a physical barrier)
Shielding is a plausible option, but due to current launch mass restrictions, it is prohibitively costly. Also, the current uncertainties in risk projection prevent the actual benefit of shielding from being determined. Strategies such as drugs and dietary supplements to reduce the effects of radiation, as well as the selection of crew members are being evaluated as viable options for reducing exposure to radiation and effects of irradiation. Shielding is an effective protective measure for terrestrial radiation workers. In space, high-energy radiation is very penetrating and the effectiveness of radiation shielding depends on the atomic make-up of the material used.

Antioxidants are effectively used to prevent the damage caused by radiation injury and oxygen poisoning (the formation of reactive oxygen species), but since antioxidants work by rescuing cells from a particular form of cell death (apoptosis), they may not protect against damaged cells that can initiate tumor growth.

Evidence sub-pages

The evidence and updates to projection models for cancer risk from low-LET radiation are reviewed periodically by several bodies, which include the following organizations:
These committees release new reports about every 10 years on cancer risks that are applicable to low-LET radiation exposures. Overall, the estimates of cancer risks among the different reports of these panels will agree within a factor of two or less. There is continued controversy for doses that are below 5 mSv, however, and for low dose-rate radiation because of debate over the linear no-threshold hypothesis that is often used in statistical analysis of these data. The BEIR VII report, which is the most recent of the major reports is used in the following sub-pages. Evidence for low-LET cancer effects must be augmented by information on protons, neutrons, and HZE nuclei that is only available in experimental models. Such data have been reviewed by NASA several times in the past and by the NCRP.

Effect of spaceflight on the human body

From Wikipedia, the free encyclopedia
 
Astronaut Marsha Ivins demonstrates the effects of zero-G on her hair in space

Humans venturing into the environment of space can have negative effects on the body.[1] Significant adverse effects of long-term weightlessness include muscle atrophy and deterioration of the skeleton (spaceflight osteopenia).[2] Other significant effects include a slowing of cardiovascular system functions, decreased production of red blood cells, balance disorders, eyesight disorders and a weakening of the immune system. Additional symptoms include fluid redistribution (causing the "moon-face" appearance typical in pictures of astronauts experiencing weightlessness),[3][4] loss of body mass, nasal congestion, sleep disturbance, and excess flatulence.

The engineering problems associated with leaving Earth and developing space propulsion systems have been examined for over a century, and millions of man-hours of research have been spent on them. In recent years there has been an increase in research on the issue of how humans can survive and work in space for extended and possibly indefinite periods of time. This question requires input from the physical and biological sciences and has now become the greatest challenge (other than funding) facing human space exploration. A fundamental step in overcoming this challenge is trying to understand the effects and impact of long-term space travel on the human body.

In October 2015, the NASA Office of Inspector General issued a health hazards report related to space exploration, including a human mission to Mars.[5][6]

Physiological effects

Many of the environmental conditions experienced by humans during spaceflight are very different from those in which humans evolved; however, technology such as that offered by a spaceship or spacesuit is able to shield people from the harshest conditions. The immediate needs for breathable air and drinkable water are addressed by a life support system, a group of devices that allow human beings to survive in outer space.[7] The life support system supplies air, water and food. It must also maintain temperature and pressure within acceptable limits and deal with the body's waste products. Shielding against harmful external influences such as radiation and micro-meteorites is also necessary.

Of course, it is not possible to remove all hazards; the most important factor affecting human physical well-being in space is weightlessness, more accurately defined as Micro-g environment. Living in this type of environment impacts the body in three important ways: loss of proprioception, changes in fluid distribution, and deterioration of the musculoskeletal system.

On 2 November 2017, scientists reported that significant changes in the position and structure of the brain have been found in astronauts who have taken trips in space, based on MRI studies. Astronauts who took longer space trips were associated with greater brain changes.[8][9]

Research

Space medicine is a developing medical practice that studies the health of astronauts living in outer space. The main purpose of this academic pursuit is to discover how well and for how long people can survive the extreme conditions in space, and how fast they can re-adapt to the Earth's environment after returning from space. Space medicine also seeks to develop preventative and palliative measures to ease the suffering caused by living in an environment to which humans are not well adapted.

