Search This Blog

Sunday, December 19, 2021

Life on Mars

From Wikipedia, the free encyclopedia
An example of Mars terraformed with a biosphere
 
Another artist's conception of the terraformed Mars

The possibility of life on Mars is a subject of interest in astrobiology due to its proximity and similarities to Earth. To date, no proof of past or present life has been found on Mars. Cumulative evidence suggests that during the ancient Noachian time period, the surface environment of Mars had liquid water and may have been habitable for microorganisms, but habitable conditions do not necessarily indicate life.

Scientific searches for evidence of life began in the 19th century and continue today via telescopic investigations and deployed probes. While early work focused on phenomenology and bordered on fantasy, the modern scientific inquiry has emphasized the search for water, chemical biosignatures in the soil and rocks at the planet's surface, and biomarker gases in the atmosphere.

Mars is of particular interest for the study of the origins of life because of its similarity to the early Earth. This is especially true since Mars has a cold climate and lacks plate tectonics or continental drift, so it has remained almost unchanged since the end of the Hesperian period. At least two-thirds of Mars's surface is more than 3.5 billion years old, and Mars may thus hold the best record of the prebiotic conditions leading to life, even if life does not or has never existed there, which might have started developing as early as 4.48 billion years ago.

Following the confirmation of the past existence of surface liquid water, the Curiosity, Perseverance and Opportunity rovers started searching for evidence of past life, including a past biosphere based on autotrophic, chemotrophic, or chemolithoautotrophic microorganisms, as well as ancient water, including fluvio-lacustrine environments (plains related to ancient rivers or lakes) that may have been habitable. The search for evidence of habitability, taphonomy (related to fossils), and organic compounds on Mars is now a primary NASA and ESA objective.

The findings of organic compounds inside sedimentary rocks and of boron on Mars are of interest as they are precursors for prebiotic chemistry. Such findings, along with previous discoveries that liquid water was clearly present on ancient Mars, further supports the possible early habitability of Gale Crater on Mars. Currently, the surface of Mars is bathed with ionizing radiation, and Martian soil is rich in perchlorates toxic to microorganisms. Therefore, the consensus is that if life exists—or existed—on Mars, it could be found or is best preserved in the subsurface, away from present-day harsh surface processes.

In June 2018, NASA announced the detection of seasonal variation of methane levels on Mars. Methane could be produced by microorganisms or by geological means. The European ExoMars Trace Gas Orbiter started mapping the atmospheric methane in April 2018, and the 2022 ExoMars rover Rosalind Franklin will drill and analyze subsurface samples, while the NASA Mars 2020 rover Perseverance, having landed successfully, will cache dozens of drill samples for their potential transport to Earth laboratories in the late 2020s or 2030s. As of February 8, 2021, an updated status of studies considering the possible detection of lifeforms on Venus (via phosphine) and Mars (via methane) was reported.

Early speculation

Historical map of Mars from Giovanni Schiaparelli
 
Mars canals illustrated by astronomer Percival Lowell, 1898

Mars's polar ice caps were discovered in the mid-17th century. In the late 18th century, William Herschel proved they grow and shrink alternately, in the summer and winter of each hemisphere. By the mid-19th century, astronomers knew that Mars had certain other similarities to Earth, for example that the length of a day on Mars was almost the same as a day on Earth. They also knew that its axial tilt was similar to Earth's, which meant it experienced seasons just as Earth does—but of nearly double the length owing to its much longer year. These observations led to increasing speculation that the darker albedo features were water and the brighter ones were land, whence followed speculation on whether Mars may be inhabited by some form of life.

In 1854, William Whewell, a fellow of Trinity College, Cambridge, theorized that Mars had seas, land and possibly life forms. Speculation about life on Mars exploded in the late 19th century, following telescopic observation by some observers of apparent Martian canals—which were later found to be optical illusions. Despite this, in 1895, American astronomer Percival Lowell published his book Mars, followed by Mars and its Canals in 1906, proposing that the canals were the work of a long-gone civilization. This idea led British writer H. G. Wells to write The War of the Worlds in 1897, telling of an invasion by aliens from Mars who were fleeing the planet's desiccation.

Spectroscopic analysis of Mars's atmosphere began in earnest in 1894, when U.S. astronomer William Wallace Campbell showed that neither water nor oxygen were present in the Martian atmosphere. The influential observer Eugène Antoniadi used the 83-cm (32.6 inch) aperture telescope at Meudon Observatory at the 1909 opposition of Mars and saw no canals, the outstanding photos of Mars taken at the new Baillaud dome at the Pic du Midi observatory also brought formal discredit to the Martian canals theory in 1909, and the notion of canals began to fall out of favor.

Habitability

Chemical, physical, geological, and geographic attributes shape the environments on Mars. Isolated measurements of these factors may be insufficient to deem an environment habitable, but the sum of measurements can help predict locations with greater or lesser habitability potential. The two current ecological approaches for predicting the potential habitability of the Martian surface use 19 or 20 environmental factors, with an emphasis on water availability, temperature, the presence of nutrients, an energy source, and protection from solar ultraviolet and galactic cosmic radiation.

Scientists do not know the minimum number of parameters for determination of habitability potential, but they are certain it is greater than one or two of the factors in the table below. Similarly, for each group of parameters, the habitability threshold for each is to be determined. Laboratory simulations show that whenever multiple lethal factors are combined, the survival rates plummet quickly. There are no full-Mars simulations published yet that include all of the biocidal factors combined. Furthermore, the possibility of Martian life having a far different biochemistry and habitability requirements than the terrestrial biosphere is an open question.

Habitability factors
Water
Chemical environment
  • Nutrients:
    • C, H, N, O, P, S, essential metals, essential micronutrients
    • Fixed nitrogen
    • Availability/mineralogy
  • Toxin abundances and lethality:
    • Heavy metals (e.g., Zn, Ni, Cu, Cr, As, Cd, etc., some essential, but toxic at high levels)
    • Globally distributed oxidizing soils
Energy for metabolism
Conducive
physical conditions
  • Temperature
  • Extreme diurnal temperature fluctuations
  • Low pressure (Is there a low-pressure threshold for terrestrial anaerobes?)
  • Strong ultraviolet germicidal irradiation
  • Galactic cosmic radiation and solar particle events (long-term accumulated effects)
  • Solar UV-induced volatile oxidants, e.g., O2, O, H2O2, O3
  • Climate/variability (geography, seasons, diurnal, and eventually, obliquity variations)
  • Substrate (soil processes, rock microenvironments, dust composition, shielding)
  • High CO2 concentrations in the global atmosphere
  • Transport (aeolian, groundwater flow, surface water, glacial)

Past

Recent models have shown that, even with a dense CO2 atmosphere, early Mars was colder than Earth has ever been. Transiently warm conditions related to impacts or volcanism could have produced conditions favoring the formation of the late Noachian valley networks, even though the mid-late Noachian global conditions were probably icy. Local warming of the environment by volcanism and impacts would have been sporadic, but there should have been many events of water flowing at the surface of Mars. Both the mineralogical and the morphological evidence indicates a degradation of habitability from the mid Hesperian onward. The exact causes are not well understood but may be related to a combination of processes including loss of early atmosphere, or impact erosion, or both.

Alga crater is thought to have deposits of impact glass that may have preserved ancient biosignatures, if present during the impact.

The loss of the Martian magnetic field strongly affected surface environments through atmospheric loss and increased radiation; this change significantly degraded surface habitability. When there was a magnetic field, the atmosphere would have been protected from erosion by the solar wind, which would ensure the maintenance of a dense atmosphere, necessary for liquid water to exist on the surface of Mars. The loss of the atmosphere was accompanied by decreasing temperatures. Part of the liquid water inventory sublimed and was transported to the poles, while the rest became trapped in permafrost, a subsurface ice layer.

Observations on Earth and numerical modeling have shown that a crater-forming impact can result in the creation of a long-lasting hydrothermal system when ice is present in the crust. For example, a 130 km large crater could sustain an active hydrothermal system for up to 2 million years, that is, long enough for microscopic life to emerge, but unlikely to have progressed any further down the evolutionary path.

Soil and rock samples studied in 2013 by NASA's Curiosity rover's onboard instruments brought about additional information on several habitability factors. The rover team identified some of the key chemical ingredients for life in this soil, including sulfur, nitrogen, hydrogen, oxygen, phosphorus and possibly carbon, as well as clay minerals, suggesting a long-ago aqueous environment—perhaps a lake or an ancient streambed—that had neutral acidity and low salinity. On December 9, 2013, NASA reported that, based on evidence from Curiosity studying Aeolis Palus, Gale Crater contained an ancient freshwater lake which could have been a hospitable environment for microbial life. The confirmation that liquid water once flowed on Mars, the existence of nutrients, and the previous discovery of a past magnetic field that protected the planet from cosmic and solar radiation, together strongly suggest that Mars could have had the environmental factors to support life. The assessment of past habitability is not in itself evidence that Martian life has ever actually existed. If it did, it was probably microbial, existing communally in fluids or on sediments, either free-living or as biofilms, respectively. The exploration of terrestrial analogues provide clues as to how and where best look for signs of life on Mars.

Impactite, shown to preserve signs of life on Earth, was discovered on Mars and could contain signs of ancient life, if life ever existed on the planet.

On June 7, 2018, NASA announced that the Curiosity rover had discovered organic molecules in sedimentary rocks dating to three billion years old. The detection of organic molecules in rocks indicate that some of the building blocks for life were present.

Present

Conceivably, if life exists (or existed) on Mars, evidence of life could be found, or is best preserved, in the subsurface, away from present-day harsh surface conditions. Present-day life on Mars, or its biosignatures, could occur kilometers below the surface, or in subsurface geothermal hot spots, or it could occur a few meters below the surface. The permafrost layer on Mars is only a couple of centimeters below the surface, and salty brines can be liquid a few centimeters below that but not far down. Water is close to its boiling point even at the deepest points in the Hellas basin, and so cannot remain liquid for long on the surface of Mars in its present state, except after a sudden release of underground water.

So far, NASA has pursued a "follow the water" strategy on Mars and has not searched for biosignatures for life there directly since the Viking missions. The consensus by astrobiologists is that it may be necessary to access the Martian subsurface to find currently habitable environments.

Cosmic radiation

In 1965, the Mariner 4 probe discovered that Mars had no global magnetic field that would protect the planet from potentially life-threatening cosmic radiation and solar radiation; observations made in the late 1990s by the Mars Global Surveyor confirmed this discovery. Scientists speculate that the lack of magnetic shielding helped the solar wind blow away much of Mars's atmosphere over the course of several billion years. As a result, the planet has been vulnerable to radiation from space for about 4 billion years.

