Search This Blog

Monday, June 24, 2019

Bromine

From Wikipedia, the free encyclopedia

Bromine,  35Br
Bromine 25ml (transparent).png
Bromine
Pronunciation/ˈbrmn, -mɪn, -mn/ (BROH-meen, -⁠min, -⁠myn)
Appearancereddish-brown
Standard atomic weight Ar, std(Br)[79.90179.907] conventional: 79.904
Bromine in the periodic table
Hydrogen
Helium
Lithium Beryllium
Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium
Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium
Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium

Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Cl

Br

 I 
seleniumbrominekrypton
Atomic number (Z)35
Groupgroup 17 (halogens)
Periodperiod 4
Blockp-block
Element category  reactive nonmetal
Electron configuration[Ar] 3d10 4s2 4p5
Electrons per shell
2, 8, 18, 7
Physical properties
Phase at STPliquid
Melting point265.8 K ​(−7.2 °C, ​19 °F)
Boiling point332.0 K ​(58.8 °C, ​137.8 °F)
Density (near r.t.)Br2, liquid: 3.1028 g/cm3
Triple point265.90 K, ​5.8 kPa
Critical point588 K, 10.34 MPa
Heat of fusion(Br2) 10.571 kJ/mol
Heat of vaporisation(Br2) 29.96 kJ/mol
Molar heat capacity(Br2) 75.69 J/(mol·K)
Vapour pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 185 201 220 244 276 332
Atomic properties
Oxidation states−1, +1, +3, +4, +5, +7 (a strongly acidic oxide)
ElectronegativityPauling scale: 2.96
Ionisation energies
  • 1st: 1139.9 kJ/mol
  • 2nd: 2103 kJ/mol
  • 3rd: 3470 kJ/mol

Atomic radiusempirical: 120 pm
Covalent radius120±3 pm
Van der Waals radius185 pm
Color lines in a spectral range
Spectral lines of bromine
Other properties
Natural occurrenceprimordial
Crystal structureorthorhombic
Orthorhombic crystal structure for bromine
Speed of sound206 m/s (at 20 °C)
Thermal conductivity0.122 W/(m·K)
Electrical resistivity7.8×1010 Ω·m (at 20 °C)
Magnetic orderingdiamagnetic
Magnetic susceptibility−56.4·10−6 cm3/mol
CAS Number7726-95-6
History
Discovery and first isolationAntoine Jérôme Balard and Carl Jacob Löwig (1825)
Main isotopes of bromine
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
79Br 51% stable
81Br 49% stable

Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest halogen, and is a fuming liquid with a deep red color. At room temperature, Bromine evaporates readily to form a red to amber coloured gas. Bromine's properties are intermediate between those of chlorine and iodine. Isolated independently by two chemists, Carl Jacob Löwig (in 1825) and Antoine Jérôme Balard (in 1826), its name was derived from the Ancient Greek βρῶμος ("stench"), referencing its sharp and disagreeable smell.

Elemental bromine is very reactive and thus does not occur free in nature, but in colourless soluble crystalline mineral halide salts, analogous to table salt. While it is rather rare in the Earth's crust, the high solubility of the bromide ion (Br) has caused its accumulation in the oceans. Commercially the element is easily extracted from brine pools, mostly in the United States, Israel and China. The mass of bromine in the oceans is about one three-hundredth that of chlorine.

At high temperatures, organobromine compounds readily dissociate to yield free bromine atoms, a process that stops free radical chemical chain reactions. This effect makes organobromine compounds useful as fire retardants, and more than half the bromine produced worldwide each year is put to this purpose. The same property causes ultraviolet sunlight to dissociate volatile organobromine compounds in the atmosphere to yield free bromine atoms, causing ozone depletion. As a result, many organobromide compounds—such as the pesticide methyl bromide—are no longer used. Bromine compounds are still used in well drilling fluids, in photographic film, and as an intermediate in the manufacture of organic chemicals.

Large amounts of bromide salts are toxic from the action of soluble bromide ion, causing bromism. However, a clear biological role for bromide ion and hypobromous acid has recently been elucidated, and it now appears that bromine is an essential trace element in humans. The role of biological organobromine compounds in sea life such as algae has been known for much longer. As a pharmaceutical, the simple bromide ion (Br) has inhibitory effects on the central nervous system, and bromide salts were once a major medical sedative, before replacement by shorter-acting drugs. They retain niche uses as antiepileptics.

History

Antoine Balard, one of the discoverers of bromine
 
Bromine was discovered independently by two chemists, Carl Jacob Löwig and Antoine Balard, in 1825 and 1826, respectively.

Löwig isolated bromine from a mineral water spring from his hometown Bad Kreuznach in 1825. Löwig used a solution of the mineral salt saturated with chlorine and extracted the bromine with diethyl ether. After evaporation of the ether a brown liquid remained. With this liquid as a sample of his work he applied for a position in the laboratory of Leopold Gmelin in Heidelberg. The publication of the results was delayed and Balard published his results first.

Balard found bromine chemicals in the ash of seaweed from the salt marshes of Montpellier. The seaweed was used to produce iodine, but also contained bromine. Balard distilled the bromine from a solution of seaweed ash saturated with chlorine. The properties of the resulting substance were intermediate between those of chlorine and iodine; thus he tried to prove that the substance was iodine monochloride (ICl), but after failing to do so he was sure that he had found a new element, and named it muride, derived from the Latin word muria for brine.