Ascent and reentry

During takeoff and reentry space travelers can experience several times normal gravity. An untrained person can usually withstand about 3g, but can blackout at 4 to 6g. G-force in the vertical direction is more difficult to tolerate than a force perpendicular to the spine because blood flows away from the brain and eyes. First the person experiences temporary loss of vision and then at higher g-forces loses consciousness. G-force training and a G-suit which constricts the body to keep more blood in the head can mitigate the effects. Most spacecraft are designed to keep g-forces within comfortable limits.

Space environments

The environment of space is lethal without appropriate protection: the greatest threat in the vacuum of space derives from the lack of oxygen and pressure, although temperature and radiation also pose risks. The effects of space exposure can result in ebullism, hypoxia, hypocapnia, and decompression sickness. In addition to these, there is also cellular mutation and destruction from high energy photons and sub-atomic particles that are present in the surroundings.[10] Decompression is a serious concern during the extra-vehicular activities (EVAs) of astronauts.[11] Current EMU designs take this and other issues into consideration, and have evolved over time.[12][13] A key challenge has been the competing interests of increasing astronaut mobility (which is reduced by high-pressure EMUs, analogous to the difficulty of deforming an inflated balloon relative to a deflated one) and minimising decompression risk. Investigators[14] have considered pressurizing a separate head unit to the regular 71 kPa (10.3 psi) cabin pressure as opposed to the current whole-EMU pressure of 29.6 kPa (4.3 psi).[13][15] In such a design, pressurization of the torso could be achieved mechanically, avoiding mobility reduction associated with pneumatic pressurization.[14]

Vacuum

This painting, An Experiment on a Bird in the Air Pump depicts an experiment performed by Robert Boyle in 1660 to test the effect of a vacuum on a living system.

Human physiology is adapted to living within the atmosphere of Earth, and a certain amount of oxygen is required in the air we breathe. If the body does not get enough oxygen, then the astronaut is at risk of becoming unconscious and dying from hypoxia. In the vacuum of space, gas exchange in the lungs continues as normal but results in the removal of all gases, including oxygen, from the bloodstream. After 9 to 12 seconds, the deoxygenated blood reaches the brain, and it results in the loss of consciousness.[16] Exposure to vacuum for up to 30 seconds is unlikely to cause permanent physical damage.[17] Animal experiments show that rapid and complete recovery is normal for exposures shorter than 90 seconds, while longer full-body exposures are fatal and resuscitation has never been successful.[18][19] There is only a limited amount of data available from human accidents, but it is consistent with animal data. Limbs may be exposed for much longer if breathing is not impaired.[20]

In December 1966, aerospace engineer and test subject Jim LeBlanc of NASA was partaking in a test to see how well a pressurized space suit prototype would perform in vacuum conditions. To simulate the effects of space, NASA constructed a massive vacuum chamber from which all air could be pumped.[21] At some point during the test, LeBlanc's pressurization hose became detached from the space suit.[22] Even though this caused his suit pressure to drop from 3.8 psi (26.2 kPa) to 0.1 psi (0.7 kPa) in less than 10 seconds, LeBlanc remained conscious for about 14 seconds before losing consciousness due to hypoxia; the much lower pressure outside the body causes rapid de-oxygenation of the blood. “As I stumbled backwards, I could feel the saliva on my tongue starting to bubble just before I went unconscious and that’s the last thing I remember,” recalls LeBlanc.[23] The chamber was rapidly pressurized and LeBlanc was given emergency oxygen 25 seconds later. He recovered almost immediately with just an earache and no permanent damage.[24][25]

Another effect from a vacuum is a condition is called ebullism which results from the formation of bubbles in body fluids due to reduced ambient pressure, the steam may bloat the body to twice its normal size and slow circulation, but tissues are elastic and porous enough to prevent rupture.[26] Technically, ebullism is considered to begin at an elevation of around 19 kilometres (12 mi) or pressures less than 6.3 kPa (47 mm Hg),[27] known as the Armstrong limit.[10] Experiments with other animals have revealed an array of symptoms that could also apply to humans. The least severe of these is the freezing of bodily secretions due to evaporative cooling. Severe symptoms, such as loss of oxygen in tissue, followed by circulatory failure and flaccid paralysis would occur in about 30 seconds.[10] The lungs also collapse in this process, but will continue to release water vapour leading to cooling and ice formation in the respiratory tract.[10] A rough estimate is that a human will have about 90 seconds to be recompressed, after which death may be unavoidable.[26][28] Swelling from ebullism can be reduced by containment in a flight suit which are necessary to prevent ebullism above 19 km.[20] During the Space Shuttle program astronauts wore a fitted elastic garment called a Crew Altitude Protection Suit (CAPS) which prevented ebullism at pressures as low as 2 kPa (15 Torr).[29]