Recent in-situ data from Curiosity rover indicates that ionizing radiation from galactic cosmic rays (GCR) and solar particle events (SPE) may not be a limiting factor in habitability assessments for present-day surface life on Mars. The level of 76 mGy per year measured by Curiosity is similar to levels inside the ISS.

Cumulative effects

Curiosity rover measured ionizing radiation levels of 76 mGy per year. This level of ionizing radiation is sterilizing for dormant life on the surface of Mars. It varies considerably in habitability depending on its orbital eccentricity and the tilt of its axis. If the surface life has been reanimated as recently as 450,000 years ago, then rovers on Mars could find dormant but still viable life at a depth of one meter below the surface, according to an estimate. Even the hardiest cells known could not possibly survive the cosmic radiation near the surface of Mars since Mars lost its protective magnetosphere and atmosphere. After mapping cosmic radiation levels at various depths on Mars, researchers have concluded that over time, any life within the first several meters of the planet's surface would be killed by lethal doses of cosmic radiation. The team calculated that the cumulative damage to DNA and RNA by cosmic radiation would limit retrieving viable dormant cells on Mars to depths greater than 7.5 meters below the planet's surface. Even the most radiation-tolerant terrestrial bacteria would survive in dormant spore state only 18,000 years at the surface; at 2 meters—the greatest depth at which the ExoMars rover will be capable of reaching—survival time would be 90,000 to half a million years, depending on the type of rock.

Data collected by the Radiation assessment detector (RAD) instrument on board the Curiosity rover revealed that the absorbed dose measured is 76 mGy/year at the surface, and that "ionizing radiation strongly influences chemical compositions and structures, especially for water, salts, and redox-sensitive components such as organic molecules." Regardless of the source of Martian organic compounds (meteoric, geological, or biological), its carbon bonds are susceptible to breaking and reconfiguring with surrounding elements by ionizing charged particle radiation. These improved subsurface radiation estimates give insight into the potential for the preservation of possible organic biosignatures as a function of depth as well as survival times of possible microbial or bacterial life forms left dormant beneath the surface. The report concludes that the in situ "surface measurements—and subsurface estimates—constrain the preservation window for Martian organic matter following exhumation and exposure to ionizing radiation in the top few meters of the Martian surface."

In September 2017, NASA reported Radiation levels on the surface of the planet Mars were temporarily doubled and were associated with an aurora 25 times brighter than any observed earlier, due to a major, and unexpected, solar storm in the middle of the month.

UV radiation

On UV radiation, a 2014 report concludes  that "[T]he Martian UV radiation environment is rapidly lethal to unshielded microbes but can be attenuated by global dust storms and shielded completely by < 1 mm of regolith or by other organisms." In addition, laboratory research published in July 2017 demonstrated that UV irradiated perchlorates cause a 10.8-fold increase in cell death when compared to cells exposed to UV radiation after 60 seconds of exposure. The penetration depth of UV radiation into soils is in the sub-millimeter to millimeter range and depends on the properties of the soil.

Perchlorates

The Martian regolith is known to contain a maximum of 0.5% (w/v) perchlorate (ClO4) that is toxic for most living organisms, but since they drastically lower the freezing point of water and a few extremophiles can use it as an energy source (see Perchlorates - Biology) and grow at concentrations of up to 30% (w/v) sodium perchlorate, it has prompted speculation of what their influence would be on habitability.

Research published in July 2017 shows that when irradiated with a simulated Martian UV flux, perchlorates become even more lethal to bacteria (bactericide). Even dormant spores lost viability within minutes. In addition, two other compounds of the Martian surface, iron oxides and hydrogen peroxide, act in synergy with irradiated perchlorates to cause a 10.8-fold increase in cell death when compared to cells exposed to UV radiation after 60 seconds of exposure. It was also found that abraded silicates (quartz and basalt) lead to the formation of toxic reactive oxygen species. The researchers concluded that "the surface of Mars is lethal to vegetative cells and renders much of the surface and near-surface regions uninhabitable." This research demonstrates that the present-day surface is more uninhabitable than previously thought, and reinforces the notion to inspect at least a few meters into the ground to ensure the levels of radiation would be relatively low.

However, researcher Kennda Lynch discovered the first-known instance of a habitat containing perchlorates and perchlorates-reducing bacteria in an analog environment: a paleolake in Pilot Valley, Great Salt Lake Desert, Utah. She has been studying the biosignatures of these microbes, and is hoping that the Mars Perseverance rover will find matching biosignatures at its Jezero Crater site.[79][80]

Recurrent slope lineae

Recurrent slope lineae (RSL) features form on Sun-facing slopes at times of the year when the local temperatures reach above the melting point for ice. The streaks grow in spring, widen in late summer and then fade away in autumn. This is hard to model in any other way except as involving liquid water in some form, though the streaks themselves are thought to be a secondary effect and not a direct indication of the dampness of the regolith. Although these features are now confirmed to involve liquid water in some form, the water could be either too cold or too salty for life. At present they are treated as potentially habitable, as "Uncertain Regions, to be treated as Special Regions".). They were suspected as involving flowing brines back then.

The thermodynamic availability of water (water activity) strictly limits microbial propagation on Earth, particularly in hypersaline environments, and there are indications that the brine ionic strength is a barrier to the habitability of Mars. Experiments show that high ionic strength, driven to extremes on Mars by the ubiquitous occurrence of divalent ions, "renders these environments uninhabitable despite the presence of biologically available water."

Nitrogen fixation

After carbon, nitrogen is arguably the most important element needed for life. Thus, measurements of nitrate over the range of 0.1% to 5% are required to address the question of its occurrence and distribution. There is nitrogen (as N2) in the atmosphere at low levels, but this is not adequate to support nitrogen fixation for biological incorporation. Nitrogen in the form of nitrate could be a resource for human exploration both as a nutrient for plant growth and for use in chemical processes. On Earth, nitrates correlate with perchlorates in desert environments, and this may also be true on Mars. Nitrate is expected to be stable on Mars and to have formed by thermal shock from impact or volcanic plume lightning on ancient Mars.

On March 24, 2015, NASA reported that the SAM instrument on the Curiosity rover detected nitrates by heating surface sediments. The nitrogen in nitrate is in a "fixed" state, meaning that it is in an oxidized form that can be used by living organisms. The discovery supports the notion that ancient Mars may have been hospitable for life. It is suspected that all nitrate on Mars is a relic, with no modern contribution. Nitrate abundance ranges from non-detection to 681 ± 304 mg/kg in the samples examined until late 2017. Modeling indicates that the transient condensed water films on the surface should be transported to lower depths (≈10 m) potentially transporting nitrates, where subsurface microorganisms could thrive.

In contrast, phosphate, one of the chemical nutrients thought to be essential for life, is readily available on Mars.

Low pressure

Further complicating estimates of the habitability of the Martian surface is the fact that very little is known about the growth of microorganisms at pressures close to those on the surface of Mars. Some teams determined that some bacteria may be capable of cellular replication down to 25 mbar, but that is still above the atmospheric pressures found on Mars (range 1–14 mbar). In another study, twenty-six strains of bacteria were chosen based on their recovery from spacecraft assembly facilities, and only Serratia liquefaciens strain ATCC 27592 exhibited growth at 7 mbar, 0 °C, and CO2-enriched anoxic atmospheres.

Liquid water

Liquid water is a necessary but not sufficient condition for life as humans know it, as habitability is a function of a multitude of environmental parameters. Liquid water cannot exist on the surface of Mars except at the lowest elevations for minutes or hours. Liquid water does not appear at the surface itself, but it could form in minuscule amounts around dust particles in snow heated by the Sun. Also, the ancient equatorial ice sheets beneath the ground may slowly sublimate or melt, accessible from the surface via caves.

Mars - Utopia Planitia
Scalloped terrain led to the discovery of a large amount of underground ice
enough water to fill Lake Superior (November 22, 2016)
Martian terrain
 
Map of terrain

Water on Mars exists almost exclusively as water ice, located in the Martian polar ice caps and under the shallow Martian surface even at more temperate latitudes. A small amount of water vapor is present in the atmosphere. There are no bodies of liquid water on the Martian surface because its atmospheric pressure at the surface averages 600 pascals (0.087 psi)—about 0.6% of Earth's mean sea level pressure—and because the temperature is far too low, (210 K (−63 °C)) leading to immediate freezing. Despite this, about 3.8 billion years ago, there was a denser atmosphere, higher temperature, and vast amounts of liquid water flowed on the surface, including large oceans.

A series of artist's conceptions of past water coverage on Mars
 

It has been estimated that the primordial oceans on Mars would have covered between 36% and 75% of the planet. On November 22, 2016, NASA reported finding a large amount of underground ice in the Utopia Planitia region of Mars. The volume of water detected has been estimated to be equivalent to the volume of water in Lake Superior. Analysis of Martian sandstones, using data obtained from orbital spectrometry, suggests that the waters that previously existed on the surface of Mars would have had too high a salinity to support most Earth-like life. Tosca et al. found that the Martian water in the locations they studied all had water activity, aw ≤ 0.78 to 0.86—a level fatal to most Terrestrial life. Haloarchaea, however, are able to live in hypersaline solutions, up to the saturation point.

In June 2000, possible evidence for current liquid water flowing at the surface of Mars was discovered in the form of flood-like gullies. Additional similar images were published in 2006, taken by the Mars Global Surveyor, that suggested that water occasionally flows on the surface of Mars. The images showed changes in steep crater walls and sediment deposits, providing the strongest evidence yet that water coursed through them as recently as several years ago.

There is disagreement in the scientific community as to whether or not the recent gully streaks were formed by liquid water. Some suggest the flows were merely dry sand flows. Others suggest it may be liquid brine near the surface, but the exact source of the water and the mechanism behind its motion are not understood.

In July 2018, scientists reported the discovery of a subglacial lake on Mars, 1.5 km (0.93 mi) below the southern polar ice cap, and extending sideways about 20 km (12 mi), the first known stable body of water on the planet. The lake was discovered using the MARSIS radar on board the Mars Express orbiter, and the profiles were collected between May 2012 and December 2015. The lake is centered at 193°E, 81°S, a flat area that does not exhibit any peculiar topographic characteristics but is surrounded by higher ground, except on its eastern side, where there is a depression.

