Search This Blog

Saturday, August 13, 2022

Antioxidant

From Wikipedia, the free encyclopedia
 
Structure of the antioxidant, glutathione

Antioxidants are compounds that inhibit oxidation, a chemical reaction that can produce free radicals and chain reactions that may damage the cells of organisms. Antioxidants such as thiols or ascorbic acid (vitamin C) may act to inhibit these reactions. To balance oxidative stress, organisms contain and produce antioxidants, such as glutathione, mycothiol or bacillithiol.

The only dietary antioxidants are vitamins A, C, and E. The term antioxidant is also used for industrial chemicals added during manufacturing to prevent oxidation in synthetic rubber, plastics, and fuels, or as preservatives in food and cosmetics.

While fruits and vegetables are rich sources of antioxidant vitamins and can be part of a healthy diet, there is no clear evidence to indicate that plant-food consumption confers health benefits specifically because of antioxidant vitamins in such foods. Dietary supplements marketed as antioxidants have not been shown to improve health or prevent disease in humans. According to some studies, supplements of beta-carotene, vitamin A, and vitamin E have no positive effect on mortality rate or cancer risk. Additionally, supplementation with selenium or vitamin E does not reduce the risk of cardiovascular disease.

Health research

Relation to diet

Although certain levels of antioxidant vitamins in the diet are required for good health, there is still considerable debate on whether antioxidant-rich foods or supplements have anti-disease activity. Moreover, if they are actually beneficial, it is unknown which antioxidants are health-promoting in the diet and in what amounts beyond typical dietary intake. Some authors dispute the hypothesis that antioxidant vitamins could prevent chronic diseases, and some declare that the hypothesis is unproven and misguided. Polyphenols, which have antioxidant properties in vitro, have unknown antioxidant activity in vivo due to extensive metabolism following digestion and little clinical evidence of efficacy.

Interactions

Common pharmaceuticals (and supplements) with antioxidant properties may interfere with the efficacy of certain anticancer medication and radiation therapy.

Adverse effects

Structure of the metal chelator phytic acid

Relatively strong reducing acids can have antinutrient effects by binding to dietary minerals such as iron and zinc in the gastrointestinal tract and preventing them from being absorbed. Examples are oxalic acid, tannins and phytic acid, which are high in plant-based diets. Calcium and iron deficiencies are not uncommon in diets in developing countries where less meat is eaten and there is high consumption of phytic acid from beans and unleavened whole grain bread. However, germination, soaking, or microbial fermentation are all household strategies that reduce the phytate and polyphenol content of unrefined cereal. Increases in Fe, Zn and Ca absorption have been reported in adults fed dephytinized cereals compared with cereals containing their native phytate.

Foods Reducing acid present
Cocoa bean and chocolate, spinach, turnip and rhubarb Oxalic acid
Whole grains, maize, legumes Phytic acid
Tea, beans, cabbage Tannins

High doses of some antioxidants may have harmful long-term effects. The Beta-Carotene and Retinol Efficacy Trial (CARET) study of lung cancer patients found that smokers given supplements containing beta-carotene and vitamin A had increased rates of lung cancer. Subsequent studies confirmed these adverse effects. These harmful effects may also be seen in non-smokers, as one meta-analysis including data from approximately 230,000 patients showed that β-carotene, vitamin A or vitamin E supplementation is associated with increased mortality, but saw no significant effect from vitamin C. No health risk was seen when all the randomized controlled studies were examined together, but an increase in mortality was detected when only high-quality and low-bias risk trials were examined separately. As the majority of these low-bias trials dealt with either elderly people, or people with disease, these results may not apply to the general population. This meta-analysis was later repeated and extended by the same authors, confirming the previous results. These two publications are consistent with some previous meta-analyses that also suggested that vitamin E supplementation increased mortality, and that antioxidant supplements increased the risk of colon cancer. Beta-carotene may also increase lung cancer. Overall, the large number of clinical trials carried out on antioxidant supplements suggest that either these products have no effect on health, or that they cause a small increase in mortality in elderly or vulnerable populations.

