From Wikipedia, the free encyclopedia
In biology, a hybrid
is the offspring resulting from combining the qualities of two
organisms of different breeds, varieties, species or genera through sexual reproduction. Hybrids are not always intermediates between their parents (such as in blending inheritance), but can show hybrid vigor,
sometimes growing larger or taller than either parent. The concept of a
hybrid is interpreted differently in animal and plant breeding, where
there is interest in the individual parentage. In genetics, attention is focused on the numbers of chromosomes. In taxonomy, a key question is how closely related the parent species are.
Species are reproductively isolated
by strong barriers to hybridisation, which include genetic and
morphological differences, differing times of fertility, mating
behaviors and cues, and physiological rejection of sperm cells or the
developing embryo. Some act before fertilization
and others after it. Similar barriers exist in plants, with differences
in flowering times, pollen vectors, inhibition of pollen tube growth,
somatoplastic sterility, cytoplasmic-genic male sterility and the
structure of the chromosomes. A few animal species and many plant
species, however, are the result of hybrid speciation, including important crop plants such as wheat, where the number of chromosomes has been doubled.
Human impact on the environment has resulted in an increase in the interbreeding between regional species, and the proliferation of introduced species worldwide has also resulted in an increase in hybridisation. This genetic mixing may threaten many species with extinction, while genetic erosion from monoculture
in crop plants may be damaging the gene pools of many species for
future breeding. A form of often intentional human-mediated
hybridisation is the crossing of wild and domesticated species. This is
common in both traditional horticulture and modern agriculture; many commercially useful fruits, flowers, garden herbs, and trees have been produced by hybridisation. One such flower, Oenothera lamarckiana, was central to early genetics research into mutationism
and polyploidy. It is also more occasionally done in the livestock and
pet trades; some well-known wild × domestic hybrids are beefalo and wolfdogs. Human selective breeding of domesticated animals and plants has resulted in the development of distinct breeds (usually called cultivars in reference to plants); crossbreeds between them (without any wild stock) are sometimes also imprecisely referred to as "hybrids".
Hybrid humans existed in prehistory. For example, Neanderthals and anatomically modern humans are thought to have interbred as recently as 40,000 years ago.
Mythological hybrids appear in human culture in forms as diverse as the Minotaur, blends of animals, humans and mythical beasts such as centaurs and sphinxes, and the Nephilim of the Biblical apocrypha described as the wicked sons of fallen angels and attractive women.
Etymology
Liger, a lion/tiger hybrid bred in captivity
The term hybrid is derived from Latin hybrida,
used for crosses such as of a tame sow and a wild boar. The term came
into popular use in English in the 19th century, though examples of its
use have been found from the early 17th century. Conspicuous hybrids are popularly named with portmanteau words, starting in the 1920s with the breeding of tiger–lion hybrids (liger and tigon).
As seen by different disciplines
Animal and plant breeding
From
the point of view of animal and plant breeders, there are several kinds
of hybrid formed from crosses within a species, such as between
different breeds.
Single cross hybrids result from the cross between two true-breeding organisms which produces an F1 hybrid (first filial generation). The cross between two different homozygous lines produces an F1 hybrid that is heterozygous; having two alleles, one contributed by each parent and typically one is dominant and the other recessive. Typically, the F1 generation is also phenotypically homogeneous, producing offspring that are all similar to each other.
Double cross hybrids result from the cross between two different F1 hybrids (i.e., there are four unrelated grandparents).
Three-way cross hybrids result from the cross between an F1 hybrid and
an inbred line. Triple cross hybrids result from the crossing of two
different three-way cross hybrids.
Top cross (or "topcross") hybrids result from the crossing of a top
quality or pure-bred male and a lower quality female, intended to
improve the quality of the offspring, on average.
Population hybrids result from the crossing of plants or animals in one population with those of another population. These include interspecific hybrids or crosses between different breeds.