Silica

The silica-rich patch discovered by Spirit rover

In May 2007, the Spirit rover disturbed a patch of ground with its inoperative wheel, uncovering an area 90% rich in silica. The feature is reminiscent of the effect of hot spring water or steam coming into contact with volcanic rocks. Scientists consider this as evidence of a past environment that may have been favorable for microbial life and theorize that one possible origin for the silica may have been produced by the interaction of soil with acid vapors produced by volcanic activity in the presence of water.

Based on Earth analogs, hydrothermal systems on Mars would be highly attractive for their potential for preserving organic and inorganic biosignatures. For this reason, hydrothermal deposits are regarded as important targets in the exploration for fossil evidence of ancient Martian life.

Possible biosignatures

In May 2017, evidence of the earliest known life on land on Earth may have been found in 3.48-billion-year-old geyserite and other related mineral deposits (often found around hot springs and geysers) uncovered in the Pilbara Craton of Western Australia. These findings may be helpful in deciding where best to search for early signs of life on the planet Mars.

Methane

Methane (CH4) is chemically unstable in the current oxidizing atmosphere of Mars. It would quickly break down due to ultraviolet radiation from the Sun and chemical reactions with other gases. Therefore, a persistent presence of methane in the atmosphere may imply the existence of a source to continually replenish the gas.

Trace amounts of methane, at the level of several parts per billion (ppb), were first reported in Mars's atmosphere by a team at the NASA Goddard Space Flight Center in 2003. Large differences in the abundances were measured between observations taken in 2003 and 2006, which suggested that the methane was locally concentrated and probably seasonal. On June 7, 2018, NASA announced it has detected a seasonal variation of methane levels on Mars.

The ExoMars Trace Gas Orbiter (TGO), launched in March 2016, began on April 21, 2018, to map the concentration and sources of methane in the atmosphere, as well as its decomposition products such as formaldehyde and methanol. As of May 2019, the Trace Gas Orbiter showed that the concentration of methane is under detectable level (< 0.05 ppbv).

Curiosity detected a cyclical seasonal variation in atmospheric methane.

The principal candidates for the origin of Mars's methane include non-biological processes such as water-rock reactions, radiolysis of water, and pyrite formation, all of which produce H2 that could then generate methane and other hydrocarbons via Fischer–Tropsch synthesis with CO and CO2. It has also been shown that methane could be produced by a process involving water, carbon dioxide, and the mineral olivine, which is known to be common on Mars. Although geologic sources of methane such as serpentinization are possible, the lack of current volcanism, hydrothermal activity or hotspots are not favorable for geologic methane.

Living microorganisms, such as methanogens, are another possible source, but no evidence for the presence of such organisms has been found on Mars, until June 2019 as methane was detected by the Curiosity rover. Methanogens do not require oxygen or organic nutrients, are non-photosynthetic, use hydrogen as their energy source and carbon dioxide (CO2) as their carbon source, so they could exist in subsurface environments on Mars. If microscopic Martian life is producing the methane, it probably resides far below the surface, where it is still warm enough for liquid water to exist.

Since the 2003 discovery of methane in the atmosphere, some scientists have been designing models and in vitro experiments testing the growth of methanogenic bacteria on simulated Martian soil, where all four methanogen strains tested produced substantial levels of methane, even in the presence of 1.0wt% perchlorate salt.

A team led by Levin suggested that both phenomena—methane production and degradation—could be accounted for by an ecology of methane-producing and methane-consuming microorganisms.

Distribution of methane in the atmosphere of Mars in the Northern Hemisphere during summer

Research at the University of Arkansas presented in June 2015 suggested that some methanogens could survive in Mars's low pressure. Rebecca Mickol found that in her laboratory, four species of methanogens survived low-pressure conditions that were similar to a subsurface liquid aquifer on Mars. The four species that she tested were Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, and Methanococcus maripaludis. In June 2012, scientists reported that measuring the ratio of hydrogen and methane levels on Mars may help determine the likelihood of life on Mars. According to the scientists, "low H2/CH4 ratios (less than approximately 40)" would "indicate that life is likely present and active". The observed ratios in the lower Martian atmosphere were "approximately 10 times" higher "suggesting that biological processes may not be responsible for the observed CH4". The scientists suggested measuring the H2 and CH4 flux at the Martian surface for a more accurate assessment. Other scientists have recently reported methods of detecting hydrogen and methane in extraterrestrial atmospheres.

Even if rover missions determine that microscopic Martian life is the seasonal source of the methane, the life forms probably reside far below the surface, outside of the rover's reach.

Formaldehyde

In February 2005, it was announced that the Planetary Fourier Spectrometer (PFS) on the European Space Agency's Mars Express Orbiter had detected traces of formaldehyde in the atmosphere of Mars. Vittorio Formisano, the director of the PFS, has speculated that the formaldehyde could be the byproduct of the oxidation of methane and, according to him, would provide evidence that Mars is either extremely geologically active or harboring colonies of microbial life. NASA scientists consider the preliminary findings well worth a follow-up but have also rejected the claims of life.

Viking lander biological experiments

The 1970s Viking program placed two identical landers on the surface of Mars tasked to look for biosignatures of microbial life on the surface. Of the four experiments performed by each Viking lander, only the 'Labeled Release' (LR) experiment gave a positive result for metabolism, while the other three did not detect organic compounds. The LR was a specific experiment designed to test only a narrowly defined critical aspect of the theory concerning the possibility of life on Mars; therefore, the overall results were declared inconclusive. No Mars lander mission has found meaningful traces of biomolecules or biosignatures. The claim of extant microbial life on Mars is based on old data collected by the Viking landers, currently reinterpreted as sufficient evidence of life, mainly by Gilbert Levin, Joseph D. Miller, Navarro, Giorgio Bianciardi and Patricia Ann Straat, that the Viking LR experiments detected extant microbial life on Mars.

Assessments published in December 2010 by Rafael Navarro-Gonzáles indicate that organic compounds "could have been present" in the soil analyzed by both Viking 1 and 2. The study determined that perchlorate—discovered in 2008 by Phoenix lander—can destroy organic compounds when heated, and produce chloromethane and dichloromethane as a byproduct, the identical chlorine compounds discovered by both Viking landers when they performed the same tests on Mars. Because perchlorate would have broken down any Martian organics, the question of whether or not Viking found organic compounds is still wide open.

The Labeled Release evidence was not generally accepted initially, and, to this day lacks the consensus of the scientific community.

Meteorites

As of 2018, there are 224 known Martian meteorites (some of which were found in several fragments). These are valuable because they are the only physical samples of Mars available to Earth-bound laboratories. Some researchers have argued that microscopic morphological features found in ALH84001 are biomorphs, however this interpretation has been highly controversial and is not supported by the majority of researchers in the field.

Seven criteria have been established for the recognition of past life within terrestrial geologic samples. Those criteria are:

  1. Is the geologic context of the sample compatible with past life?
  2. Is the age of the sample and its stratigraphic location compatible with possible life?
  3. Does the sample contain evidence of cellular morphology and colonies?
  4. Is there any evidence of biominerals showing chemical or mineral disequilibria?
  5. Is there any evidence of stable isotope patterns unique to biology?
  6. Are there any organic biomarkers present?
  7. Are the features indigenous to the sample?

For general acceptance of past life in a geologic sample, essentially most or all of these criteria must be met. All seven criteria have not yet been met for any of the Martian samples.

ALH84001

An electron microscope reveals bacteria-like structures in meteorite fragment ALH84001

In 1996, the Martian meteorite ALH84001, a specimen that is much older than the majority of Martian meteorites that have been recovered so far, received considerable attention when a group of NASA scientists led by David S. McKay reported microscopic features and geochemical anomalies that they considered to be best explained by the rock having hosted Martian bacteria in the distant past. Some of these features resembled terrestrial bacteria, aside from their being much smaller than any known form of life. Much controversy arose over this claim, and ultimately all of the evidence McKay's team cited as evidence of life was found to be explainable by non-biological processes. Although the scientific community has largely rejected the claim ALH 84001 contains evidence of ancient Martian life, the controversy associated with it is now seen as a historically significant moment in the development of exobiology.

Nakhla

The Nakhla meteorite fell on Earth on June 28, 1911, on the locality of Nakhla, Alexandria, Egypt.

In 1998, a team from NASA's Johnson Space Center obtained a small sample for analysis. Researchers found preterrestrial aqueous alteration phases and objects of the size and shape consistent with Earthly fossilized nanobacteria. Analysis with gas chromatography and mass spectrometry (GC-MS) studied its high molecular weight polycyclic aromatic hydrocarbons in 2000, and NASA scientists concluded that as much as 75% of the organic compounds in Nakhla "may not be recent terrestrial contamination".

This caused additional interest in this meteorite, so in 2006, NASA managed to obtain an additional and larger sample from the London Natural History Museum. On this second sample, a large dendritic carbon content was observed. When the results and evidence were published in 2006, some independent researchers claimed that the carbon deposits are of biologic origin. It was remarked that since carbon is the fourth most abundant element in the Universe, finding it in curious patterns is not indicative or suggestive of biological origin.

Shergotty

The Shergotty meteorite, a 4 kilograms (8.8 lb) Martian meteorite, fell on Earth on Shergotty, India on August 25, 1865, and was retrieved by witnesses almost immediately. It is composed mostly of pyroxene and thought to have undergone preterrestrial aqueous alteration for several centuries. Certain features in its interior suggest remnants of a biofilm and its associated microbial communities.

Yamato 000593

Yamato 000593 is the second largest meteorite from Mars found on Earth. Studies suggest the Martian meteorite was formed about 1.3 billion years ago from a lava flow on Mars. An impact occurred on Mars about 12 million years ago and ejected the meteorite from the Martian surface into space. The meteorite landed on Earth in Antarctica about 50,000 years ago. The mass of the meteorite is 13.7 kg (30 lb) and it has been found to contain evidence of past water movement. At a microscopic level, spheres are found in the meteorite that are rich in carbon compared to surrounding areas that lack such spheres. The carbon-rich spheres may have been formed by biotic activity according to NASA scientists.

Ichnofossil-like structures

Organism–substrate interactions and their products are important biosignatures on Earth as they represent direct evidence of biological behaviour. It was the recovery of fossilized products of life-substrate interactions (ichnofossils) that has revealed biological activities in the early history of life on the Earth,e.g., Proterozoic burrows, Archean microborings and stromatolites. Two major ichnofossil-like structures have been reported from Mars, i.e. the stick-like structures from Vera Rubin Ridge and the microtunnels from Martian Meteorites.