After the French chemists Louis Nicolas Vauquelin, Louis Jacques Thénard, and Joseph-Louis Gay-Lussac approved the experiments of the young pharmacist Balard, the results were presented at a lecture of the Académie des Sciences and published in Annales de Chimie et Physique. In his publication, Balard states that he changed the name from muride to brôme on the proposal of M. Anglada. Brôme (bromine) derives from the Greek βρωμος (stench). Other sources claim that the French chemist and physicist Joseph-Louis Gay-Lussac suggested the name brôme for the characteristic smell of the vapors. Bromine was not produced in large quantities until 1858, when the discovery of salt deposits in Stassfurt enabled its production as a by-product of potash.

Apart from some minor medical applications, the first commercial use was the daguerreotype. In 1840, bromine was discovered to have some advantages over the previously used iodine vapor to create the light sensitive silver halide layer in daguerreotypy.

Potassium bromide and sodium bromide were used as anticonvulsants and sedatives in the late 19th and early 20th centuries, but were gradually superseded by chloral hydrate and then by the barbiturates. In the early years of the First World War, bromine compounds such as xylyl bromide were used as poison gas.

Properties

Illustrative and secure bromine sample for teaching
 
Bromine is the third halogen, being a nonmetal in group 17 of the periodic table. Its properties are thus similar to those of fluorine, chlorine, and iodine, and tend to be intermediate between those of the two neighbouring halogens, chlorine and iodine. Bromine has the electron configuration [Ar]3d104s24p5, with the seven electrons in the fourth and outermost shell acting as its valence electrons. Like all halogens, it is thus one electron short of a full octet, and is hence a strong oxidising agent, reacting with many elements in order to complete its outer shell. Corresponding to periodic trends, it is intermediate in electronegativity between chlorine and iodine (F: 3.98, Cl: 3.16, Br: 2.96, I: 2.66), and is less reactive than chlorine and more reactive than iodine. It is also a weaker oxidising agent than chlorine, but a stronger one than iodine. Conversely, the bromide ion is a weaker reducing agent than iodide, but a stronger one than chloride. These similarities led to chlorine, bromine, and iodine together being classified as one of the original triads of Johann Wolfgang Döbereiner, whose work foreshadowed the periodic law for chemical elements. It is intermediate in atomic radius between chlorine and iodine, and this leads to many of its atomic properties being similarly intermediate in value between chlorine and iodine, such as first ionisation energy, electron affinity, enthalpy of dissociation of the X2 molecule (X = Cl, Br, I), ionic radius, and X–X bond length. The volatility of bromine accentuates its very penetrating, choking, and unpleasant odour.

All four stable halogens experience intermolecular van der Waals forces of attraction, and their strength increases together with number of electrons among all homonuclear diatomic halogen molecules. Thus, the melting and boiling points of bromine are intermediate between those of chlorine and iodine. As a result of the increasing molecular weight of the halogens down the group, the density and heats of fusion and vaporisation of bromine are again intermediate between those of chlorine and iodine, although all their heats of vaporisation are fairly low (leading to high volatility) thanks to their diatomic molecular structure. The halogens darken in colour as the group is descended: fluorine is a very pale yellow gas, chlorine is greenish-yellow, and bromine is a reddish-brown volatile liquid that melts at −7.2 °C and boils at 58.8 °C. (Iodine is a shiny black solid.) This trend occurs because the wavelengths of visible light absorbed by the halogens increase down the group. Specifically, the colour of a halogen, such as bromine, results from the electron transition between the highest occupied antibonding πg molecular orbital and the lowest vacant antibonding σu molecular orbital. The colour fades at low temperatures, so that solid bromine at −195 °C is pale yellow.

Like solid chlorine and iodine, solid bromine crystallises in the orthorhombic crystal system, in a layered lattice of Br2 molecules. The Br–Br distance is 227 pm (close to the gaseous Br–Br distance of 228 pm) and the Br···Br distance between molecules is 331 pm within a layer and 399 pm between layers (compare the van der Waals radius of bromine, 195 pm). This structure means that bromine is a very poor conductor of electricity, with a conductivity of around 5 × 10−13 Ω−1 cm−1 just below the melting point, although this is better than the essentially undetectable conductivity of chlorine.

At a pressure of 55 GPa (roughly 540,000 times atmospheric pressure) bromine undergoes an insulator-to-metal transition. At 75 GPa it changes to a face-centered orthorhombic structure. At 100 GPa it changes to a body centered orthorhombic monatomic form.

Isotopes

Bromine has two stable isotopes, 79Br and 81Br. These are its only two natural isotopes, with 79Br making up 51% of natural bromine and 81Br making up the remaining 49%. Both have nuclear spin 3/2− and thus may be used for nuclear magnetic resonance, although 81Br is more favourable. The relatively 1:1 distribution of the two isotopes in nature is helpful in identification of bromine containing compounds using mass spectroscopy. Other bromine isotopes are all radioactive, with half-lives too short to occur in nature. Of these, the most important are 80Br (t1/2 = 17.7 min), 80mBr (t1/2 = 4.421 h), and 82Br (t1/2 = 35.28 h), which may be produced from the neutron activation of natural bromine. The most stable bromine radioisotope is 77Br (t1/2 = 57.04 h). The primary decay mode of isotopes lighter than 79Br is electron capture to isotopes of selenium; that of isotopes heavier than 81Br is beta decay to isotopes of krypton; and 80Br may decay by either mode to stable 80Se or 80Kr.