Oxidative challenge in biology

The structure of the antioxidant vitamin ascorbic acid (vitamin C)

A paradox in metabolism is that, while the vast majority of complex life on Earth requires oxygen for its existence, oxygen is a highly reactive element that damages living organisms by producing reactive oxygen species. Consequently, organisms contain a complex network of antioxidant metabolites and enzymes that work together to prevent oxidative damage to cellular components such as DNA, proteins and lipids. In general, antioxidant systems either prevent these reactive species from being formed, or remove them before they can damage vital components of the cell. However, reactive oxygen species also have useful cellular functions, such as redox signaling. Thus, the function of antioxidant systems is not to remove oxidants entirely, but instead to keep them at an optimum level.

The reactive oxygen species produced in cells include hydrogen peroxide (H2O2), hypochlorous acid (HClO), and free radicals such as the hydroxyl radical (·OH) and the superoxide anion (O2).[34] The hydroxyl radical is particularly unstable and will react rapidly and non-specifically with most biological molecules. This species is produced from hydrogen peroxide in metal-catalyzed redox reactions such as the Fenton reaction. These oxidants can damage cells by starting chemical chain reactions such as lipid peroxidation, or by oxidizing DNA or proteins. Damage to DNA can cause mutations and possibly cancer, if not reversed by DNA repair mechanisms, while damage to proteins causes enzyme inhibition, denaturation and protein degradation.

The use of oxygen as part of the process for generating metabolic energy produces reactive oxygen species. In this process, the superoxide anion is produced as a by-product of several steps in the electron transport chain. Particularly important is the reduction of coenzyme Q in complex III, since a highly reactive free radical is formed as an intermediate (Q·). This unstable intermediate can lead to electron "leakage", when electrons jump directly to oxygen and form the superoxide anion, instead of moving through the normal series of well-controlled reactions of the electron transport chain. Peroxide is also produced from the oxidation of reduced flavoproteins, such as complex I. However, although these enzymes can produce oxidants, the relative importance of the electron transfer chain to other processes that generate peroxide is unclear. In plants, algae, and cyanobacteria, reactive oxygen species are also produced during photosynthesis, particularly under conditions of high light intensity. This effect is partly offset by the involvement of carotenoids in photoinhibition, and in algae and cyanobacteria, by large amount of iodide and selenium, which involves these antioxidants reacting with over-reduced forms of the photosynthetic reaction centres to prevent the production of reactive oxygen species.

Examples of bioactive antioxidant compounds

Antioxidants are classified into two broad divisions, depending on whether they are soluble in water (hydrophilic) or in lipids (lipophilic). In general, water-soluble antioxidants react with oxidants in the cell cytosol and the blood plasma, while lipid-soluble antioxidants protect cell membranes from lipid peroxidation. These compounds may be synthesized in the body or obtained from the diet. The different antioxidants are present at a wide range of concentrations in body fluids and tissues, with some such as glutathione or ubiquinone mostly present within cells, while others such as uric acid are more evenly distributed (see table below). Some antioxidants are only found in a few organisms and these compounds can be important in pathogens and can be virulence factors.

The relative importance and interactions between these different antioxidants is a very complex question, with the various antioxidant compounds and antioxidant enzyme systems having synergistic and interdependent effects on one another. The action of one antioxidant may therefore depend on the proper function of other members of the antioxidant system. The amount of protection provided by any one antioxidant will also depend on its concentration, its reactivity towards the particular reactive oxygen species being considered, and the status of the antioxidants with which it interacts.

Some compounds contribute to antioxidant defense by chelating transition metals and preventing them from catalyzing the production of free radicals in the cell. Particularly important is the ability to sequester iron, which is the function of iron-binding proteins such as transferrin and ferritin. Selenium and zinc are commonly referred to as antioxidant minerals, but these chemical elements have no antioxidant action themselves, and are instead required for the activity of antioxidant enzymes.