Observations at Vera Rubin Ridge by the Mars Space Laboratory rover Curiosity show millimetric, elongate structures preserved in sedimentary rocks deposited in fluvio-lacustrine environments within Gale Crater. Morphometric and topologic data are unique to the stick-like structures among Martian geological features and show that ichnofossils are among the closest morphological analogues of these unique features. Nevertheless, available data cannot fully disprove two major abiotic hypotheses, that are sedimentary cracking and evaporitic crystal growth as genetic processes for the structures.

Microtunnels have been described from Martian meteorites. They consist of straight to curved microtunnels that may contain areas of enhanced carbon abundance. The morphology of the curved microtunnels is consistent with biogenic traces on Earth, including microbioerosion traces observed in basaltic glasses. Further studies are needed to confirm biogenicity.

Geysers

Artist's concept showing sand-laden jets erupt from geysers on Mars.
 
Close up of dark dune spots, probably created by cold geyser-like eruptions.

The seasonal frosting and defrosting of the southern ice cap results in the formation of spider-like radial channels carved on 1-meter thick ice by sunlight. Then, sublimed CO2 – and probably water – increase pressure in their interior producing geyser-like eruptions of cold fluids often mixed with dark basaltic sand or mud. This process is rapid, observed happening in the space of a few days, weeks or months, a growth rate rather unusual in geology – especially for Mars.

A team of Hungarian scientists propose that the geysers' most visible features, dark dune spots and spider channels, may be colonies of photosynthetic Martian microorganisms, which over-winter beneath the ice cap, and as the sunlight returns to the pole during early spring, light penetrates the ice, the microorganisms photosynthesize and heat their immediate surroundings. A pocket of liquid water, which would normally evaporate instantly in the thin Martian atmosphere, is trapped around them by the overlying ice. As this ice layer thins, the microorganisms show through grey. When the layer has completely melted, the microorganisms rapidly desiccate and turn black, surrounded by a grey aureole. The Hungarian scientists believe that even a complex sublimation process is insufficient to explain the formation and evolution of the dark dune spots in space and time. Since their discovery, fiction writer Arthur C. Clarke promoted these formations as deserving of study from an astrobiological perspective.

A multinational European team suggests that if liquid water is present in the spiders' channels during their annual defrost cycle, they might provide a niche where certain microscopic life forms could have retreated and adapted while sheltered from solar radiation. A British team also considers the possibility that organic matter, microbes, or even simple plants might co-exist with these inorganic formations, especially if the mechanism includes liquid water and a geothermal energy source. They also remark that the majority of geological structures may be accounted for without invoking any organic "life on Mars" hypothesis. It has been proposed to develop the Mars Geyser Hopper lander to study the geysers up close.

Forward contamination

Planetary protection of Mars aims to prevent biological contamination of the planet. A major goal is to preserve the planetary record of natural processes by preventing human-caused microbial introductions, also called forward contamination. There is abundant evidence as to what can happen when organisms from regions on Earth that have been isolated from one another for significant periods of time are introduced into each other's environment. Species that are constrained in one environment can thrive – often out of control – in another environment much to the detriment of the original species that were present. In some ways, this problem could be compounded if life forms from one planet were introduced into the totally alien ecology of another world.

The prime concern of hardware contaminating Mars derives from incomplete spacecraft sterilization of some hardy terrestrial bacteria (extremophiles) despite best efforts. Hardware includes landers, crashed probes, end-of-mission disposal of hardware, and the hard landing of entry, descent, and landing systems. This has prompted research on survival rates of radiation-resistant microorganisms including the species Deinococcus radiodurans and genera Brevundimonas, Rhodococcus, and Pseudomonas under simulated Martian conditions. Results from one of these experimental irradiation experiments, combined with previous radiation modeling, indicate that Brevundimonas sp. MV.7 emplaced only 30 cm deep in Martian dust could survive the cosmic radiation for up to 100,000 years before suffering 106 population reduction. The diurnal Mars-like cycles in temperature and relative humidity affected the viability of Deinococcus radiodurans cells quite severely. In other simulations, Deinococcus radiodurans also failed to grow under low atmospheric pressure, under 0 °C, or in the absence of oxygen.

Survival under simulated Martian conditions

Since the 1950s, researchers have used containers that simulate environmental conditions on Mars to determine the viability of a variety of lifeforms on Mars. Such devices, called "Mars jars" or "Mars simulation chambers", were first described and used in U.S. Air Force research in the 1950s by Hubertus Strughold, and popularized in civilian research by Joshua Lederberg and Carl Sagan.

On April 26, 2012, scientists reported that an extremophile lichen survived and showed remarkable results on the adaptation capacity of photosynthetic activity within the simulation time of 34 days under Martian conditions in the Mars Simulation Laboratory (MSL) maintained by the German Aerospace Center (DLR). The ability to survive in an environment is not the same as the ability to thrive, reproduce, and evolve in that same environment, necessitating further study.

Although numerous studies point to resistance to some of Mars conditions, they do so separately, and none has considered the full range of Martian surface conditions, including temperature, pressure, atmospheric composition, radiation, humidity, oxidizing regolith, and others, all at the same time and in combination. Laboratory simulations show that whenever multiple lethal factors are combined, the survival rates plummet quickly.

Water salinity and temperature

Astrobiologists funded by NASA are researching the limits of microbial life in solutions with high salt concentrations at low temperature. Any body of liquid water under the polar ice caps or underground is likely to exist under high hydrostatic pressure and have a significant salt concentration. They know that the landing site of Phoenix lander, was found to be regolith cemented with water ice and salts, and the soil samples likely contained magnesium sulfate, magnesium perchlorate, sodium perchlorate, potassium perchlorate, sodium chloride and calcium carbonate. Earth bacteria capable of growth and reproduction in the presence of highly salted solutions, called halophile or "salt-lover", were tested for survival using salts commonly found on Mars and at decreasing temperatures. The species tested include Halomonas, Marinococcus, Nesterenkonia, and Virgibacillus. Laboratory simulations show that whenever multiple Martian environmental factors are combined, the survival rates plummet quickly, however, halophile bacteria were grown in a lab in water solutions containing more than 25% of salts common on Mars, and starting in 2019, the experiments will incorporate exposure to low temperature, salts, and high pressure.

Missions

Mars-2

Mars-1 was the first spacecraft launched to Mars in 1962, but communication was lost while en route to Mars. With Mars-2 and Mars-3 in 1971–1972, information was obtained on the nature of the surface rocks and altitude profiles of the surface density of the soil, its thermal conductivity, and thermal anomalies detected on the surface of Mars. The program found that its northern polar cap has a temperature below −110 °C (−166 °F) and that the water vapor content in the atmosphere of Mars is five thousand times less than on Earth. No signs of life were found.

Mariner 4

Mariner Crater, as seen by Mariner 4 in 1965. Pictures like this suggested that Mars is too dry for any kind of life.
 
Streamlined Islands seen by Viking orbiter showed that large floods occurred on Mars. The image is located in Lunae Palus quadrangle.

Mariner 4 probe performed the first successful flyby of the planet Mars, returning the first pictures of the Martian surface in 1965. The photographs showed an arid Mars without rivers, oceans, or any signs of life. Further, it revealed that the surface (at least the parts that it photographed) was covered in craters, indicating a lack of plate tectonics and weathering of any kind for the last 4 billion years. The probe also found that Mars has no global magnetic field that would protect the planet from potentially life-threatening cosmic rays. The probe was able to calculate the atmospheric pressure on the planet to be about 0.6 kPa (compared to Earth's 101.3 kPa), meaning that liquid water could not exist on the planet's surface. After Mariner 4, the search for life on Mars changed to a search for bacteria-like living organisms rather than for multicellular organisms, as the environment was clearly too harsh for these.

Viking orbiters

Liquid water is necessary for known life and metabolism, so if water was present on Mars, the chances of it having supported life may have been determinant. The Viking orbiters found evidence of possible river valleys in many areas, erosion and, in the southern hemisphere, branched streams.

Viking biological experiments

The primary mission of the Viking probes of the mid-1970s was to carry out experiments designed to detect microorganisms in Martian soil because the favorable conditions for the evolution of multicellular organisms ceased some four billion years ago on Mars. The tests were formulated to look for microbial life similar to that found on Earth. Of the four experiments, only the Labeled Release (LR) experiment returned a positive result, showing increased 14CO2 production on first exposure of soil to water and nutrients. All scientists agree on two points from the Viking missions: that radiolabeled 14CO2 was evolved in the Labeled Release experiment, and that the GCMS detected no organic molecules. There are vastly different interpretations of what those results imply: A 2011 astrobiology textbook notes that the GCMS was the decisive factor due to which "For most of the Viking scientists, the final conclusion was that the Viking missions failed to detect life in the Martian soil."

Norman Horowitz was the head of the Jet Propulsion Laboratory bioscience section for the Mariner and Viking missions from 1965 to 1976. Horowitz considered that the great versatility of the carbon atom makes it the element most likely to provide solutions, even exotic solutions, to the problems of survival of life on other planets. However, he also considered that the conditions found on Mars were incompatible with carbon based life.

One of the designers of the Labeled Release experiment, Gilbert Levin, believes his results are a definitive diagnostic for life on Mars. Levin's interpretation is disputed by many scientists. A 2006 astrobiology textbook noted that "With unsterilized Terrestrial samples, though, the addition of more nutrients after the initial incubation would then produce still more radioactive gas as the dormant bacteria sprang into action to consume the new dose of food. This was not true of the Martian soil; on Mars, the second and third nutrient injections did not produce any further release of labeled gas." Other scientists argue that superoxides in the soil could have produced this effect without life being present. An almost general consensus discarded the Labeled Release data as evidence of life, because the gas chromatograph and mass spectrometer, designed to identify natural organic matter, did not detect organic molecules. More recently, high levels of organic chemicals, particularly chlorobenzene, were detected in powder drilled from one of the rocks, named "Cumberland", analyzed by the Curiosity rover. The results of the Viking mission concerning life are considered by the general expert community as inconclusive.

In 2007, during a Seminar of the Geophysical Laboratory of the Carnegie Institution (Washington, D.C., US), Gilbert Levin's investigation was assessed once more. Levin still maintains that his original data were correct, as the positive and negative control experiments were in order. Moreover, Levin's team, on April 12, 2012, reported a statistical speculation, based on old data—reinterpreted mathematically through cluster analysis—of the Labeled Release experiments, that may suggest evidence of "extant microbial life on Mars". Critics counter that the method has not yet been proven effective for differentiating between biological and non-biological processes on Earth so it is premature to draw any conclusions.