Chemistry and compounds

Bromine is intermediate in reactivity between chlorine and iodine, and is one of the most reactive elements. Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X2/X couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V). Bromination often leads to higher oxidation states than iodination but lower or equal oxidation states to chlorination. Bromine tends to react with compounds including M–M, M–H, or M–C bonds to form M–Br bonds.

Hydrogen bromide

The simplest compound of bromine is hydrogen bromide, HBr. It is mainly used in the production of inorganic bromides and alkyl bromides, and as a catalyst for many reactions in organic chemistry. Industrially, it is mainly produced by the reaction of hydrogen gas with bromine gas at 200–400 °C with a platinum catalyst. However, reduction of bromine with red phosphorus is a more practical way to produce hydrogen bromide in the laboratory:
2 P + 6 H2O + 3 Br2 → 6 HBr + 2 H3PO3
H3PO3 + H2O + Br2 → 2 HBr + H3PO4
At room temperature, hydrogen bromide is a colourless gas, like all the hydrogen halides apart from hydrogen fluoride, since hydrogen cannot form strong hydrogen bonds to the large and only mildly electronegative bromine atom; however, weak hydrogen bonding is present in solid crystalline hydrogen bromide at low temperatures, similar to the hydrogen fluoride structure, before disorder begins to prevail as the temperature is raised. Aqueous hydrogen bromide is known as hydrobromic acid, which is a strong acid (pKa = −9) because the hydrogen bonds to bromine are too weak to inhibit dissociation. The HBr/H2O system also involves many hydrates HBr·nH2O for n = 1, 2, 3, 4, and 6, which are essentially salts of bromine anions and hydronium cations. Hydrobromic acid forms an azeotrope with boiling point 124.3 °C at 47.63 g HBr per 100 g solution; thus hydrobromic acid cannot be concentrated beyond this point by distillation.

Unlike hydrogen fluoride, anhydrous liquid hydrogen bromide is difficult to work with as a solvent, because its boiling point is low, it has a small liquid range, its dielectric constant is low and it does not dissociate appreciably into H2Br+ and HBr
2
ions – the latter, in any case, are much less stable than the bifluoride ions (HF
2
) due to the very weak hydrogen bonding between hydrogen and bromine, though its salts with very large and weakly polarising cations such as Cs+ and NR+
4
(R = Me, Et, Bun) may still be isolated. Anhydrous hydrogen bromide is a poor solvent, only able to dissolve small molecular compounds such as nitrosyl chloride and phenol, or salts with very low lattice energies such as tetraalkylammonium halides.

Other binary bromides

 
Nearly all elements in the periodic table form binary bromides. The exceptions are decidedly in the minority and stem in each case from one of three causes: extreme inertness and reluctance to participate in chemical reactions (the noble gases, with the exception of xenon in the very unstable XeBr2); extreme nuclear instability hampering chemical investigation before decay and transmutation (many of the heaviest elements beyond bismuth); and having an electronegativity higher than bromine's (oxygen, nitrogen, fluorine, and chlorine), so that the resultant binary compounds are formally not bromides but rather oxides, nitrides, fluorides, or chlorides of bromine. (Nonetheless, nitrogen tribromide is named as a bromide as it is analogous to the other nitrogen trihalides.)

Bromination of metals with Br2 tends to yield lower oxidation states than chlorination with Cl2 when a variety of oxidation states is available. Bromides can be made by reaction of an element or its oxide, hydroxide, or carbonate with hydrobromic acid, and then dehydrated by mildly high temperatures combined with either low pressure or anhydrous hydrogen bromide gas. These methods work best when the bromide product is stable to hydrolysis; otherwise, the possibilities include high-temperature oxidative bromination of the element with bromine or hydrogen bromide, high-temperature bromination of a metal oxide or other halide by bromine, a volatile metal bromide, carbon tetrabromide, or an organic bromide. For example, niobium(V) oxide reacts with carbon tetrabromide at 370 °C to form niobium(V) bromide. Another method is halogen exchange in the presence of excess "halogenating reagent", for example:
FeCl3 + BBr3 (excess) → FeBr3 + BCl3
When a lower bromide is wanted, either a higher halide may be reduced using hydrogen or a metal as a reducing agent, or thermal decomposition or disproportionation may be used, as follows:
3 WBr5 + Al thermal gradient475°C → 240°C 3 WBr4 + AlBr3
EuBr3 + 1/2 H2 → EuBr2 + HBr
2 TaBr4 500°C  TaBr3 + TaBr5
Most of the bromides of the pre-transition metals (groups 1, 2, and 3, along with the lanthanides and actinides in the +2 and +3 oxidation states) are mostly ionic, while nonmetals tend to form covalent molecular bromides, as do metals in high oxidation states from +3 and above. Silver bromide is very insoluble in water and is thus often used as a qualitative test for bromine.