In horticulture, the term stable hybrid is used to describe an annual plant that, if grown and bred in a small monoculture free of external pollen
(e.g., an air-filtered greenhouse) produces offspring that are "true to
type" with respect to phenotype; i.e., a true-breeding organism.
Biogeography
Hybridisation can occur in the hybrid zones where the geographical ranges of species, subspecies, or distinct genetic lineages overlap. For example, the butterfly Limenitis arthemis has two major subspecies in North America, L. a. arthemis (the white admiral) and L. a. astyanax
(the red-spotted purple). The white admiral has a bright, white band on
its wings, while the red-spotted purple has cooler blue-green shades.
Hybridisation occurs between a narrow area across New England, southern
Ontario, and the Great Lakes, the "suture region". It is at these
regions that the subspecies were formed. Other hybrid zones have formed between described species of plants and animals.
Genetics
From the point of view of genetics, several different kinds of hybrid can be distinguished.
A genetic hybrid carries two different alleles of the same gene, where for instance one allele may code for a lighter coat colour than the other. A structural hybrid results from the fusion of gametes that have differing structure in at least one chromosome, as a result of structural abnormalities. A numerical hybrid results from the fusion of gametes having different haploid numbers of chromosomes. A permanent hybrid results when only the heterozygous genotype occurs, as in Oenothera lamarckiana, because all homozygous combinations are lethal. In the early history of genetics, Hugo de Vries supposed these were caused by mutation.
Taxonomy
From the point of view of taxonomy, hybrids differ according to their parentage.
Hybrids between different subspecies (such as between the Dog and Eurasian wolf) are called intra-specific hybrids. Interspecific hybrids are the offspring from interspecies mating; these sometimes result in hybrid speciation. Intergeneric hybrids result from matings between different genera, such as between sheep and goats. Interfamilial hybrids, such as between chickens and guineafowl or pheasants, are reliably described but extremely rare. Interordinal hybrids (between different orders) are few, but have been made with the sea urchin Strongylocentrotus purpuratus (female) and the sand dollar Dendraster excentricus (male).
Biology
Expression of parental traits
When two distinct types of organisms breed with each other, the
resulting hybrids typically have intermediate traits (e.g., one plant
parent has red flowers, the other has white, and the hybrid, pink
flowers). Commonly, hybrids also combine traits seen only separately in one parent or the other (e.g., a bird hybrid might combine the yellow head of one parent with the orange belly of the other).
Mechanisms of reproductive isolation
Interspecific hybrids are bred by mating individuals from two
species, normally from within the same genus. The offspring display
traits and characteristics of both parents, but are often sterile, preventing gene flow between the species. Sterility is often attributed to the different number of chromosomes between the two species. For example, donkeys have 62 chromosomes, horses have 64 chromosomes, and mules or hinnies
have 63 chromosomes. Mules, hinnies, and other normally sterile
interspecific hybrids cannot produce viable gametes, because differences
in chromosome structure prevent appropriate pairing and segregation
during meiosis,
meiosis is disrupted, and viable sperm and eggs are not formed.
However, fertility in female mules has been reported with a donkey as
the father.
A variety of mechanisms limit the success of hybridisation,
including the large genetic difference between most species. Barriers
include morphological differences, differing times of fertility, mating
behaviors and cues, and physiological rejection of sperm cells or the
developing embryo. Some act before fertilization; others after it.
In plants, some barriers to hybridisation include blooming period
differences, different pollinator vectors, inhibition of pollen tube
growth, somatoplastic sterility, cytoplasmic-genic male sterility and
structural differences of the chromosomes.
Speciation
A few animal species are the result of hybridization. The Lonicera fly is a natural hybrid. The American red wolf appears to be a hybrid of the gray wolf and the coyote, although its taxonomic status has been a subject of controversy. The European edible frog is a semi-permanent hybrid between pool frogs and marsh frogs; its population requires the continued presence of at least one of the parent species. Cave paintings indicate that the European bison is a natural hybrid of the aurochs and the steppe bison.