Antioxidant Solubility Concentration in human serum (μM) Concentration in liver tissue (μmol/kg)
Ascorbic acid (vitamin C) Water 50–60 260 (human)
Glutathione Water 4 6,400 (human)
Lipoic acid Water 0.1–0.7 4–5 (rat)
Uric acid Water 200–400 1,600 (human)
Carotenes Lipid β-carotene: 0.5–1

retinol (vitamin A): 1–3

5 (human, total carotenoids)
α-Tocopherol (vitamin E) Lipid 10–40 50 (human)
Ubiquinol (coenzyme Q) Lipid 5 200 (human)

Uric acid

Uric acid is by far the highest concentration antioxidant in human blood. Uric acid (UA) is an antioxidant oxypurine produced from xanthine by the enzyme xanthine oxidase, and is an intermediate product of purine metabolism. In almost all land animals, urate oxidase further catalyzes the oxidation of uric acid to allantoin, but in humans and most higher primates, the urate oxidase gene is nonfunctional, so that UA is not further broken down. The evolutionary reasons for this loss of urate conversion to allantoin remain the topic of active speculation. The antioxidant effects of uric acid have led researchers to suggest this mutation was beneficial to early primates and humans. Studies of high altitude acclimatization support the hypothesis that urate acts as an antioxidant by mitigating the oxidative stress caused by high-altitude hypoxia.

Uric acid has the highest concentration of any blood antioxidant and provides over half of the total antioxidant capacity of human serum. Uric acid's antioxidant activities are also complex, given that it does not react with some oxidants, such as superoxide, but does act against peroxynitrite, peroxides, and hypochlorous acid. Concerns over elevated UA's contribution to gout must be considered one of many risk factors. By itself, UA-related risk of gout at high levels (415–530 μmol/L) is only 0.5% per year with an increase to 4.5% per year at UA supersaturation levels (535+ μmol/L). Many of these aforementioned studies determined UA's antioxidant actions within normal physiological levels, and some found antioxidant activity at levels as high as 285 μmol/L.

Vitamin C

Ascorbic acid or vitamin C is a monosaccharide oxidation-reduction (redox) catalyst found in both animals and plants. As one of the enzymes needed to make ascorbic acid has been lost by mutation during primate evolution, humans must obtain it from their diet; it is therefore a dietary vitamin. Most other animals are able to produce this compound in their bodies and do not require it in their diets. Ascorbic acid is required for the conversion of the procollagen to collagen by oxidizing proline residues to hydroxyproline. In other cells, it is maintained in its reduced form by reaction with glutathione, which can be catalysed by protein disulfide isomerase and glutaredoxins. Ascorbic acid is a redox catalyst which can reduce, and thereby neutralize, reactive oxygen species such as hydrogen peroxide. In addition to its direct antioxidant effects, ascorbic acid is also a substrate for the redox enzyme ascorbate peroxidase, a function that is used in stress resistance in plants. Ascorbic acid is present at high levels in all parts of plants and can reach concentrations of 20 millimolar in chloroplasts.

Glutathione

The free radical mechanism of lipid peroxidation

Glutathione is a cysteine-containing peptide found in most forms of aerobic life. It is not required in the diet and is instead synthesized in cells from its constituent amino acids. Glutathione has antioxidant properties since the thiol group in its cysteine moiety is a reducing agent and can be reversibly oxidized and reduced. In cells, glutathione is maintained in the reduced form by the enzyme glutathione reductase and in turn reduces other metabolites and enzyme systems, such as ascorbate in the glutathione-ascorbate cycle, glutathione peroxidases and glutaredoxins, as well as reacting directly with oxidants. Due to its high concentration and its central role in maintaining the cell's redox state, glutathione is one of the most important cellular antioxidants. In some organisms glutathione is replaced by other thiols, such as by mycothiol in the Actinomycetes, bacillithiol in some gram-positive bacteria, or by trypanothione in the Kinetoplastids.

Vitamin E

Vitamin E is the collective name for a set of eight related tocopherols and tocotrienols, which are fat-soluble vitamins with antioxidant properties. Of these, α-tocopherol has been most studied as it has the highest bioavailability, with the body preferentially absorbing and metabolising this form.