The only known humans to have died of space exposure are the three crew members of the Soyuz 11 spacecraft: Vladislav Volkov, Georgi Dobrovolski and Viktor Patsayev. During re-entry on June 30, 1971, the ship's depressurization resulted in the death of the entire crew.[30][31] Two other people were decompressed accidentally during space mission training programs on the ground, but both incidents were less than 5 minutes in duration, and both victims survived.[10]

Temperature

In a vacuum, there is no medium for removing heat from the body by conduction or convection. Loss of heat is by radiation from the 310 K temperature of a person to the 3 K of outer space. This is a slow process, especially in a clothed person, so there is no danger of immediately freezing.[32] Rapid evaporative cooling of skin moisture in a vacuum may create frost, particularly in the mouth, but this is not a significant hazard.

Exposure to the intense radiation of direct, unfiltered sunlight would lead to local heating, though that would likely be well distributed by the body's conductivity and blood circulation. Other solar radiation, particularly ultraviolet rays, however, may cause severe sunburn.

Radiation

Comparison of Radiation Doses – includes the amount detected on the trip from Earth to Mars by the RAD on the MSL (2011–2013).[33][34][35]

Without the protection of Earth's atmosphere and magnetosphere astronauts are exposed to high levels of radiation. A year in low Earth orbit results in a dose of radiation 10 times that of the annual dose on earth.[citation needed] High levels of radiation damage lymphocytes, cells heavily involved in maintaining the immune system; this damage contributes to the lowered immunity experienced by astronauts. Radiation has also recently been linked to a higher incidence of cataracts in astronauts. Outside the protection of low Earth orbit, galactic cosmic rays present further challenges to human spaceflight,[36] as the health threat from cosmic rays significantly increases the chances of cancer over a decade or more of exposure.[37] A NASA-supported study reported that radiation may harm the brain of astronauts and accelerate the onset of Alzheimer's disease.[38][39][40][41] Solar flare events (though rare) can give a fatal radiation dose in minutes. It is thought that protective shielding and protective drugs may ultimately lower the risks to an acceptable level.[42]

Crew living on the International Space Station (ISS) are partially protected from the space environment by Earth's magnetic field, as the magnetosphere deflects solar wind around the earth and the ISS. Nevertheless, solar flares are powerful enough to warp and penetrate the magnetic defences, and so are still a hazard to the crew. The crew of Expedition 10 took shelter as a precaution in 2005 in a more heavily shielded part of the station designed for this purpose.[43][44] However, beyond the limited protection of Earth's magnetosphere, interplanetary manned missions are much more vulnerable. Lawrence Townsend of the University of Tennessee and others have studied the most powerful solar flare ever recorded. Radiation doses astronauts would receive from a flare of this magnitude could cause acute radiation sickness and possibly even death.[45]

A video made by the crew of the International Space Station showing the Aurora Australis, which is caused by high-energy particles in the space environment.

There is scientific concern that extended spaceflight might slow down the body's ability to protect itself against diseases.[46] Radiation can penetrate living tissue and cause both short and long-term damage to the bone marrow stem cells which create the blood and immune systems. In particular, it causes 'chromosomal aberrations' in lymphocytes. As these cells are central to the immune system, any damage weakens the immune system, which means that in addition to increased vulnerability to new exposures, viruses already present in the body—which would normally be suppressed—become active. In space, T-cells (a form of lymphocyte) are less able to reproduce properly, and the T-cells that do reproduce are less able to fight off infection. Over time immunodeficiency results in the rapid spread of infection among crew members, especially in the confined areas of space flight systems.

On 31 May 2013, The NASA scientists reported that a possible manned mission to Mars[47] may involve a great radiation risk based on the amount of energetic particle radiation detected by the RAD on the Mars Science Laboratory while traveling from the Earth to Mars in 2011–2012.[33][34][35]

In September 2017, NASA reported radiation levels on the surface of the planet Mars were temporarily doubled, and were associated with an aurora 25-times brighter than any observed earlier, due to a massive, and unexpected, solar storm in the middle of the month.[48]

Weightlessness

Astronauts on the ISS in weightless conditions. Michael Foale can be seen exercising in the foreground.