Plant hybridization is more commonplace compared to animal hybridization. Many crop species are hybrids, including notably the polyploid wheats: some have four sets of chromosomes (tetraploid) or six (hexaploid), while other wheat species have (like most eukaryotic organisms) two sets (diploid), so hybridization events likely involved the doubling of chromosome sets, causing immediate genetic isolation.
Hybridization may be important in speciation in some plant
groups. However, homoploid hybrid speciation (not increasing the number
of sets of chromosomes) may be rare: by 1997, only 8 natural examples
had been fully described. Experimental studies suggest that
hybridization offers a rapid route to speciation, a prediction confirmed
by the fact that early generation hybrids and ancient hybrid species
have matching genomes, meaning that once hybridization has occurred, the
new hybrid genome can remain stable.
Many hybrid zones
are known where the ranges of two species meet, and hybrids are
continually produced in great numbers. These hybrid zones are useful as
biological model systems for studying the mechanisms of speciation.
Recently DNA analysis of a bear shot by a hunter in the North West Territories confirmed the existence of naturally-occurring and fertile grizzly–polar bear hybrids.
Hybrid vigour
Hybridization between reproductively isolated species often results
in hybrid offspring with lower fitness than either parental. However,
hybrids are not, as might be expected, always intermediate between their
parents (as if there were blending inheritance), but are sometimes
stronger or perform better than either parental lineage or variety, a
phenomenon called heterosis, hybrid vigour, or heterozygote advantage. This is most common with plant hybrids. A transgressive phenotype is a phenotype that displays more extreme characteristics than either of the parent lines. Plant breeders
use several techniques to produce hybrids, including line breeding and
the formation of complex hybrids. An economically important example is
hybrid maize (corn), which provides a considerable seed yield advantage over open pollinated varieties. Hybrid seed dominates the commercial maize seed market in the United States, Canada and many other major maize-producing countries.
In a hybrid, any trait that falls outside the range of parental
variation (and is thus not simply intermediate between its parents) is
considered heterotic. Positive heterosis produces more robust hybrids, they might be stronger or bigger; while the term negative heterosis refers to weaker or smaller hybrids. Heterosis is common in both animal and plant hybrids. For example, hybrids between a lion and a tigress ("ligers") are much larger than either of the two progenitors, while "tigons" (lioness × tiger) are smaller. Similarly, the hybrids between the common pheasant (Phasianus colchicus) and domestic fowl (Gallus gallus) are larger than either of their parents, as are those produced between the common pheasant and hen golden pheasant (Chrysolophus pictus). Spurs are absent in hybrids of the former type, although present in both parents.
Human influence
Anthropogenic hybridization
Hybridization is greatly influenced by human impact on the environment, through effects such as habitat fragmentation and species introductions. Such impacts make it difficult to conserve the genetics of populations undergoing introgressive hybridization. Humans have introduced species worldwide to environments for a long time, both intentionally for purposes such as biological control,
and unintentionally, as with accidental escapes of individuals.
Introductions can drastically affect populations, including through
hybridization.
Management
There is a kind of continuum with three semi-distinct categories
dealing with anthropogenic hybridization: hybridization without
introgression, hybridization with widespread introgression (backcrossing
with one of the parent species), and hybrid swarms
(highly variable populations with much interbreeding as well as
backcrossing with the parent species). Depending on where a population
falls along this continuum, the management plans for that population
will change. Hybridization is currently an area of great discussion
within wildlife management and habitat management. Global climate change
is creating other changes such as difference in population
distributions which are indirect causes for an increase in anthropogenic
hybridization.
Conservationists disagree on when is the proper time to give up
on a population that is becoming a hybrid swarm, or to try and save the
still existing pure individuals. Once a population becomes a complete
mixture, the goal becomes to conserve those hybrids to avoid their loss.