It has been claimed that the α-tocopherol form is the most important lipid-soluble antioxidant, and that it protects membranes from oxidation by reacting with lipid radicals produced in the lipid peroxidation chain reaction. This removes the free radical intermediates and prevents the propagation reaction from continuing. This reaction produces oxidised α-tocopheroxyl radicals that can be recycled back to the active reduced form through reduction by other antioxidants, such as ascorbate, retinol or ubiquinol. This is in line with findings showing that α-tocopherol, but not water-soluble antioxidants, efficiently protects glutathione peroxidase 4 (GPX4)-deficient cells from cell death. GPx4 is the only known enzyme that efficiently reduces lipid-hydroperoxides within biological membranes.

However, the roles and importance of the various forms of vitamin E are presently unclear, and it has even been suggested that the most important function of α-tocopherol is as a signaling molecule, with this molecule having no significant role in antioxidant metabolism. The functions of the other forms of vitamin E are even less well understood, although γ-tocopherol is a nucleophile that may react with electrophilic mutagens, and tocotrienols may be important in protecting neurons from damage.

Pro-oxidant activities

Antioxidants that are reducing agents can also act as pro-oxidants. For example, vitamin C has antioxidant activity when it reduces oxidizing substances such as hydrogen peroxide; however, it will also reduce metal ions that generate free radicals through the Fenton reaction.

2 Fe3+ + Ascorbate → 2 Fe2+ + Dehydroascorbate
2 Fe2+ + 2 H2O2 → 2 Fe3+ + 2 OH· + 2 OH

The relative importance of the antioxidant and pro-oxidant activities of antioxidants is an area of current research, but vitamin C, which exerts its effects as a vitamin by oxidizing polypeptides, appears to have a mostly antioxidant action in the human body.

Enzyme systems

Enzymatic pathway for detoxification of reactive oxygen species

As with the chemical antioxidants, cells are protected against oxidative stress by an interacting network of antioxidant enzymes. Here, the superoxide released by processes such as oxidative phosphorylation is first converted to hydrogen peroxide and then further reduced to give water. This detoxification pathway is the result of multiple enzymes, with superoxide dismutases catalysing the first step and then catalases and various peroxidases removing hydrogen peroxide. As with antioxidant metabolites, the contributions of these enzymes to antioxidant defenses can be hard to separate from one another, but the generation of transgenic mice lacking just one antioxidant enzyme can be informative.

Superoxide dismutase, catalase, and peroxiredoxins

Superoxide dismutases (SODs) are a class of closely related enzymes that catalyze the breakdown of the superoxide anion into oxygen and hydrogen peroxide. SOD enzymes are present in almost all aerobic cells and in extracellular fluids. Superoxide dismutase enzymes contain metal ion cofactors that, depending on the isozyme, can be copper, zinc, manganese or iron. In humans, the copper/zinc SOD is present in the cytosol, while manganese SOD is present in the mitochondrion. There also exists a third form of SOD in extracellular fluids, which contains copper and zinc in its active sites. The mitochondrial isozyme seems to be the most biologically important of these three, since mice lacking this enzyme die soon after birth. In contrast, the mice lacking copper/zinc SOD (Sod1) are viable but have numerous pathologies and a reduced lifespan (see article on superoxide), while mice without the extracellular SOD have minimal defects (sensitive to hyperoxia). In plants, SOD isozymes are present in the cytosol and mitochondria, with an iron SOD found in chloroplasts that is absent from vertebrates and yeast.

Catalases are enzymes that catalyse the conversion of hydrogen peroxide to water and oxygen, using either an iron or manganese cofactor. This protein is localized to peroxisomes in most eukaryotic cells. Catalase is an unusual enzyme since, although hydrogen peroxide is its only substrate, it follows a ping-pong mechanism. Here, its cofactor is oxidised by one molecule of hydrogen peroxide and then regenerated by transferring the bound oxygen to a second molecule of substrate. Despite its apparent importance in hydrogen peroxide removal, humans with genetic deficiency of catalase — "acatalasemia" — or mice genetically engineered to lack catalase completely, experience few ill effects.