Following the advent of space stations that can be inhabited for long periods of time, exposure to weightlessness has been demonstrated to have some deleterious effects on human health. Humans are well-adapted to the physical conditions at the surface of the earth, and so in response to weightlessness, various physiological systems begin to change, and in some cases, atrophy. Though these changes are usually temporary, some do have a long-term impact on human health.

Short-term exposure to microgravity causes space adaptation syndrome, a self-limiting nausea caused by derangement of the vestibular system. Long-term exposure causes multiple health problems, one of the most significant being loss of bone and muscle mass. Over time these deconditioning effects can impair astronauts' performance, increase their risk of injury, reduce their aerobic capacity, and slow down their cardiovascular system.[49] As the human body consists mostly of fluids, gravity tends to force them into the lower half of the body, and our bodies have many systems to balance this situation. When released from the pull of gravity, these systems continue to work, causing a general redistribution of fluids into the upper half of the body. This is the cause of the round-faced 'puffiness' seen in astronauts.[42] Redistributing fluids around the body itself causes balance disorders, distorted vision, and a loss of taste and smell.

A 2006 Space Shuttle experiment found that Salmonella typhimurium, a bacterium that can cause food poisoning, became more virulent when cultivated in space.[50] On April 29, 2013, scientists in Rensselaer Polytechnic Institute, funded by NASA, reported that, during spaceflight on the International Space Station, microbes seem to adapt to the space environment in ways "not observed on Earth" and in ways that "can lead to increases in growth and virulence".[51] More recently, in 2017, bacteria were found to be more resistant to antibiotics and to thrive in the near-weightlessness of space.[52] Microorganisms have been observed to survive the vacuum of outer space.[53][54]

Motion sickness

Bruce McCandless floating free in orbit with a space suit and Manned Maneuvering Unit.

The most common problem experienced by humans in the initial hours of weightlessness is known as space adaptation syndrome or SAS, commonly referred to as space sickness. It is related to motion sickness, and arises as the vestibular system adapts to weightlessness.[55] Symptoms of SAS include nausea and vomiting, vertigo, headaches, lethargy, and overall malaise.[2] The first case of SAS was reported by cosmonaut Gherman Titov in 1961. Since then, roughly 45% of all people who have flown in space have suffered from this condition. The duration of space sickness varies, but rarely has it lasted for more than 72 hours, after which the body adjusts to the new environment.

On Earth, our bodies react automatically to gravity, maintaining both posture and locomotion in a downward pulling world. In microgravity environments, these constant signals are absent: the otolith organs in the inner ear are sensitive to linear acceleration and no longer perceive a downwards bias; muscles are no longer required to contract to maintain posture, and pressure receptors in the feet and ankles no longer signal the direction of "down". These changes can immediately result in visual-orientation illusions where the astronaut feels he has flipped 180 degrees. Over half of astronauts also experience symptoms of motion sickness for the first three days of travel due to the conflict between what the body expects and what the body actually perceives.[56] Over time however the brain adapts and although these illusions can still occur, most astronauts begin to see "down" as where the feet are. People returning to Earth after extended weightless periods have to readjust to the force of gravity and may have problems standing up, focusing their gaze, walking and turning. This is just an initial problem, as they recover these abilities quickly.[vague]

NASA jokingly measures SAS using the "Garn scale", named for United States Senator Jake Garn, whose sickness during STS-51-D was the worst on record. Accordingly, one "Garn" is equivalent to the most severe possible case of space sickness.[57] By studying how changes can affect balance in the human body—involving the senses, the brain, the inner ear, and blood pressure—NASA hopes to develop treatments that can be used on Earth and in space to correct balance disorders. Until then, astronauts rely on medication, such as midodrine and dimenhydrinate anti-nausea patches, as required (such as when space suits are worn, because vomiting into a space suit could be fatal).

Bone and muscle deterioration

Aboard the International Space Station, astronaut Frank De Winne is attached to the COLBERT with bungee cords

A major effect of long-term weightlessness involves the loss of bone and muscle mass. Without the effects of gravity, skeletal muscle is no longer required to maintain posture and the muscle groups used in moving around in a weightless environment differ from those required in terrestrial locomotion. In a weightless environment, astronauts put almost no weight on the back muscles or leg muscles used for standing up. Those muscles then start to weaken and eventually get smaller. Consequently, some muscles atrophy rapidly, and without regular exercise astronauts can lose up to 20% of their muscle mass in just 5 to 11 days[58] The types of muscle fibre prominent in muscles also change. Slow twitch endurance fibres used to maintain posture are replaced by fast twitch rapidly contracting fibres that are insufficient for any heavy labour. Advances in research on exercise, hormone supplements and medication may help maintain muscle and body mass.