Bromine halides

The halogens form many binary, diamagnetic interhalogen compounds with stoichiometries XY, XY3, XY5, and XY7 (where X is heavier than Y), and bromine is no exception. Bromine forms a monofluoride and monochloride, as well as a trifluoride and pentafluoride. Some cationic and anionic derivatives are also characterised, such as BrF
2
, BrCl
2
, BrF+
2
, BrF+
4
, and BrF+
6
. Apart from these, some pseudohalides are also known, such as cyanogen bromide (BrCN), bromine thiocyanate (BrSCN), and bromine azide (BrN3).

The pale-brown bromine monofluoride (BrF) is unstable at room temperature, disproportionating quickly and irreversibly into bromine, bromine trifluoride, and bromine pentafluoride. It thus cannot be obtained pure. It may be synthesised by the direct reaction of the elements, or by the comproportionation of bromine and bromine trifluoride at high temperatures. Bromine monochloride (BrCl), a red-brown gas, quite readily dissociates reversibly into bromine and chlorine at room temperature and thus also cannot be obtained pure, though it can be made by the reversible direct reaction of its elements in the gas phase or in carbon tetrachloride. Bromine monofluoride in ethanol readily leads to the monobromination of the aromatic compounds PhX (para-bromination occurs for X = Me, But, OMe, Br; meta-bromination occurs for the deactivating X = –CO2Et, –CHO, –NO2); this is due to heterolytic fission of the Br–F bond, leading to rapid electrophilic bromination by Br+.

At room temperature, bromine trifluoride (BrF3) is a straw-coloured liquid. It may be formed by directly fluorinating bromine at room temperature and is purified through distillation. It reacts explosively with water and hydrocarbons, but is a less violent fluorinating reagent than chlorine trifluoride. It reacts vigorously with boron, carbon, silicon, arsenic, antimony, iodine, and sulfur to give fluorides, and also reacts with most metals and their oxides: as such, it is used to oxidise uranium to uranium hexafluoride in the nuclear industry. Refractory oxides tend to be only partially fluorinated, but here the derivatives KBrF4 and BrF2SbF6 remain reactive. Bromine trifluoride is a useful nonaqueous ionising solvent, since it readily dissociates to form BrF+
2
and BrF
4
and thus conducts electricity.

Bromine pentafluoride (BrF5) was first synthesised in 1930. It is produced on a large scale by direct reaction of bromine with excess fluorine at temperatures higher than 150 °C, and on a small scale by the fluorination of potassium bromide at 25 °C. It is a very vigorous fluorinating agent, although chlorine trifluoride is still more violent. Bromine pentafluoride explodes on reaction with water and fluorinates silicates at 450 °C.

Polybromine compounds

Although dibromine is a strong oxidising agent with a high first ionisation energy, very strong oxidisers such as peroxydisulfuryl fluoride (S2O6F2) can oxidise it to form the cherry-red Br+
2
cation. A few other bromine cations are known, namely the brown Br+
3
and dark brown Br+
5
. The tribromide anion, Br
3
, has also been characterised; it is analogous to triiodide.

Bromine oxides and oxoacids

Bromine oxides are not as well-characterised as chlorine oxides or iodine oxides, as they are all fairly unstable: it was once thought that they could not exist at all. Dibromine monoxide is a dark-brown solid which, while reasonably stable at −60 °C, decomposes at its melting point of −17.5 °C; it is useful in bromination reactions and may be made from the low-temperature decomposition of bromine dioxide in a vacuum. It oxidises iodine to iodine pentoxide and benzene to 1,4-benzoquinone; in alkaline solutions, it gives the hypobromite anion.

So-called "bromine dioxide", a pale yellow crystalline solid, may be better formulated as bromine perbromate, BrOBrO3. It is thermally unstable above −40 °C, violently decomposing to its elements at 0 °C. Dibromine trioxide, syn-BrOBrO2, is also known; it is the anhydride of hypobromous acid and bromic acid. It is an orange crystalline solid which decomposes above −40 °C; if heated too rapidly, it explodes around 0 °C. A few other unstable radical oxides are also known, as are some poorly characterised oxides, such as dibromine pentoxide, tribromine octoxide, and bromine trioxide.

The four oxoacids, hypobromous acid (HOBr), bromous acid (HOBrO), bromic acid (HOBrO2), and perbromic acid (HOBrO3), are better studied due to their greater stability, though they are only so in aqueous solution. When bromine dissolves in aqueous solution, the following reactions occur:
Br2 + H2O ⇌ HOBr + H+ + Br Kac = 7.2 × 10−9 mol2 l−2
Br2 + 2 OH ⇌ OBr + H2O + Br Kalk = 2 × 108 mol−1 l
Hypobromous acid is unstable to disproportionation. The hypobromite ions thus formed disproportionate readily to give bromide and bromate:
3 BrO ⇌ 2 Br + BrO
3
K = 1015
Bromous acids and bromites are very unstable, although the strontium and barium bromites are known. More important are the bromates, which are prepared on a small scale by oxidation of bromide by aqueous hypochlorite, and are strong oxidising agents. Unlike chlorates, which very slowly disproportionate to chloride and perchlorate, the bromate anion is stable to disproportionation in both acidic and aqueous solutions. Bromic acid is a strong acid. Bromides and bromates may comproportionate to bromine as follows:
BrO
3
+ 5 Br + 6 H+ → 3 Br2 + 3 H2O
There were many failed attempts to obtain perbromates and perbromic acid, leading to some rationalisations as to why they should not exist, until 1968 when the anion was first synthesised from the radioactive beta decay of unstable 83SeO2−
4
. Today, perbromates are produced by the oxidation of alkaline bromate solutions by fluorine gas. Excess bromate and fluoride are precipitated as silver bromate and calcium fluoride, and the perbromic acid solution may be purified. The perbromate ion is fairly inert at room temperature but is thermodynamically extremely oxidising, with extremely strong oxidising agents needed to produce it, such as fluorine or xenon difluoride. The Br–O bond in BrO
4
is fairly weak, which corresponds to the general reluctance of the 4p elements (especially arsenic, selenium, and bromine) to attain their maximum possible oxidation state, as they come after the scandide contraction characterised by the poor shielding afforded by the radial-nodeless 3d orbitals.