Decameric structure of AhpC, a bacterial 2-cysteine peroxiredoxin from Salmonella typhimurium

Peroxiredoxins are peroxidases that catalyze the reduction of hydrogen peroxide, organic hydroperoxides, as well as peroxynitrite. They are divided into three classes: typical 2-cysteine peroxiredoxins; atypical 2-cysteine peroxiredoxins; and 1-cysteine peroxiredoxins. These enzymes share the same basic catalytic mechanism, in which a redox-active cysteine (the peroxidatic cysteine) in the active site is oxidized to a sulfenic acid by the peroxide substrate. Over-oxidation of this cysteine residue in peroxiredoxins inactivates these enzymes, but this can be reversed by the action of sulfiredoxin. Peroxiredoxins seem to be important in antioxidant metabolism, as mice lacking peroxiredoxin 1 or 2 have shortened lifespans and develop hemolytic anaemia, while plants use peroxiredoxins to remove hydrogen peroxide generated in chloroplasts.

Thioredoxin and glutathione systems

The thioredoxin system contains the 12-kDa protein thioredoxin and its companion thioredoxin reductase. Proteins related to thioredoxin are present in all sequenced organisms. Plants, such as Arabidopsis thaliana, have a particularly great diversity of isoforms. The active site of thioredoxin consists of two neighboring cysteines, as part of a highly conserved CXXC motif, that can cycle between an active dithiol form (reduced) and an oxidized disulfide form. In its active state, thioredoxin acts as an efficient reducing agent, scavenging reactive oxygen species and maintaining other proteins in their reduced state. After being oxidized, the active thioredoxin is regenerated by the action of thioredoxin reductase, using NADPH as an electron donor.

The glutathione system includes glutathione, glutathione reductase, glutathione peroxidases, and glutathione S-transferases. This system is found in animals, plants and microorganisms. Glutathione peroxidase is an enzyme containing four selenium-cofactors that catalyzes the breakdown of hydrogen peroxide and organic hydroperoxides. There are at least four different glutathione peroxidase isozymes in animals. Glutathione peroxidase 1 is the most abundant and is a very efficient scavenger of hydrogen peroxide, while glutathione peroxidase 4 is most active with lipid hydroperoxides. Surprisingly, glutathione peroxidase 1 is dispensable, as mice lacking this enzyme have normal lifespans, but they are hypersensitive to induced oxidative stress. In addition, the glutathione S-transferases show high activity with lipid peroxides. These enzymes are at particularly high levels in the liver and also serve in detoxification metabolism.

Uses in technology

Food preservatives

Antioxidants are used as food additives to help guard against food deterioration. Exposure to oxygen and sunlight are the two main factors in the oxidation of food, so food is preserved by keeping in the dark and sealing it in containers or even coating it in wax, as with cucumbers. However, as oxygen is also important for plant respiration, storing plant materials in anaerobic conditions produces unpleasant flavors and unappealing colors. Consequently, packaging of fresh fruits and vegetables contains an ≈8% oxygen atmosphere. Antioxidants are an especially important class of preservatives as, unlike bacterial or fungal spoilage, oxidation reactions still occur relatively rapidly in frozen or refrigerated food. These preservatives include natural antioxidants such as ascorbic acid (AA, E300) and tocopherols (E306), as well as synthetic antioxidants such as propyl gallate (PG, E310), tertiary butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA, E320) and butylated hydroxytoluene (BHT, E321).

The most common molecules attacked by oxidation are unsaturated fats; oxidation causes them to turn rancid. Since oxidized lipids are often discolored and usually have unpleasant tastes such as metallic or sulfurous flavors, it is important to avoid oxidation in fat-rich foods. Thus, these foods are rarely preserved by drying; instead, they are preserved by smoking, salting or fermenting. Even less fatty foods such as fruits are sprayed with sulfurous antioxidants prior to air drying. Oxidation is often catalyzed by metals, which is why fats such as butter should never be wrapped in aluminium foil or kept in metal containers. Some fatty foods such as olive oil are partially protected from oxidation by their natural content of antioxidants, but remain sensitive to photooxidation. Antioxidant preservatives are also added to fat based cosmetics such as lipstick and moisturizers to prevent rancidity.

Industrial uses

Substituted phenols and derivatives of phenylenediamine are common antioxidants used to inhibit gum formation in gasoline (petrol).