Bone metabolism also changes. Normally, bone is laid down in the direction of mechanical stress. However, in a microgravity environment there is very little mechanical stress. This results in a loss of bone tissue approximately 1.5% per month especially from the lower vertebrae, hip and femur.[59] Due to microgravity and the decreased load on the bones, there is a rapid increase in bone loss, from 3% cortical bone loss per decade to about 1% every month the body is exposed to microgravity, for an otherwise healthy adult.[60] The rapid change in bone density is dramatic, making bones frail and resulting in symptoms which resemble those of osteoporosis. On Earth, the bones are constantly being shed and regenerated through a well-balanced system which involves signaling of osteoblasts and osteoclasts.[61] These systems are coupled, so that whenever bone is broken down, newly formed layers take its place—neither should happen without the other, in a healthy adult. In space, however, there is an increase in osteoclast activity due to microgravity. This is a problem, because osteoclasts break down the bones into minerals that are reabsorbed by the body.[62] Osteoblasts are not consecutively active with the osteoclasts, causing the bone to be constantly diminished with no recovery.[63] This increase in osteoclasts activity has been seen particularly in the pelvic region, because this is the region which carries the biggest load with gravity present. A study demonstrated that in healthy mice, osteoclasts appearance increased by 197%, accompanied by a down-regulation of osteoblasts and growth factors that are known to help with the formation of new bone, after only sixteen days of exposure to microgravity. Elevated blood calcium levels from the lost bone result in dangerous calcification of soft tissues and potential kidney stone formation.[59] It is still unknown whether bone recovers completely. Unlike people with osteoporosis, astronauts eventually regain their bone density.[citation needed] After a 3–4 month trip into space, it takes about 2–3 years to regain lost bone density.[citation needed] New techniques are being developed to help astronauts recover faster. Research on diet, exercise and medication may hold the potential to aid the process of growing new bone.

To prevent some of these adverse physiological effects, the ISS is equipped with two treadmills (including the COLBERT), and the aRED (advanced Resistive Exercise Device), which enable various weight-lifting exercises which add muscle but do nothing for bone density,[64] and a stationary bicycle; each astronaut spends at least two hours per day exercising on the equipment.[65][66] Astronauts use bungee cords to strap themselves to the treadmill.[67][68] Astronauts subject to long periods of weightlessness wear pants with elastic bands attached between waistband and cuffs to compress the leg bones and reduce osteopenia.[3]

Currently, NASA is using advanced computational tools to understand the how to best counteract the bone and muscle atrophy experienced by astronauts in microgravity environments for prolonged periods of time.[69] The Human Research Program's Human Health Countermeasures Element chartered the Digital Astronaut Project to investigate targeted questions about exercise countermeasure regimes.[70][71] NASA is focusing on integrating a model of the advanced Resistive Exercise Device (ARED) currently on board the International Space Station with OpenSim [72] musculoskeletal models of humans exercising with the device. The goal of this work is to use inverse dynamics to estimate joint torques and muscle forces resulting from using the ARED, and thus more accurately prescribe exercise regimens for the astronauts. These joint torques and muscle forces could be used in conjunction with more fundamental computational simulations of bone remodeling and muscle adaptation in order to more completely model the end effects of such countermeasures, and determine whether a proposed exercise regime would be sufficient to sustain astronaut musculoskeletal health.

Fluid redistribution

The effects of microgravity on fluid distribution around the body (greatly exaggerated).
 