Organobromine compounds

Structure of N-bromosuccinimide, a common brominating reagent in organic chemistry
 
Like the other carbon–halogen bonds, the C–Br bond is a common functional group that forms part of core organic chemistry. Formally, compounds with this functional group may be considered organic derivatives of the bromide anion. Due to the difference of electronegativity between bromine (2.96) and carbon (2.55), the carbon in a C–Br bond is electron-deficient and thus electrophilic. The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost.

Organobromides are typically produced by additive or substitutive bromination of other organic precursors. Bromine itself can be used, but due to its toxicity and volatility safer brominating reagents are normally used, such as N-bromosuccinimide. The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.

Organobromides are the most common organohalides in nature, even though the concentration of bromide is only 0.3% of that for chloride in sea water, because of the easy oxidation of bromide to the equivalent of Br+, a potent electrophile. The enzyme bromoperoxidase catalyzes this reaction. The oceans are estimated to release 1–2 million tons of bromoform and 56,000 tons of bromomethane annually.

Bromine addition to alkene reaction mechanism
 
An old qualitative test for the presence of the alkene functional group is that alkenes turn brown aqueous bromine solutions colourless, forming a bromohydrin with some of the dibromoalkane also produced. The reaction passes through a short-lived strongly electrophilic bromonium intermediate. This is an example of a halogen addition reaction.

Occurrence and production

View of salt evaporation pans on the Dead Sea, where Jordan (right) and Israel (left) produce salt and bromine 31°9′0″N 35°27′0″E
 
Bromine is significantly less abundant in the crust than fluorine or chlorine, comprising only 2.5 parts per million of the Earth's crustal rocks, and then only as bromide salts. It is the forty-sixth most abundant element in Earth's crust. It is significantly more abundant in the oceans, resulting from long-term leaching. There, it makes up 65 parts per million, corresponding to a ratio of about one bromine atom for every 660 chlorine atoms. Salt lakes and brine wells may have higher bromine concentrations: for example, the Dead Sea contains 0.4% bromide ions. It is from these sources that bromine extraction is mostly economically feasible.

The main sources of bromine are in the United States and Israel. The element is liberated by halogen exchange, using chlorine gas to oxidise Br to Br2. This is then removed with a blast of steam or air, and is then condensed and purified. Today, bromine is transported in large-capacity metal drums or lead-lined tanks that can hold hundreds of kilograms or even tonnes of bromine. The bromine industry is about one-hundredth the size of the chlorine industry. Laboratory production is unnecessary because bromine is commercially available and has a long shelf life.

Applications

A wide variety of organobromine compounds are used in industry. Some are prepared from bromine and others are prepared from hydrogen bromide, which is obtained by burning hydrogen in bromine.

Flame retardants

Tetrabromobisphenol A
 
Brominated flame retardants represent a commodity of growing importance, and make up the largest commercial use of bromine. When the brominated material burns, the flame retardant produces hydrobromic acid which interferes in the radical chain reaction of the oxidation reaction of the fire. The mechanism is that the highly reactive hydrogen radicals, oxygen radicals, and hydroxy radicals react with hydrobromic acid to form less reactive bromine radicals (i.e., free bromine atoms). Bromine atoms may also react directly with other radicals to help terminate the free radical chain-reactions that characterise combustion.

To make brominated polymers and plastics, bromine-containing compounds can be incorporated into the polymer during polymerisation. One method is to include a relatively small amount of brominated monomer during the polymerisation process. For example, vinyl bromide can be used in the production of polyethylene, polyvinyl chloride or polypropylene. Specific highly brominated molecules can also be added that participate in the polymerisation process For example, tetrabromobisphenol A can be added to polyesters or epoxy resins, where it becomes part of the polymer. Epoxys used in printed circuit boards are normally made from such flame retardant resins, indicated by the FR in the abbreviation of the products (FR-4 and FR-2). In some cases the bromine containing compound may be added after polymerisation. For example, decabromodiphenyl ether can be added to the final polymers.

A number of gaseous or highly volatile brominated halomethane compounds are non-toxic and make superior fire suppressant agents by this same mechanism, and are particular effective in enclosed spaces such as submarines, airplanes, and spacecraft. However, they are expensive and their production and use has been greatly curtailed due to their effect as ozone-depleting agents. They are no longer used in routine fire extinguishers, but retain niche uses in aerospace and military automatic fire-suppression applications. They include bromochloromethane (Halon 1011, CH2BrCl), bromochlorodifluoromethane (Halon 1211, CBrClF2), and bromotrifluoromethane (Halon 1301, CBrF3).