A research team from the National Autonomous University of Mexico headed by Rafael Navarro-González concluded that the GCMS equipment (TV-GC-MS) used by the Viking program to search for organic molecules, may not be sensitive enough to detect low levels of organics. Klaus Biemann, the principal investigator of the GCMS experiment on Viking wrote a rebuttal. Because of the simplicity of sample handling, TV–GC–MS is still considered the standard method for organic detection on future Mars missions, so Navarro-González suggests that the design of future organic instruments for Mars should include other methods of detection.

After the discovery of perchlorates on Mars by the Phoenix lander, practically the same team of Navarro-González published a paper arguing that the Viking GCMS results were compromised by the presence of perchlorates. A 2011 astrobiology textbook notes that "while perchlorate is too poor an oxidizer to reproduce the LR results (under the conditions of that experiment perchlorate does not oxidize organics), it does oxidize, and thus destroy, organics at the higher temperatures used in the Viking GCMS experiment." Biemann has written a commentary critical of this Navarro-González paper as well, to which the latter have replied; the exchange was published in December 2011.

Phoenix lander, 2008

An artist's concept of the Phoenix spacecraft

The Phoenix mission landed a robotic spacecraft in the polar region of Mars on May 25, 2008, and it operated until November 10, 2008. One of the mission's two primary objectives was to search for a "habitable zone" in the Martian regolith where microbial life could exist, the other main goal being to study the geological history of water on Mars. The lander has a 2.5 meter robotic arm that was capable of digging shallow trenches in the regolith. There was an electrochemistry experiment which analysed the ions in the regolith and the amount and type of antioxidants on Mars. The Viking program data indicate that oxidants on Mars may vary with latitude, noting that Viking 2 saw fewer oxidants than Viking 1 in its more northerly position. Phoenix landed further north still. Phoenix's preliminary data revealed that Mars soil contains perchlorate, and thus may not be as life-friendly as thought earlier. The pH and salinity level were viewed as benign from the standpoint of biology. The analysers also indicated the presence of bound water and CO2. A recent analysis of Martian meteorite EETA79001 found 0.6 ppm ClO4, 1.4 ppm ClO3, and 16 ppm NO3, most likely of Martian origin. The ClO3 suggests presence of other highly oxidizing oxychlorines such as ClO2 or ClO, produced both by UV oxidation of Cl and X-ray radiolysis of ClO4. Thus only highly refractory and/or well-protected (sub-surface) organics are likely to survive. In addition, recent analysis of the Phoenix WCL showed that the Ca(ClO4)2 in the Phoenix soil has not interacted with liquid water of any form, perhaps for as long as 600 Myr. If it had, the highly soluble Ca(ClO4)2 in contact with liquid water would have formed only CaSO4. This suggests a severely arid environment, with minimal or no liquid water interaction.

Curiosity rover self-portrait

Mars Science Laboratory

The Mars Science Laboratory mission is a NASA project that launched on November 26, 2011, the Curiosity rover, a nuclear-powered robotic vehicle, bearing instruments designed to assess past and present habitability conditions on Mars. The Curiosity rover landed on Mars on Aeolis Palus in Gale Crater, near Aeolis Mons (a.k.a. Mount Sharp), on August 6, 2012.

On December 16, 2014, NASA reported the Curiosity rover detected a "tenfold spike", likely localized, in the amount of methane in the Martian atmosphere. Sample measurements taken "a dozen times over 20 months" showed increases in late 2013 and early 2014, averaging "7 parts of methane per billion in the atmosphere". Before and after that, readings averaged around one-tenth that level. In addition, low levels of chlorobenzene (C
6
H
5
Cl
), were detected in powder drilled from one of the rocks, named "Cumberland", analyzed by the Curiosity rover. Mars 2020 rover Mars 2020 – The Mars 2020 rover is a Mars planetary rover mission by NASA, launched on 30 July 2020. It is intended to investigate an astrobiologically relevant ancient environment on Mars, investigate its surface geological processes and history, including the assessment of its past habitability and potential for preservation of biosignatures within accessible geological materials.

Methane measurements in the atmosphere of Mars
by the Curiosity rover (August 2012 to September 2014).
 
Methane (CH4) on Mars – potential sources and sinks.
 
Comparison of organic compounds in Martian rockschlorobenzene levels were much higher in the "Cumberland" rock sample.
 
Detection of organic compounds in the "Cumberland" rock sample.
 
Sample analysis at Mars (SAM) of "Cumberland" rock.

Future astrobiology missions

  • ExoMars is a European-led multi-spacecraft programme currently under development by the European Space Agency (ESA) and the Russian Federal Space Agency for launch in 2016 and 2020. Its primary scientific mission will be to search for possible biosignatures on Mars, past or present. A rover with a 2 m (6.6 ft) core drill will be used to sample various depths beneath the surface where liquid water may be found and where microorganisms or organic biosignatures might survive cosmic radiation.
  • Mars sample-return mission – The best life detection experiment proposed is the examination on Earth of a soil sample from Mars. However, the difficulty of providing and maintaining life support over the months of transit from Mars to Earth remains to be solved. Providing for still unknown environmental and nutritional requirements is daunting, so it was concluded that "investigating carbon-based organic compounds would be one of the more fruitful approaches for seeking potential signs of life in returned samples as opposed to culture-based approaches."

Human colonization of Mars

Some of the main reasons for colonizing Mars include economic interests, long-term scientific research best carried out by humans as opposed to robotic probes, and sheer curiosity. Surface conditions and the presence of water on Mars make it arguably the most hospitable of the planets in the Solar System, other than Earth. Human colonization of Mars would require in situ resource utilization (ISRU); A NASA report states that "applicable frontier technologies include robotics, machine intelligence, nanotechnology, synthetic biology, 3-D printing/additive manufacturing, and autonomy. These technologies combined with the vast natural resources should enable, pre- and post-human arrival ISRU to greatly increase reliability and safety and reduce cost for human colonization of Mars."

Mars Desert Research Station

From Wikipedia, the free encyclopedia
 
The Mars Society's Mars Desert Research Station located near Hanksville, Utah.

The Mars Desert Research Station (MDRS) is the largest and longest-running Mars surface simulation facility in the world, and is one of two simulated Mars analog habitats owned and operated by the Mars Society.

The MDRS station was built near Hanksville, Utah, in the western United States in the early 2000s, and it is crewed by small teams of 6-8 people who carry out missions at the facility for typically two weeks (although some crew visits have occasionally lasted for 2-3 months in duration) to conduct scientific research.

The MDRS campus includes a two-story habitat (referred to as "the Hab"), a greenhouse (referred to as "the GreenHab"), at the solar-related Musk Observatory, a robotic observatory, an engineering pod (referred to as "the RAM") and a science building, the ScienceDome. Simulated tunnels between all of the buildings except the robotic observatory allow crews to travel between the buildings without a spacesuit while they are in simulation.

MDRS is a closed research facility and is not open to the public for visits.

Background

The MDRS station is situated on the San Rafael Swell of southern Utah, located 11.63 kilometres (7.23 mi) by road northwest of Hanksville, Utah. It is the second such analogue research station to be built by the Mars Society, following in the footsteps of the Flashline Mars Arctic Research Station or FMARS on Devon Island in Canada's high Arctic.

The third station, the European Mars Analog Research Station or EuroMARS was founded and built in early 2002. It was shipped to the UK in the mid 2000s in preparation for deployment to the selected research site (approximately N65° 46' 7.18" W16° 45' 30.50") which is located next to the Krafla Rift Volcano, about 15 kilometres (9.3 mi) north east of the village of Myvatn, Iceland.

The fourth station, the Australia Mars Analog Research Station known as MARS Oz, is currently in the planning stages and it will be deployed to the selected research site (S 30° 18' 13.91" E 139° 26' 39.55") east of the Arkaroola Sanctuary, which itself is roughly 521 kilometres (324 mi) north of Adelaide, South Australia.

The Mars Society launched the Mars Analog Research Station Project in order to develop key knowledge needed to prepare for the human exploration of Mars. The project's goals are to develop field tactics based on environmental constraints (i.e., being required to work in spacesuits), to test habitat design features and tools, and to assess crew selection protocols. Although much warmer than Mars, the desert location was selected because of its Mars-like terrain and appearance.

From the moment they arrive at MDRS, crews enter a "living on Mars" simulation. Crew members must wear an analogue space suit simulator when completing tasks outside the Hab to simulate the protection they would need from the harsh Mars environment. Complete analogue space suit simulators include a helmet, jumpsuit, boots, gaiters, gloves, an air supply pack, water pack, and a radio. Hand held radios mounted on the suits' helmets with externally mounted push to talk switches are used to communicate with Habitat communication base and with fellow analog Mars surface explorers on the same Extra-vehicular activity (EVA). For safety reasons, there is always one crew member in the Hab to act as Hab-Com.

Destinations for EVAs can be chosen from an established waypoint database and traveled to either on foot or by All-terrain vehicle.

MDRS is owned and operated by The Mars Society, which selects the crews and handles most of the administrative tasks. The Mars Society is an international, non-profit organization, with chapters worldwide, that is dedicated to convincing governments and the public of the benefits of Mars exploration through various projects such as M.A.R.S., the Mars Analogue Pressurized Rover Competition, and the ARCHIMEDES Mars balloon mission.

Students interested in participating in the project receive a $500 travel stipend from the Spaceward Bound Program run out of NASA Ames Research Center. The Spaceward Bound Program aims to train the next generation of space explorers by allowing students and teachers to participate in projects in extreme environments that can serve as simulations for the moon or Mars. The project has a manager who oversees maintenance and support services.

Research

Each crew establishes different scientific goals they hope to accomplish during their time at MDRS. The majority of the biological studies carried out involve extremophiles, or organisms that are capable of living in extreme environments. Bacteria and algae isolated from the surrounding desert are common subjects of study. These microorganisms have been studied for their DNA, diversity and the environments they live in. For example, in a study for methanogens researchers studied soil and vapor samples from five different desert environments in Utah, Idaho and California in the United States, and in Canada and Chile. Of these, five soil samples and three vapor samples from the vicinity of the MDRS were found to have signs of viable methanogens.

A unique opportunity to combine geology and biology occurs when studying the endoliths found in rocks around the Hab. These species of bacteria are capable of living inside rocks and obtaining the energy they need by photosynthesizing using the light that penetrates the rocks. These extreme organisms are a popular subject of research at MDRS for both geologists and biologists.

Other experiments include a study of the effect of Extra-vehicular activity on the heart rates and blood pressures of crew members, a human factors study that examine the correlation between cognitive ability and mood and a study on how much a space suit inhibits dexterity in comparison to regular street clothes.