Astronaut Clayton Anderson observes as a water bubble floats in front of him on the Discovery. Water cohesion plays a bigger role in microgravity than on Earth

The second effect of weightlessness takes place in human fluids. The body is made up of 60% water, much of it intra-vascular and inter-cellular. Within a few moments of entering a microgravity environment, fluid is immediately re-distributed to the upper body resulting in bulging neck veins, puffy face and sinus and nasal congestion which can last throughout the duration of the trip and is very much like the symptoms of the common cold. In space the autonomic reactions of the body to maintain blood pressure are not required and fluid is distributed more widely around the whole body. This results in a decrease in plasma volume of around 20%. These fluid shifts initiate a cascade of adaptive systemic effects that can be dangerous upon return to earth. Orthostatic intolerance results in astronauts returning to Earth after extended space missions being unable to stand unassisted for more than 10 minutes at a time without fainting. This is due in part to changes in the autonomic regulation of blood pressure and the loss of plasma volume. Although this effect becomes worse the longer the time spent in space, as yet all individuals have returned to normal within at most a few weeks of landing.[citation needed]

In space, astronauts lose fluid volume—including up to 22% of their blood volume. Because it has less blood to pump, the heart will atrophy. A weakened heart results in low blood pressure and can produce a problem with "orthostatic tolerance", or the body's ability to send enough oxygen to the brain without the astronaut's fainting or becoming dizzy. "Under the effects of the earth's gravity, blood and other body fluids are pulled towards the lower body. When gravity is taken away or reduced during space exploration, the blood tends to collect in the upper body instead, resulting in facial edema and other unwelcome side effects. Upon return to earth, the blood begins to pool in the lower extremities again, resulting in orthostatic hypotension."[73]

Disruption of senses

Vision
In 2013 NASA published a study that found changes to the eyes and eyesight of monkeys with spaceflights longer than 6 months.[74] Noted changes included a flattening of the eyeball and changes to the retina.[74] Space traveler's eye-sight can become blurry after too much time in space.[75][76] Another effect is known as Cosmic ray visual phenomena
...[a] NASA survey of 300 male and female astronauts, about 23 percent of short-flight and 49 percent of long-flight astronauts said they had experienced problems with both near and distance vision during their missions. Again, for some people vision problems persisted for years afterward.
— NASA[74]
Intracranial pressure
Because weightlessness increases the amount of fluid in the upper part of the body, astronauts experience increased intracranial pressure. This appears to increase pressure on the backs of the eyeballs, affecting their shape and slightly crushing the optic nerve.[1][77][78][79][80][81] This effect was noticed in 2012 in a study using MRI scans of astronauts who had returned to Earth following at least one month in space.[82] Such eyesight problems could be a major concern for future deep space flight missions, including a manned mission to the planet Mars.[47][77][78][79][80]
If indeed elevated intracranial pressure is the cause, artificial gravity might present one solution, as it would for many human health risks in space. However, such artificial gravitational systems have yet to be proven. More, even with sophisticated artificial gravity, a state of relative microgravity may remain, the risks of which remain unknown. [83]
Taste
One effect of weightlessness on humans is that some astronauts report a change in their sense of taste when in space.[84] Some astronauts find that their food is bland, others find that their favorite foods no longer taste as good (one who enjoyed coffee disliked the taste so much on a mission that he stopped drinking it after returning to Earth); some astronauts enjoy eating certain foods that they would not normally eat, and some experience no change whatsoever. Multiple tests have not identified the cause,[85] and several theories have been suggested, including food degradation, and psychological changes such as boredom. Astronauts often choose strong-tasting food to combat the loss of taste.

Additional physiological effects

After two months, calluses on the bottoms of feet molt and fall off from lack of use, leaving soft new skin. Tops of feet become, by contrast, raw and painfully sensitive.[86] Tears cannot be shed while crying, as they stick together into a ball.[87] In microgravity odors quickly permeate the environment, and NASA found in a test that the smell of cream sherry triggered the gag reflex.[85] Various other physical discomforts such as back and abdominal pain are common because of the readjustment to gravity, where in space there was no gravity and these muscles could freely stretch.[88] These may be part of the asthenization syndrome reported by cosmonauts living in space over an extended period of time, but regarded as anecdotal by astronauts.[89] Fatigue, listlessness, and psychosomatic worries are also part of the syndrome. The data is inconclusive; however, the syndrome does appear to exist as a manifestation of all the internal and external stress crews in space must face.[citation needed]

Astronauts may not be able to quickly return to Earth or receive medical supplies, equipment or personnel if a medical emergency occurs. The astronauts may have to rely for long periods on their limited existing resources and medical advice from the ground.

Psychological effects

Studies of Russian cosmonauts, such as those on Mir, provide data on the long-term effects of space on the human body.