Other uses

Baltimore's Emerson Bromo-Seltzer Tower, originally part of the headquarters of Emerson Drug Company, which made Bromo-Seltzer
 
Silver bromide is used, either alone or in combination with silver chloride and silver iodide, as the light sensitive constituent of photographic emulsions.

Ethylene bromide was an additive in gasolines containing lead anti-engine knocking agents. It scavenges lead by forming volatile lead bromide, which is exhausted from the engine. This application accounted for 77% of the bromine use in 1966 in the US. This application has declined since the 1970s due to environmental regulations.

Poisonous bromomethane was widely used as pesticide to fumigate soil and to fumigate housing, by the tenting method. Ethylene bromide was similarly used. These volatile organobromine compounds are all now regulated as ozone depletion agents. The Montreal Protocol on Substances that Deplete the Ozone Layer scheduled the phase out for the ozone depleting chemical by 2005, and organobromide pesticides are no longer used (in housing fumigation they have been replaced by such compounds as sulfuryl fluoride, which contain neither the chlorine or bromine organics which harm ozone). Before the Montreal protocol in 1991 (for example) an estimated 35,000 tonnes of the chemical were used to control nematodes, fungi, weeds and other soil-borne diseases.

In pharmacology, inorganic bromide compounds, especially potassium bromide, were frequently used as general sedatives in the 19th and early 20th century. Bromides in the form of simple salts are still used as anticonvulsants in both veterinary and human medicine, although the latter use varies from country to country. For example, the U.S. Food and Drug Administration (FDA) does not approve bromide for the treatment of any disease, and it was removed from over-the-counter sedative products like Bromo-Seltzer, in 1975. Commercially available organobromine pharmaceuticals include the vasodilator nicergoline, the sedative brotizolam, the anticancer agent pipobroman, and the antiseptic merbromin. Otherwise, organobromine compounds are rarely pharmaceutically useful, in contrast to the situation for organofluorine compounds. Several drugs are produced as the bromide (or equivalents, hydrobromide) salts, but in such cases bromide serves as an innocuous counterion of no biological significance.

Other uses of organobromine compounds include high-density drilling fluids, dyes (such as Tyrian purple and the indicator bromothymol blue), and pharmaceuticals. Bromine itself, as well as some of its compounds, are used in water treatment, and is the precursor of a variety of inorganic compounds with an enormous number of applications (e.g. silver bromide for photography). Zinc–bromine batteries are hybrid flow batteries used for stationary electrical power backup and storage; from household scale to industrial scale.

Biological role and toxicity

Bromine
Hazards
GHS pictograms GHS05: CorrosiveGHS06: ToxicGHS09: Environmental hazard
GHS signal word Danger
H314, H330, H400
P260, P273, P280, P284, P305+351+338, P310
NFPA 704

Flammability code 0: Will not burn. E.g., waterHealth code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gasReactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogenSpecial hazards (white): no codeNFPA 704 four-colored diamond
0
3
0

2-Octyl 4-bromo-3-oxobutanoate, an organobromine compound found in mammalian cerebrospinal fluid
 
A 2014 study suggests that bromine (in the form of bromide ion) is a necessary cofactor in the biosynthesis of collagen IV, making the element essential to basement membrane architecture and tissue development in animals. Nevertheless, no clear deprivation symptoms or syndromes have been documented. In other biological functions, bromine may be non-essential but still beneficial when it takes the place of chlorine. For example, in the presence of hydrogen peroxide, H2O2, formed by the eosinophil, and either chloride or bromide ions, eosinophil peroxidase provides a potent mechanism by which eosinophils kill multicellular parasites (such as, for example, the nematode worms involved in filariasis) and some bacteria (such as tuberculosis bacteria). Eosinophil peroxidase is a haloperoxidase that preferentially uses bromide over chloride for this purpose, generating hypobromite (hypobromous acid), although the use of chloride is possible.

Although α-haloesters are generally thought of as highly reactive, and therefore, toxic intermediates in organic synthesis, mammals, including humans, cats, and rats, appear to biosynthesize traces of an α-bromoester, 2-octyl 4-bromo-3-oxobutanoate, which is found in their cerebrospinal fluid and appears to play a yet unclarified role in inducing REM sleep. Neutrophil myeloperoxidase can use H2O2 and Br- to brominate deoxycytidine, which could result in DNA mutations. Marine organisms are the main source of organobromine compounds, and it is in these organisms that the essentiality of bromine is on much firmer ground. More than 1600 such organobromine compounds were identified by 1999. The most abundant is methyl bromide (CH3Br), of which an estimated 56,000 tonnes is produced by marine algae each year. The essential oil of the Hawaiian alga Asparagopsis taxiformis consists of 80% bromoform. Most of such organobromine compounds in the sea are made by the action of a unique algal enzyme, vanadium bromoperoxidase.