Crews

Crew 73 members in Space Suit Simulators

MDRS crews traditionally consist of six people, who volunteer for one of the two-week shifts or crew rotations available during the northern hemisphere's winter months. The field season ends in the northern spring due to the desert heat. Crews pay all of their own transportation expenses to get to and from the designated assembly place from where they are transported to and from MDRS. As volunteers, the crews are not paid for their participation in a crew rotation at the station. The crews usually consist of a mix of Scientist, astronomers, physicists, biologists, geologists, engineers and the occasional journalist. Each crew member is usually assigned a role: commander, executive officer, health and safety officer, crew biologist, crew geologist or chief engineer.

The crew commander is ultimately responsible for the entire crew and operations. Their other responsibilities include maintaining a structured stream of information from the crew to mission support, establishing the agenda for each day (EVAs, maintenance, cooking, cleaning, etc.) and holding morning and evening meetings with all crew members. The executive officer's duty is to act as the second in command during the mission and to act as the commander in the event the commander is incapacitated or unavailable. The crew geologist and crew biologist work together to establish and accomplish the science goals of the mission. The crew geologist and crew biologist are in charge of developing the geology and biology goals for the mission, planning field EVAs and subsequent laboratory work to achieve those goals. Both the crew geologist and crew biologist work with the remote science team (RST) during all stages of the mission. The Chief Engineer is responsible for maintaining all systems necessary for routine Hab operations. These include the power, water, ATV and GreenHab systems.

As of February 2017, 175 crews have served rotations at MDRS over a period of sixteen years.

The Research Station

MDRS
 
Crew 73 meets with writer Laurie Schmidt upstairs in the Hab.

The research station consists of three buildings, the Habitat, the Greenhab, the Musk Mars Desert Observatory and a remotely located Engineering Support Equipment Area.

Habitat

The analog Mars Lander Habitat is a two-story cylinder that measures about 10 metres (33 ft) in diameter and is a crew's combined home and place of work during a Mars surface exploration simulation. On the first floor there are two simulated airlocks, a shower and toilet, an EVA Preparation room for storage and maintenance of the simulated space suits and their associated equipment, and a combined science lab and engineering work area. The laboratory is shared between the crew geologist and the crew biologist and includes an autoclave, analytical balance, microscope, and a stock of chemicals and reagents for conducting biochemical tests. On the second floor are six very small private crew staterooms with bunks and a small reading desk, a common dining and entertainment area, a dedicated communications station and a galley or kitchen equipped with a gas stove, refrigerator, microwave, oven and a sink for meal preparations. Above the six crew staterooms is a Loft which contains the internal fresh water storage tank and equipment storage space. At the peak of the HAB's dome shaped roof is an access hatch to permit maintenance access to the satellite antenna and weather monitoring instruments.

Power is supplied by 12 rechargeable 24-volt batteries, located under the Hab which can provide electrical power for up to twelve hours. In addition to the batteries are two 5 kilowatts (6.7 hp) electricity generators named respectively "Casper" and "Wendy". Power from the generators is channeled through a Xantrex inverter, which sends the power either to the battery banks to recharge them or via a panel with 19 circuit breakers, to the HAB electrical distribution system.

Water is supplied to the Hab via a potable water tank located 100 feet (30 m) away in the Engineering Support Equipment Area. The tank is a plastic storage container with a 450-U.S.-gallon (1,700 L; 370 imp gal) capacity (8 days worth of water at 6 U.S. gallons (23 L; 5.0 imp gal) per person per day). Water must be manually carried or pumped via a hose from the potable water tank to the HAB's internal tank, which holds about 60 U.S. gallons (230 L; 50 imp gal). The water is then gravity fed into a pressure pump that distributes the fresh water to the rest of the HAB, including a water heater. The water used to flush toilet is greywater. This is waste water that has run down the sink and shower drains in the HAB and then through the greywater system out of the GreenHab. Water is rationed and monitored to minimize inefficiency and waste in the system.

The Hab is also equipped with an internet connection and several web cams so that the public can view the ongoing mission.

GreenHab

The GreenHab is a greenhouse used for growing crops and plant research. The original Gary Fisher GreenHab, retrofitted in 2009 from a closed loop water recycling center to a functional greenhouse, was destroyed by fire in December 2014, and replaced in September 2015 after an Indiegogo campaign raised $12,540 to rebuild it.

Originally the rebuilt GreenHab was planned as a geodesic dome. However, once the pad and frame were in place, there appeared to be no way to make it wind and winter tight, so it was completed as the new ScienceDome. The new Greenhab is a 12 foot by 24 foot transparent building that is climate and light controlled. The plants grown in the Greenhab are mostly herbs, greens, radishes, tomatoes, and other vegetables.

Musk Mars Desert Observatory

The Musk Mars Desert Observatory

The Musk Mars Desert Observatory houses a 28-centimetre (11 in) Schmidt-Cassegrain telescope, donated by Celestron. The telescope is capable of being operated remotely, and is accessible to amateur and professional astronomers via the internet. The observatory's other sponsors include Le Sueur Manufacturing Inc., which provided the Astro-Pier on which the telescope is mounted; Software Bisque, which provided TheSky software; Vince Lanzetta of East Coast Observatories; Adirondack Video Astronomy; High Point Scientific; Technical Innovations; and the Lehigh Valley Amateur Astronomical Association.

The addition of the Musk Mars Desert Observatory provides research opportunities that were not available before, not only to the crew, but local teachers and students. It also encourages more public involvement as students and teachers are invited to interact with the crew and to use the observatory as a learning tool.

Engineering tasks are completed in the repair and assembly module, a retrofitted Chinook helicopter fuel compartment designed with for tool storage, and work spaces for engineering project and repair of station instruments. It was moved to the campus in October 2017 and became fully operational in November 2018.

Other

North of the GreenHAB is the underground septic tank and its outflow field. This area is a "No Drive - Foot Traffic Only Zone" as there is no record of where exactly the septic tank is buried. East of the GreenHab is an omnidirectional Jovian radio telescope.

MDRS is the site of the annual University Rover Challenge, the first of which was held on June 2, 2007.

The Flag of Mars appears on a couple of the buildings, as does the Flag of the United States.

Space medicine

From Wikipedia, the free encyclopedia
 
Dan Burbank and Anton Shkaplerov participate in a medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency on board the space station.

Space medicine is the practice of medicine on astronauts in outer space whereas astronautical hygiene is the application of science and technology to the prevention or control of exposure to the hazards that may cause astronaut ill health. Both these sciences work together to ensure that astronauts work in a safe environment. The main objective is to discover how well and for how long people can survive the extreme conditions in space, and how fast they can adapt to the Earth's environment after returning from their voyage. Medical consequences such as possible blindness and bone loss have been associated with human spaceflight.

In October 2015, the NASA Office of Inspector General issued a health hazards report related to space exploration, including a human mission to Mars.

History

Hubertus Strughold (1898–1987), a former Nazi physician and physiologist, was brought to the United States after World War II as part of Operation Paperclip. He first coined the term "space medicine" in 1948 and was the first and only Professor of Space Medicine at the School of Aviation Medicine (SAM) at Randolph Air Force Base, Texas. In 1949 Strughold was made director of the Department of Space Medicine at the SAM (which is now the US Air Force School of Aerospace Medicine (USAFSAM) at Wright-Patterson Air Force Base, Ohio. He played an important role in developing the pressure suit worn by early American astronauts. He was a co-founder of the Space Medicine Branch of the Aerospace Medical Association in 1950. The aeromedical library at Brooks AFB was named after him in 1977, but later renamed because documents from the Nuremberg War Crimes Tribunal linked Strughold to medical experiments in which inmates of the Dachau concentration camp were tortured and killed.

Soviet research into Space Medicine was centered at the Scientific Research Testing Institute of Aviation Medicine (NIIAM). In 1949, A.M. Vasilevsky, the Minister of Defense of the USSR, gave instructions via the initiative of Sergei Korolev to NIIAM to conduct biological and medical research. In 1951, NIIAM began to work on the first research work entitled "Physiological and hygienic substantiation of flight capabilities in special conditions", which formulated the main research tasks, the necessary requirements for pressurized cabins, life support systems, rescue and control and recording equipment. At the Korolev design bureau they created rockets for lifting animals within 200-250 km and 500-600 km, and then began to talk about developing artificial satellites and launching a man into space. Then in 1963 the Institute for Biomedical Problems (IMBP) was founded to undertake the study of space medicine.

Project Mercury

Space medicine was a critical factor in the United States human space program, starting with Project Mercury.

Effects of space-travel

The effects of microgravity on fluid distribution around the body (greatly exaggerated) (NASA)

In October 2018, NASA-funded researchers found that lengthy journeys into outer space, including travel to the planet Mars, may substantially damage the gastrointestinal tissues of astronauts. The studies support earlier work that found such journeys could significantly damage the brains of astronauts, and age them prematurely.

In November 2019, researchers reported that astronauts experienced serious blood flow and clot problems while onboard the International Space Station, based on a six-month study of 11 healthy astronauts. The results may influence long-term spaceflight, including a mission to the planet Mars, according to the researchers.

Cardiac rhythms

Heart rhythm disturbances have been seen among astronauts. Most of these have been related to cardiovascular disease, but it is not clear whether this was due to pre-existing conditions or effects of space flight. It is hoped that advanced screening for coronary disease has greatly mitigated this risk. Other heart rhythm problems, such as atrial fibrillation, can develop over time, necessitating periodic screening of crewmembers’ heart rhythms. Beyond these terrestrial heart risks, some concern exists that prolonged exposure to microgravity may lead to heart rhythm disturbances. Although this has not been observed to date, further surveillance is warranted.

Decompression illness in spaceflight

In space, astronauts use a space suit, essentially a self-contained individual spacecraft, to do spacewalks, or extra-vehicular activities (EVAs). Spacesuits are generally inflated with 100% oxygen at a total pressure that is less than a third of normal atmospheric pressure. Eliminating inert atmospheric components such as nitrogen allows the astronaut to breathe comfortably, but also have the mobility to use their hands, arms, and legs to complete required work, which would be more difficult in a higher pressure suit.

After the astronaut dons the spacesuit, air is replaced by 100% oxygen in a process called a "nitrogen purge". In order to reduce the risk of decompression sickness, the astronaut must spend several hours "pre-breathing" at an intermediate nitrogen partial pressure, in order to let their body tissues outgas nitrogen slowly enough that bubbles are not formed. When the astronaut returns to the "shirt sleeve" environment of the spacecraft after an EVA, pressure is restored to whatever the operating pressure of that spacecraft may be, generally normal atmospheric pressure. Decompression illness in spaceflight consists of decompression sickness (DCS) and other injuries due to uncompensated changes in pressure, or barotrauma.