Research

The psychological effects of living in space have not been clearly analyzed but analogies on Earth do exist, such as Arctic research stations and submarines. The enormous stress on the crew, coupled with the body adapting to other environmental changes, can result in anxiety, insomnia and depression.[90]

Stress

There has been considerable evidence that psychosocial stressors are among the most important impediments to optimal crew morale and performance.[91] Cosmonaut Valery Ryumin, twice Hero of the Soviet Union, quotes this passage from The Handbook of Hymen by O. Henry in his autobiographical book about the Salyut 6 mission: "If you want to instigate the art of manslaughter just shut two men up in a eighteen by twenty-foot cabin for a month. Human nature won't stand it."[92]

NASA's interest in psychological stress caused by space travel, initially studied when their manned missions began, was rekindled when astronauts joined cosmonauts on the Russian space station Mir. Common sources of stress in early American missions included maintaining high performance while under public scrutiny, as well as isolation from peers and family. On the ISS, the latter is still often a cause of stress, such as when NASA Astronaut Daniel Tani's mother died in a car accident, and when Michael Fincke was forced to miss the birth of his second child.[citation needed]

Sleep

The amount and quality of sleep experienced in space is poor due to highly variable light and dark cycles on flight decks and poor illumination during daytime hours in the space craft. Even the habit of looking out of the window before retiring can send the wrong messages to the brain, resulting in poor sleep patterns. These disturbances in circadian rhythm have profound effects on the neurobehavioural responses of crew and aggravate the psychological stresses they already experience.  Sleep is disturbed on the ISS regularly due to mission demands, such as the scheduling of incoming or departing space vehicles. Sound levels in the station are unavoidably high because the atmosphere is unable to thermosiphon; fans are required at all times to allow processing of the atmosphere, which would stagnate in the freefall (zero-g) environment. Fifty percent of space shuttle astronauts take sleeping pills and still get 2 hours less sleep each night in space than they do on the ground. NASA is researching two areas which may provide the keys to a better night’s sleep, as improved sleep decreases fatigue and increases daytime productivity. A variety of methods for combating this phenomenon are constantly under discussion.[93]

Duration of space travel

A study of the longest spaceflight concluded that the first three weeks represent a critical period where attention is adversely affected because of the demand to adjust to the extreme change of environment.[94] While Skylab's three crews remained in space 1, 2, and 3 months respectively, long-term crews on Salyut 6, Salyut 7, and the ISS remain about 5–6 months, while MIR expeditions often lasted longer. The ISS working environment includes further stress caused by living and working in cramped conditions with people from very different cultures who speak different languages. First generation space stations had crews who spoke a single language, while 2nd and 3rd generation stations have a crew from many cultures who speak many languages. The ISS is unique because visitors are not classed automatically into 'host' or 'guest' categories as with previous stations and spacecraft, and may not suffer from feelings of isolation in the same way.

Future use

Space colonization efforts must take into account the effects of space on the human body.

The sum of human experience has resulted in the accumulation of 58 solar years in space and a much better understanding of how the human body adapts. In the future, industrialisation of space and exploration of inner and outer planets will require humans to endure longer and longer periods in space. The majority of current data comes from missions of short duration and so some of the long-term physiological effects of living in space are still unknown. A round trip to Mars[47] with current technology is estimated to involve at least 18 months in transit alone. Knowing how the human body reacts to such time periods in space is a vital part of the preparation for such journeys. On-board medical facilities need to be adequate for coping with any type of trauma or emergency as well as contain a huge variety of diagnostic and medical instruments in order to keep a crew healthy over a long period of time, as these will be the only facilities available on board a spacecraft for coping not only with trauma, but also with the adaptive responses of the human body in space.

At the moment only rigorously tested humans have experienced the conditions of space. If off-world colonization someday begins, many types of people will be exposed to these dangers, and the effects on the very young are completely unknown. On October 29, 1998, John Glenn, one of the original Mercury 7, returned to space at the age of 77. His space flight, which lasted 9 days, provided NASA with important information about the effects of space flight in older people. Factors such as nutritional requirements and physical environments which have so far not been examined will become important. Overall, there is little data on the manifold effects of living in space, and this makes attempts toward mitigating the risks during a lengthy space habitation difficult. Test beds such as the ISS are currently being utilized to research some of these risks.

The environment of space is still largely unknown, and there will likely be as-yet-unknown hazards. Meanwhile, future technologies such as artificial gravity and more complex bioregenerative life support systems may someday be capable of mitigating some risks.

Equality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Equality_...