The bromide anion is not very toxic: a normal daily intake is 2 to 8 milligrams. However, high levels of bromide chronically impair the membrane of neurons, which progressively impairs neuronal transmission, leading to toxicity, known as bromism. Bromide has an elimination half-life of 9 to 12 days, which can lead to excessive accumulation. Doses of 0.5 to 1 gram per day of bromide can lead to bromism. Historically, the therapeutic dose of bromide is about 3 to 5 grams of bromide, thus explaining why chronic toxicity (bromism) was once so common. While significant and sometimes serious disturbances occur to neurologic, psychiatric, dermatological, and gastrointestinal functions, death from bromism is rare. Bromism is caused by a neurotoxic effect on the brain which results in somnolence, psychosis, seizures and delirium.

Elemental bromine is toxic and causes chemical burns on human flesh. Inhaling bromine gas results in similar irritation of the respiratory tract, causing coughing, choking, and shortness of breath, and death if inhaled in large enough amounts. Chronic exposure may lead to frequent bronchial infections and a general deterioration of health. As a strong oxidising agent, bromine is incompatible with most organic and inorganic compounds. Caution is required when transporting bromine; it is commonly carried in steel tanks lined with lead, supported by strong metal frames. The Occupational Safety and Health Administration (OSHA) of the United States has set a permissible exposure limit (PEL) for bromine at a time-weighted average (TWA) of 0.1 ppm. The National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit (REL) of TWA 0.1 ppm and a short-term limit of 0.3 ppm. The exposure to bromine immediately dangerous to life and health (IDLH) is 3 ppm. Bromine is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act (42 U.S.C. 11002), and is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities.

Vanadium redox battery

From Wikipedia, the free encyclopedia

Vanadium redox battery
Specific energy10–20 Wh/kg (36–72 J/g)
Energy density15–25 Wh/L (54–65 kJ/L)
Charge/discharge efficiency75–80%<.
Time durability20-30 years
Cycle durability>12,000-20,000 cycles 
Nominal cell voltage1.15–1.55 V
Schematic design of a vanadium redox flow battery system
 
1 MW 4 MWh containerized vanadium flow battery owned by Avista Utilities and  manufactured by UniEnergy Technologies
 
A vanadium redox flow battery located at the University of New South Wales, Sydney, Australia
 
The vanadium redox battery (VRB), also known as the vanadium flow battery (VFB) or vanadium redox flow battery (VRFB), is a type of rechargeable flow battery that employs vanadium ions in different oxidation states to store chemical potential energy. The vanadium redox battery exploits the ability of vanadium to exist in solution in four different oxidation states, and uses this property to make a battery that has just one electroactive element instead of two. For several reasons, including their relative bulkiness, most vanadium batteries are currently used for grid energy storage, i.e., attached to power plants or electrical grids. 

The possibility of creating a vanadium flow battery was explored variously by Pissoort in the 1930s, NASA researchers in the 1970s, and Pellegri and Spaziante in the 1970s, but none of them were successful in demonstrating the technology. The first successful demonstration of the all-vanadium redox flow battery which employed vanadium in a solution of sulfuric acid in each half was by Maria Skyllas-Kazacos at the University of New South Wales in the 1980s. Her design used sulfuric acid electrolytes, and was patented by the University of New South Wales in Australia in 1986.

The main advantages of the vanadium redox battery are that it can offer almost unlimited energy capacity simply by using larger electrolyte storage tanks; it can be left completely discharged for long periods with no ill effects; if the electrolytes are accidentally mixed, the battery suffers no permanent damage; a single state of charge between the two electrolytes avoids the capacity degradation due to a single cell in non-flow batteries; the electrolyte is aqueous and inherently safe and non-flammable; and the generation 3 formulation using a mixed acid solution developed by the Pacific Northwest National Laboratory operates over a wider temperature range allowing for passive cooling. VRFBs can be used at depth of discharge (DOD) around 90% and more, i.e. deeper DODs than solid-state batteries (e.g. lithium-based and sodium-based batteries, which are usually specified with DOD=80%). In addition, VRFBs exhibit very long cycle lives: most producers specify cycle durability in excess of 15,000-20,000 charge/discharge cycles. These values are far beyond the cycle lives of solid-state batteries, which is usually in the order of 4,000-5,000 charge/discharge cycles. Consequently, the levelized cost of energy (LCOE, i.e. the system cost divided by the usable energy, the cycle life, and round-trip efficiency) of present VRFB systems is typically in the order of a few tens of $ cents or € cents, namely much lower than the LCOEs of equivalent solid-state batteries and close to the targets of $0.05 and €0.05, stated by the US Department of Energy and the European Commission Strategic Energy Technology (SET) Plan, respectively.

The main disadvantages with vanadium redox technology are a relatively poor energy-to-volume ratio in comparison with standard storage batteries (although the Generation 3 formulation has doubled the energy density  of the system), and the aqueous electrolyte makes the battery heavy and therefore only useful for stationary applications. Another disadvantage is the relatively high toxicity of oxides of vanadium.

Numerous companies and organizations involved in funding and developing vanadium redox batteries include Avalon Battery, Vionx (formerly Premium Power), UniEnergy Technologies and Ashlawn Energy in the United States; Renewable Energy Dynamics Technology in Ireland; Enerox GmbH (formerly Gildemeister energy storage) in Austria; Cellennium in Thailand; Rongke Power in China; Prudent Energy in China; Sumitomo in Japan; H2, Inc. in South Korea; redT in Britain, Australian Vanadium in Australia, and the now defunct Imergy (formerly Deeya). Lately, also several smaller size vanadium redox flow batteries were brought to market (for residential applications) mainly from StorEn Technologies (USA), Schmid Group, VoltStorage  and Volterion  (all three from Germany), VisBlue  (Denmark) or Pinflow energy storage  (Czechia).