Decompression sickness

Decompression sickness is the injury to the tissues of the body resulting from the presence of nitrogen bubbles in the tissues and blood. This occurs due to a rapid reduction in ambient pressure causing the dissolved nitrogen to come out of solution as gas bubbles within the body. In space the risk of DCS is significantly reduced by using a technique to wash out the nitrogen in the body's tissues. This is achieved by breathing 100% oxygen for a specified period of time before donning the spacesuit, and is continued after a nitrogen purge. DCS may result from inadequate or interrupted pre-oxygenation time, or other factors including the astronaut's level of hydration, physical conditioning, prior injuries and age. Other risks of DCS include inadequate nitrogen purge in the EMU, a strenuous or excessively prolonged EVA, or a loss of suit pressure. Non-EVA crewmembers may also be at risk for DCS if there is a loss of spacecraft cabin pressure.

Symptoms of DCS in space may include chest pain, shortness of breath, cough or pain with a deep breath, unusual fatigue, lightheadedness, dizziness, headache, unexplained musculoskeletal pain, tingling or numbness, extremities weakness, or visual abnormalities.

Primary treatment principles consist of in-suit repressurization to re-dissolve nitrogen bubbles, 100% oxygen to re-oxygenate tissues, and hydration to improve the circulation to injured tissues.

Barotrauma

Barotrauma is the injury to the tissues of air filled spaces in the body as a result of differences in pressure between the body spaces and the ambient atmospheric pressure. Air filled spaces include the middle ears, paranasal sinuses, lungs and gastrointestinal tract. One would be predisposed by a pre-existing upper respiratory infection, nasal allergies, recurrent changing pressures, dehydration, or a poor equalizing technique.

Positive pressure in the air filled spaces results from reduced barometric pressure during the depressurization phase of an EVA. It can cause abdominal distension, ear or sinus pain, decreased hearing, and dental or jaw pain. Abdominal distension can be treated with extending the abdomen, gentle massage and encourage passing flatus. Ear and sinus pressure can be relieved with passive release of positive pressure. Pretreatment for susceptible individuals can include oral and nasal decongestants, or oral and nasal steroids.

Negative pressure in air fill spaces results from increased barometric pressure during repressurization after an EVA or following a planned restoration of a reduced cabin pressure. Common symptoms include ear or sinus pain, decreased hearing, and tooth or jaw pain.

Treatment may include active positive pressure equalization of ears and sinuses, oral and nasal decongestants, or oral and nasal steroids, and appropriate pain medication if needed.

Decreased immune system functioning

Astronauts in space have weakened immune systems, which means that in addition to increased vulnerability to new exposures, viruses already present in the body—which would normally be suppressed—become active. In space, T-cells do not reproduce properly, and the cells that do exist are less able to fight off infection. NASA research is measuring the change in the immune systems of its astronauts as well as performing experiments with T-cells in space.

On April 29, 2013, scientists in Rensselaer Polytechnic Institute, funded by NASA, reported that, during spaceflight on the International Space Station, microbes seem to adapt to the space environment in ways "not observed on Earth" and in ways that "can lead to increases in growth and virulence".

In March 2019, NASA reported that latent viruses in humans may be activated during space missions, adding possibly more risk to astronauts in future deep-space missions.

Increased infection risk

A 2006 Space Shuttle experiment found that Salmonella typhimurium, a bacterium that can cause food poisoning, became more virulent when cultivated in space. On April 29, 2013, scientists in Rensselaer Polytechnic Institute, funded by NASA, reported that, during spaceflight on the International Space Station, microbes seem to adapt to the space environment in ways "not observed on Earth" and in ways that "can lead to increases in growth and virulence". More recently, in 2017, bacteria were found to be more resistant to antibiotics and to thrive in the near-weightlessness of space. Microorganisms have been observed to survive the vacuum of outer space. Researchers in 2018 reported, after detecting the presence on the International Space Station (ISS) of five Enterobacter bugandensis bacterial strains, none pathogenic to humans, that microorganisms on ISS should be carefully monitored to continue assuring a medically healthy environment for astronauts.

Effects of fatigue

Human spaceflight often requires astronaut crews to endure long periods without rest. Studies have shown that lack of sleep can cause fatigue that leads to errors while performing critical tasks. Also, individuals who are fatigued often cannot determine the degree of their impairment. Astronauts and ground crews frequently suffer from the effects of sleep deprivation and circadian rhythm disruption. Fatigue due to sleep loss, sleep shifting and work overload could cause performance errors that put space flight participants at risk of compromising mission objectives as well as the health and safety of those on board.

Loss of balance

Leaving and returning to Earth's gravity causes “space sickness,” dizziness, and loss of balance in astronauts. By studying how changes can affect balance in the human body—involving the senses, the brain, the inner ear, and blood pressure—NASA hopes to develop treatments that can be used on Earth and in space to correct balance disorders. Until then, NASA's astronauts must rely on a medication called Midodrine (an “anti-dizzy” pill that temporarily increases blood pressure), and/or promethazine to help carry out the tasks they need to do to return home safely.

Loss of bone density

Spaceflight osteopenia is the bone loss associated with human spaceflight. After a 3–4 month trip into space, it takes about 2–3 years to regain lost bone density. New techniques are being developed to help astronauts recover faster. Research in the following areas holds the potential to aid the process of growing new bone:

  • Diet and Exercise changes may reduce osteoporosis.
  • Vibration Therapy may stimulate bone growth.
  • Medication could trigger the body to produce more of the protein responsible for bone growth and formation.

Loss of muscle mass

In space, muscles in the legs, back, spine, and heart weaken and waste away because they no longer are needed to overcome gravity, just as people lose muscle when they age due to reduced physical activity. Astronauts rely on research in the following areas to build muscle and maintain body mass:

  • Exercise may build muscle if at least two hours a day is spent doing resistance training routines.
  • Hormone supplements (hGH) may be a way to tap into the body's natural growth signals.
  • Medication may trigger the body into producing muscle growth proteins.

Loss of eyesight

After long space flight missions, astronauts may experience severe eyesight problems. Such eyesight problems may be a major concern for future deep space flight missions, including a human mission to Mars.

Loss of mental abilities and risk of Alzheimer's disease

On December 31, 2012, a NASA-supported study reported that human spaceflight may harm the brain of astronauts and accelerate the onset of Alzheimer's disease.

On 2 November 2017, scientists reported that significant changes in the position and structure of the brain have been found in astronauts who have taken trips in space, based on MRI studies. Astronauts who took longer space trips were associated with greater brain changes.

Orthostatic intolerance

The Beckman cardiovascular reflex conditioning system inflated and deflated cuffs in Gemini and Apollo flight suits to stimulate blood flow to lower limbs.

"Under the effects of the earth's gravity, blood and other body fluids are pulled towards the lower body. When gravity is taken away or reduced during space exploration, the blood tends to collect in the upper body instead, resulting in facial edema and other unwelcome side effects. Upon return to earth, the blood begins to pool in the lower extremities again, resulting in orthostatic hypotension."

In space, astronauts lose fluid volume—including up to 22% of their blood volume. Because it has less blood to pump, the heart will atrophy. A weakened heart results in low blood pressure and can produce a problem with “orthostatic tolerance,” or the body's ability to send enough oxygen to the brain without fainting or becoming dizzy.

Radiation effects

Comparison of Radiation Doses – includes the amount detected on the trip from Earth to Mars by the RAD on the MSL (2011–2013).

Soviet cosmonaut Valentin Lebedev, who spent 211 days in orbit during 1982 (an absolute record for stay in Earth's orbit), lost his eyesight to progressive cataract. Lebedev stated: “I suffered from a lot of radiation in space. It was all concealed back then, during the Soviet years, but now I can say that I caused damage to my health because of that flight.” On 31 May 2013, NASA scientists reported that a possible human mission to Mars may involve a great radiation risk based on the amount of energetic particle radiation detected by the RAD on the Mars Science Laboratory while traveling from the Earth to Mars in 2011–2012.

Sleep disorders

Fifty percent of space shuttle astronauts take sleeping pills and still get two hours or less of sleep. NASA is researching two areas which may provide the keys to a better night's sleep, as improved sleep decreases fatigue and increases daytime productivity. A variety of methods for combating this phenomenon are constantly under discussion. A partial list of remedies would include:

  • Go to sleep at the same time each night. With practice, you will (almost) always be tired and ready for sleep.
  • Melatonin, once thought to be an anti-aging wonder drug (this was due to the well-documented observation that as people age they gradually produce less and less of the hormone naturally). The amount of melatonin the body produces decreases linearly over a lifetime. Although the melatonin anti-aging fad was thoroughly debunked following a large number of randomized trials, it was soon in the spotlight once more due to the observation that a healthy person's normal melatonin levels varies widely throughout each day: usually, levels rise in the evening and fall in the morning. Ever since the discovery that melatonin levels are highest at bedtime, melatonin has been purported by some to be an effective sleep-aid – it is especially popular for jet-lag. Melatonin's efficacy in treating insomnia is hotly debated and therefore in the US it is sold as a dietary supplement. "These statements have not been evaluated by the FDA" is printed on the packaging even though melatonin has been studied very extensively.
  • Ramelteon, a melatonin receptor agonist, is a relatively new drug designed by using the melatonin molecule and the shapes of melatonin receptors as starting points. Ramelteon binds to the same M1 and M2 receptors in the suprachiasmatic nucleus (the "biological clock" in the brain) as melatonin (M1 and M2 get their names from melatonin). It also may derive some of its properties from its three-times greater elimination half-life. Ramelteon is not without detractors who claim that it is no more effective than melatonin, and melatonin is less expensive by orders of magnitude. It is unclear whether Ramelteon causes its receptors to behave differently than they do when bound to melatonin, and Ramelteon may have a significantly greater affinity for these receptors. Better information on Ramelteon's effectiveness should be available soon, and despite questions of its efficacy, the general lack of side effects makes Ramelteon one of the very few sleep medications that could potentially be safely used by astronauts.
  • Barbiturates and Benzodiazepines are both very strong sedatives. While they certainly would work (at least short term) in helping astronauts sleep, they have side effects that could affect the astronaut's ability to perform his/her job, especially in the "morning." This side effect renders barbiturates and benzodiazepines likely unfit as treatments for space insomnia. Narcotics and most tranquilizers also fall into this category.
  • Zolpidem and Zopiclone are sedative-hypnotics, better known by their trade names "Ambien" and "Lunesta". These are extremely popular sleep-aids, due in large part to their effectiveness and significantly reduced side-effect profiles vis-a-vis benzodiazepines and barbiturates. Although other drugs may be more effective in inducing sleep Zolpidem and Zopiclone essentially lack the sorts of side effects that disqualify other insomnia drugs for astronauts, for whom being able to wake up easily and quickly can be of paramount importance; astronauts who are not thinking clearly, are groggy, and are disoriented when a sudden emergency wakes them could end up trading their grogginess for the indifference of death in seconds. Zolpidem, Zopiclone, and the like – in most people – are significantly less likely to cause drug-related daytime sleepiness, nor excessive drowsiness if woken abruptly.
  • Practice good sleep hygiene. In other words, the bed is for sleeping only; get out of bed within a few moments of waking up. Do not sit in bed watching TV or using a laptop. When one is acclimated to spending many hours awake in bed, it can disrupt the body's natural set of daily cycles, called the circadian rhythm. While this is less of an issue for astronauts who have very limited entertainment options in their sleeping areas, another aspect of sleep hygiene is adhering to a specific pre-sleep routine (shower, brush teeth, fold up clothing, or spend 20 minutes reading a novel, for example); observing this sort of routine regularly can significantly improve one's sleep quality. Of course, sleep hygiene studies have all been conducted at 1G, but it seems possible (if not likely) that observing sleep hygiene would retain at least some efficacy in micro-gravity.
  • Modafinil is a drug that is prescribed for narcolepsy and other disorders that involve excessive daytime exhaustion. It has been approved in various military situations and for astronauts thanks to its ability to stave off fatigue. It is unclear whether astronauts sometimes use the drug because they are sleep-deprived – it might only be used on spacewalks and in other high-risk situations.
  • Dexedrine is an amphetamine which used to be the gold-standard for fighter pilots flying long and multiple sorties in a row, and therefore may have at some point been available if astronauts were in need of a strong stimulant. Today, Modafinil has largely – if not entirely – replaced Dexedrine; reaction time and reasoning among pilots who are sleep-deprived and on Dexedrine suffer, and get worse the longer the pilot stays awake. In one study, helicopter pilots that were given two-hundred milligrams of Modafinil every three hours were able to significantly improve their flight-simulator performance. The study reported, however, that modafinil was not as efficacious as dexamphetamine in increasing performance without producing side effects.

Spaceflight analogues

Biomedical research in space is expensive and logistically and technically complicated, and thus limited. Conducting medical research in space alone will not provide humans with the depth of knowledge needed to ensure the safety of inter-planetary travellers. Complementary to research in space is the use of spaceflight analogues. Analogues are particularly useful for the study of immunity, sleep, psychological factors, human performance, habitability, and telemedicine. Examples of spaceflight analogues include confinement chambers (Mars-500), sub-aqua habitats (NEEMO), and Antarctic (Concordia Station) and Arctic FMARS and (Haughton–Mars Project) stations.

Space medicine careers

Related degrees, areas of specialization, and certifications

  • Aeromedical certification
  • Aerospace medicine
  • Aerospace studies
  • Occupational and preventive medicine
  • Global Health
  • Public Health
  • Disaster medicine
  • Prehospital medicine
  • Wilderness and extreme medicine

Space nursing

Space nursing is the nursing speciality that studies how space travel impacts human response patterns. Similar to space medicine, the speciality also contributes to knowledge about nursing care of earthbound patients.

Medicine in flight

Ultrasound and space

Ultrasound is the main diagnostic imaging tool on ISS and for the foreseeable future missions. X-rays and CT scans involve radiation which is unacceptable in the space environment. Though MRI uses magnetics to create images, it is too large at present to consider as a viable option. Ultrasound, which uses sound waves to create images and comes in laptop size packages, provides imaging of a wide variety of tissues and organs. It is currently being used to look at the eyeball and the optic nerve to help determine the cause(s) of changes that NASA has noted mostly in long duration astronauts. NASA is also pushing the limits of ultrasound use regarding musculoskeletal problems as these are some of the most common and most likely problems to occur. Significant challenges to using ultrasounds on space missions is training the astronaut to use the equipment (ultrasound technicians spend years in training and developing the skills necessary to be "good" at their job) as well as interpreting the images that are captured. Much of ultrasound interpretation is done real-time but it is impractical to train astronauts to actually read/interpret ultrasounds. Thus, the data is currently being sent back to mission control and forwarded to medical personnel to read and interpret. Future exploration class missions will need to be autonomous due to transmission times taking too long for urgent/emergent medical conditions. The ability to be autonomous, or to use other equipment such as MRIs, is currently being researched.

Space Shuttle era

With the additional lifting capability presented by the Space Shuttle program, NASA designers were able to create a more comprehensive medical readiness kit. The SOMS consists of two separate packages: the Medications and Bandage Kit (MBK) and the Emergency Medical Kit (EMK). While the MBK contained capsulate medications (tablets, capsules, and suppositories), bandage materials, and topical medication, the EMK had medications to be administered by injection, items for performing minor surgeries, diagnostic/therapeutic items, and a microbiological test kit.

John Glenn, the first American astronaut to orbit the Earth, returned with much fanfare to space once again on STS-95 at 77 years of age to confront the physiological challenges preventing long-term space travel for astronauts—loss of bone density, loss of muscle mass, balance disorders, sleep disturbances, cardiovascular changes, and immune system depression—all of which are problems confronting aging people as well as astronauts.

Future investigations

Feasibility of Long Duration Space Flights

In the interest of creating the possibility of longer duration space flight, NASA has invested in the research and application of preventative space medicine, not only for medically preventable pathologies but trauma as well. Although trauma constitutes more of a life-threatening situation, medically preventable pathologies pose more of a threat to astronauts. "The involved crewmember is endangered because of mission stress and the lack of complete treatment capabilities on board the spacecraft, which could result in the manifestation of more severe symptoms than those usually associated with the same disease in the terrestrial environment. Also, the situation is potentially hazardous for the other crewmembers because the small, closed, ecological system of the spacecraft is conducive to disease transmission. Even if the disease is not transmitted, the safety of the other crewmembers may be jeopardized by the loss of the capabilities of the crewmember who is ill. Such an occurrence will be more serious and potentially hazardous as the durations of crewed missions increase and as operational procedures become more complex. Not only do the health and safety of the crewmembers become critical, but the probability of mission success is lessened if the illness occurs during flight. Aborting a mission to return an ill crewmember before mission goals are completed is costly and potentially dangerous."

Impact on science and medicine

Astronauts are not the only ones who benefit from space medicine research. Several medical products have been developed that are space spinoffs, which are practical applications for the field of medicine arising out of the space program. Because of joint research efforts between NASA, the National Institutes on Aging (a part of the National Institutes of Health), and other aging-related organizations, space exploration has benefited a particular segment of society, seniors. Evidence of aging related medical research conducted in space was most publicly noticeable during STS-95 (See below).

Pre-Mercury through Apollo

  • Radiation therapy for the treatment of cancer: In conjunction with the Cleveland Clinic, the cyclotron at Glenn Research Center in Cleveland, Ohio was used in the first clinical trials for the treatment and evaluation of neutron therapy for cancer patients.
  • Foldable walkers: Made from a lightweight metal material developed by NASA for aircraft and spacecraft, foldable walkers are portable and easy to manage.
  • Personal alert systems: These are emergency alert devices that can be worn by individuals who may require emergency medical or safety assistance. When a button is pushed, the device sends a signal to a remote location for help. To send the signal, the device relies on telemetry technology developed at NASA.
  • CAT and MRI scans: These devices are used by hospitals to see inside the human body. Their development would not have been possible without the technology provided by NASA after it found a way to take better pictures of the Earth's moon.
  • Muscle stimulator device: This device is used for ½ hour per day to prevent muscle atrophy in paralyzed individuals. It provides electrical stimulation to muscles which is equal to jogging three miles per week. Christopher Reeve used these in his therapy.
  • Orthopedic evaluation tools: Equipment to evaluate posture, gait and balance disturbances was developed at NASA, along with a radiation-free way to measure bone flexibility using vibration.
  • Diabetic foot mapping: This technique was developed at NASA's center in Cleveland, Ohio to help monitor the effects of diabetes in feet.
  • Foam cushioning: Special foam used for cushioning astronauts during liftoff is used in pillows and mattresses at many nursing homes and hospitals to help prevent ulcers, relieve pressure, and provide a better night's sleep.
  • Kidney dialysis machines: These machines rely on technology developed by NASA in order to process and remove toxic waste from used dialysis fluid.
  • Talking wheelchairs: Paralyzed individuals who have difficulty speaking may use a talking feature on their wheelchairs which was developed by NASA to create synthesized speech for aircraft.
  • Collapsible, lightweight wheelchairs: These wheelchairs are designed for portability and can be folded and put into trunks of cars. They rely on synthetic materials that NASA developed for its air and space craft
  • Surgically implantable heart pacemaker: These devices depend on technologies developed by NASA for use with satellites. They communicate information about the activity of the pacemaker, such as how much time remains before the batteries need to be replaced.
  • Implantable heart defibrillator: This tool continuously monitors heart activity and can deliver an electric shock to restore heartbeat regularity.
  • EMS communications: Technology used to communicate telemetry between Earth and space was developed by NASA to monitor the health of astronauts in space from the ground. Ambulances use this same technology to send information—like EKG readings—from patients in transport to hospitals. This allows faster and better treatment.
  • Weightlessness therapy: The weightlessness of space can allow some individuals with limited mobility on Earth—even those normally confined to wheelchairs—the freedom to move about with ease. Physicist Stephen Hawking took advantage of weightlessness in NASA's Vomit Comet aircraft in 2007. This idea also led to the development of the Anti-Gravity Treadmill from NASA technology.

Ultrasound microgravity

The Advanced Diagnostic Ultrasound in Microgravity Study is funded by the National Space Biomedical Research Institute and involves the use of ultrasound among Astronauts including former ISS Commanders Leroy Chiao and Gennady Padalka who are guided by remote experts to diagnose and potentially treat hundreds of medical conditions in space. This study has a widespread impact and has been extended to cover professional and Olympic sports injuries as well as medical students. It is anticipated that remote guided ultrasound will have application on Earth in emergency and rural care situations. Findings from this study were submitted for publication to the journal Radiology aboard the International Space Station; the first article submitted in space.

 

Representation of a Lie group

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Representation_of_a_Lie_group...