Conservationists treat each case on its merits, depending on detecting
hybrids within the population. It is nearly impossible to formulate a
uniform hybridization policy, because hybridization can occur
beneficially when it occurs "naturally", and when hybrid swarms are the
only remaining evidence of prior species, they need to be conserved as
well.
Genetic mixing and extinction
Regionally developed ecotypes can be threatened with extinction when new alleles or genes are introduced that alter that ecotype. This is sometimes called genetic mixing.
Hybridization and introgression, which can happen in natural and hybrid
populations, of new genetic material can lead to the replacement of
local genotypes if the hybrids are more fit
and have breeding advantages over the indigenous ecotype or species.
These hybridization events can result from the introduction of
non-native genotypes by humans or through habitat modification, bringing
previously isolated species into contact. Genetic mixing can be
especially detrimental for rare species in isolated habitats, ultimately
affecting the population to such a degree that none of the originally
genetically distinct population remains.
Effect on biodiversity and food security
In agriculture and animal husbandry, the Green Revolution's use of conventional hybridization increased yields by breeding "high-yielding varieties".
The replacement of locally indigenous breeds, compounded with
unintentional cross-pollination and crossbreeding (genetic mixing), has
reduced the gene pools of various wild and indigenous breeds resulting
in the loss of genetic diversity.
Since the indigenous breeds are often well-adapted to local extremes in
climate and have immunity to local pathogens, this can be a significant
genetic erosion of the gene pool for future breeding. Therefore,
commercial plant geneticists strive to breed "widely adapted" cultivars
to counteract this tendency.
In different taxa
In animals
Mammals
Familiar examples of equid hybrids
are the mule, a cross between a female horse and a male donkey, and the
hinny, a cross between a female donkey and a male horse. Pairs of
complementary types like the mule and hinny are called reciprocal
hybrids. Polar bears and brown bears are another case of a hybridizing species pairs, and introgression among non-sister species of bears appears to have shaped the Ursidae family tree. Among many other mammal crosses are hybrid camels, crosses between a bactrian camel and a dromedary. There are many examples of felid hybrids, including the liger.
The first known instance of hybrid speciation in marine mammals was discovered in 2014. The clymene dolphin (Stenella clymene) is a hybrid of two Atlantic species, the spinner and striped dolphins. In 2019, scientists confirmed that a skull found 30 years earlier was a hybrid between the beluga whale and narwhal; dubbed the narluga.
Birds
Cagebird breeders sometimes breed bird hybrids known as mules between species of finch, such as goldfinch × canary.
Amphibians
Among amphibians, Japanese giant salamanders
and Chinese giant salamanders have created hybrids that threaten the
survival of Japanese giant salamanders because of competition for
similar resources in Japan.
Fish
Among fish, a group of about fifty natural hybrids between Australian blacktip shark and the larger common blacktip shark was found by Australia's eastern coast in 2012.
Russian sturgeon and American paddlefish
were hybridized in captivity when sperm from the paddlefish and eggs
from the sturgeon were combined, unexpectedly resulting in viable
offspring. This hybrid is called a sturddlefish.
Invertebrates
Among insects, so-called killer bees
were accidentally created during an attempt to breed a strain of bees
that would both produce more honey and be better adapted to tropical
conditions. It was done by crossing a European honey bee and an African bee.
The Colias eurytheme and C. philodice butterflies have retained enough genetic compatibility to produce viable hybrid offspring. Hybrid speciation may have produced the diverse Heliconius butterflies, but that is disputed.
A "zonkey", a zebra/donkey hybrid
In plants
Plant species hybridize more readily than animal species, and the
resulting hybrids are fertile more often. Many plant species are the
result of hybridization, combined with polyploidy, which duplicates the chromosomes. Chromosome duplication allows orderly meiosis and so viable seed can be produced.