Operation

Diagram of a vanadium flow battery
 
A vanadium redox battery consists of an assembly of power cells in which the two electrolytes are separated by a proton exchange membrane. The electrodes in a VRB cell are carbon based; the most common types being carbon felt, carbon paper, carbon cloth, and graphite felt. Recently, carbon nanotube based electrodes have gained marked interest from the scientific community. Both electrolytes are vanadium-based, the electrolyte in the positive half-cells contains VO2+ and VO2+ ions, the electrolyte in the negative half-cells, V3+ and V2+ ions. The electrolytes may be prepared by any of several processes, including electrolytically dissolving vanadium pentoxide (V2O5) in sulfuric acid (H2SO4). The solution remains strongly acidic in use. 

In vanadium flow batteries, both half-cells are additionally connected to storage tanks and pumps so that very large volumes of the electrolytes can be circulated through the cell. This circulation of liquid electrolytes is somewhat cumbersome and does restrict the use of vanadium flow batteries in mobile applications, effectively confining them to large fixed installations.

When the vanadium battery is being charged, the VO2+ ions in the positive half-cell are converted to VO2+ ions when electrons are removed from the positive terminal of the battery. Similarly in the negative half-cell, electrons are introduced converting the V3+ ions into V2+. During discharge this process is reversed and results in a typical open-circuit voltage of 1.41 V at 25 °C. 

Other useful properties of vanadium flow batteries are their very fast response to changing loads and their extremely large overload capacities. Studies by the University of New South Wales have shown that they can achieve a response time of under half a millisecond for a 100% load change, and allowed overloads of as much as 400% for 10 seconds. The response time is mostly limited by the electrical equipment. Unless specifically designed for colder or warmer climates, most sulfuric acid-based vanadium batteries only work between about 10 and 40 °C. Below that temperature range, the ion-infused sulfuric acid crystallizes. Round trip efficiency in practical applications is around 65–75 %.

Proposed improvements

Second generation vanadium redox batteries (vanadium/bromine) may approximately double the energy density and increase the temperature range in which the battery can operate.

Specific energy and energy density

Current production vanadium redox batteries achieve a specific energy of about 20 Wh/kg (72 kJ/kg) of electrolyte. More recent research at UNSW indicates that the use of precipitation inhibitors can increase the density to about 35 Wh/kg (126 kJ/kg), with even higher densities made possible by controlling the electrolyte temperature. This specific energy is quite low compared to other rechargeable battery types (e.g., lead–acid, 30–40 Wh/kg (108–144 kJ/kg); and lithium ion, 80–200 Wh/kg (288–720 kJ/kg)).

Mechanisms of Electrode Permeation by Electrolyte

A number of research groups worldwide have reported capacity loss in VRFBs over prolonged periods of use. While several causes have been considered, the influence of electrode microstructure on cell electrochemistry within the electrode is poorly known. Electrolytic wetting of carbon electrodes in VRFBs is important for overcoming sources of degradation and applying appropriate operational procedures. Recently, it appears that electrolytic wetting behaviour within the electrode may be influenced by local concentration effects as well as capillary action. Rapid wetting or permeation may also leave behind undissolved gases which could cause electrode degradation.

Applications

The extremely large capacities possible from vanadium redox batteries make them well suited to use in large power storage applications such as helping to average out the production of highly variable generation sources such as wind or solar power, helping generators cope with large surges in demand or leveling out supply/demand at a transmission constrained region.

The limited self-discharge characteristics of vanadium redox batteries make them useful in applications where the batteries must be stored for long periods of time with little maintenance while maintaining a ready state. This has led to their adoption in some military electronics, such as the sensor components of the GATOR mine system. Their ability to fully cycle and stay at 0% state of charge makes them suitable for solar + storage applications where the battery must start each day empty and fill up depending upon the load and weather. Lithium ion batteries, for example, are typically damaged when they are allowed to discharge below 20% state of charge, so they typically only operate between about 20% and 100%, meaning they are only using 80% of their nameplate capacity.

Their extremely rapid response times also make them superbly well suited to uninterruptible power supply (UPS) type applications, where they can be used to replace lead–acid batteries and even diesel generators. Also the fast response time makes them well-suited for frequency regulation. Economically neither the UPS or frequency regulation applications of the battery are currently sustainable alone, but rather the battery is able to layer these applications with other uses to capitalize on various sources of revenue. Also, these capabilities make vanadium redox batteries an effective "all-in-one" solution for microgrids that depend on reliable operations, frequency regulation and have a need for load shifting (from either high renewable penetration, a highly variable load or desire to optimize generator efficiency through time-shifting dispatch).

Largest vanadium grid batteries

A 200 MW, 800 MWh (4 hours) vanadium redox battery is under construction in China; it was expected to be completed by 2018 and its 250 kW/ 1MWh first stage was in operation in late 2018.

Education

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Education Education is the transmissio...