Plant hybrids are generally given names that include an "×" (not in italics), such as Platanus × acerifolia for the London plane, a natural hybrid of P. orientalis (oriental plane) and P. occidentalis (American sycamore). The parent's names may be kept in their entirety, as seen in Prunus persica × Prunus americana, with the female parent's name given first, or if not known, the parent's names given alphabetically.
Plant species that are genetically compatible may not hybridize
in nature for various reasons, including geographical isolation,
differences in flowering period, or differences in pollinators.
Species that are brought together by humans in gardens may hybridize
naturally, or hybridization can be facilitated by human efforts, such as
altered flowering period or artificial pollination. Hybrids are
sometimes created by humans to produce improved plants that have some of
the characteristics of each of the parent species. Much work is now
being done with hybrids between crops and their wild relatives to
improve disease-resistance or climate resilience for both agricultural and horticultural crops.
Some crop plants are hybrids from different genera (intergeneric hybrids), such as Triticale, × Triticosecale, a wheat–rye hybrid. Most modern and ancient wheat breeds are themselves hybrids; bread wheat, Triticum aestivum, is a hexaploid hybrid of three wild grasses. Several commercial fruits including loganberry (Rubus × loganobaccus) and grapefruit (Citrus × paradisi) are hybrids, as are garden herbs such as peppermint (Mentha × piperita), and trees such as the London plane (Platanus × acerifolia). Among many natural plant hybrids is Iris albicans, a sterile hybrid that spreads by rhizome division, and Oenothera lamarckiana, a flower that was the subject of important experiments by Hugo de Vries that produced an understanding of polyploidy.
An ornamental lily hybrid known as Lilium 'Citronella'
Sterility in a non-polyploid hybrid is often a result of chromosome
number; if parents are of differing chromosome pair number, the
offspring will have an odd number of chromosomes, which leaves them
unable to produce chromosomally-balanced gametes.
While that is undesirable in a crop such as wheat, for which growing a
crop that produces no seeds would be pointless, it is an attractive
attribute in some fruits. Triploid bananas and watermelons are intentionally bred because they produce no seeds and are also parthenocarpic.
In humans
There is evidence of hybridisation between modern humans and other species of the genus Homo. In 2010, the Neanderthal genome project showed that 1–4% of DNA from all people living today, apart from most Sub-Saharan Africans,
is of Neanderthal heritage. Analyzing the genomes of 600 Europeans and
East Asians found that combining them covered 20% of the Neanderthal
genome that is in the modern human population. Ancient human populations lived and interbred with Neanderthals, Denisovans, and at least one other extinct Homo species. Thus, Neanderthal and Denisovan DNA has been incorporated into human DNA by introgression.
In 1998, a complete prehistorical skeleton found in Portugal, the Lapedo child, had features of both anatomically modern humans and Neanderthals.
Some ancient human skulls with especially large nasal cavities and
unusually shaped braincases represent human-Neanderthal hybrids. A
37,000- to 42,000-year-old human jawbone found in Romania's Oase cave contains traces of Neanderthal ancestry from only four to six generations earlier. All genes from Neanderthals in the current human population are descended from Neanderthal fathers and human mothers.
A Neanderthal skull unearthed in Italy in 1957 reveals Neanderthal
mitochondrial DNA, which is passed on through only the maternal lineage,
but the skull has a chin shape similar to modern humans. It is proposed
that it was the offspring of a Neanderthal mother and a human father.
In mythology
Folk tales and myths sometimes contain mythological hybrids; the Minotaur was the offspring of a human, Pasiphaë, and a white bull.
More often, they are composites of the physical attributes of two or
more kinds of animals, mythical beasts, and humans, with no suggestion
that they are the result of interbreeding, as in the centaur (man/horse), chimera (goat/lion/snake), hippocamp (fish/horse), and sphinx (woman/lion). The Old Testament mentions a first generation of half-human hybrid giants, the Nephilim, while the apocryphal Book of Enoch describes the Nephilim as the wicked sons of fallen angels and attractive women.