Antioxidants are frequently added to industrial products. A common use is as stabilizers in fuels and lubricants to prevent oxidation, and in gasolines to prevent the polymerization that leads to the formation of engine-fouling residues. In 2014, the worldwide market for natural and synthetic antioxidants was US$2.25 billion with a forecast of growth to $3.25 billion by 2020.

Antioxidant polymer stabilizers are widely used to prevent the degradation of polymers such as rubbers, plastics and adhesives that causes a loss of strength and flexibility in these materials. Polymers containing double bonds in their main chains, such as natural rubber and polybutadiene, are especially susceptible to oxidation and ozonolysis. They can be protected by antiozonants. Solid polymer products start to crack on exposed surfaces as the material degrades and the chains break. The mode of cracking varies between oxygen and ozone attack, the former causing a "crazy paving" effect, while ozone attack produces deeper cracks aligned at right angles to the tensile strain in the product. Oxidation and UV degradation are also frequently linked, mainly because UV radiation creates free radicals by bond breakage. The free radicals then react with oxygen to produce peroxy radicals which cause yet further damage, often in a chain reaction. Other polymers susceptible to oxidation include polypropylene and polyethylene. The former is more sensitive owing to the presence of secondary carbon atoms present in every repeat unit. Attack occurs at this point because the free radical formed is more stable than one formed on a primary carbon atom. Oxidation of polyethylene tends to occur at weak links in the chain, such as branch points in low-density polyethylene.

Fuel additive Components Applications
AO-22 N,N'-di-2-butyl-1,4-phenylenediamine Turbine oils, transformer oils, hydraulic fluids, waxes, and greases
AO-24 N,N'-di-2-butyl-1,4-phenylenediamine Low-temperature oils
AO-29 2,6-di-tert-butyl-4-methylphenol Turbine oils, transformer oils, hydraulic fluids, waxes, greases, and gasolines
AO-30 2,4-dimethyl-6-tert-butylphenol Jet fuels and gasolines, including aviation gasolines
AO-31 2,4-dimethyl-6-tert-butylphenol Jet fuels and gasolines, including aviation gasolines
AO-32 2,4-dimethyl-6-tert-butylphenol and 2,6-di-tert-butyl-4-methylphenol Jet fuels and gasolines, including aviation gasolines
AO-37 2,6-di-tert-butylphenol Jet fuels and gasolines, widely approved for aviation fuels

Levels in food

Fruits and vegetables are good sources of antioxidant vitamins C and E.

Antioxidant vitamins are found in vegetables, fruits, eggs, legumes and nuts. Vitamins A, C, and E can be destroyed by long-term storage or prolonged cooking. The effects of cooking and food processing are complex, as these processes can also increase the bioavailability of antioxidants, such as some carotenoids in vegetables. Processed food contains fewer antioxidant vitamins than fresh and uncooked foods, as preparation exposes food to heat and oxygen.

Antioxidant vitamins Foods containing high levels of antioxidant vitamins
Vitamin C (ascorbic acid) Fresh or frozen fruits and vegetables
Vitamin E (tocopherols, tocotrienols) Vegetable oils, nuts, and seeds
Carotenoids (carotenes as provitamin A) Fruit, vegetables and eggs

Other antioxidants are not obtained from the diet, but instead are made in the body. For example, ubiquinol (coenzyme Q) is poorly absorbed from the gut and is made through the mevalonate pathway. Another example is glutathione, which is made from amino acids. As any glutathione in the gut is broken down to free cysteine, glycine and glutamic acid before being absorbed, even large oral intake has little effect on the concentration of glutathione in the body. Although large amounts of sulfur-containing amino acids such as acetylcysteine can increase glutathione, no evidence exists that eating high levels of these glutathione precursors is beneficial for healthy adults.

Measurement and invalidation of ORAC

Measurement of polyphenol and carotenoid content in food is not a straightforward process, as antioxidants collectively are a diverse group of compounds with different reactivities to various reactive oxygen species. In food science analyses in vitro, the oxygen radical absorbance capacity (ORAC) was once an industry standard for estimating antioxidant strength of whole foods, juices and food additives, mainly from the presence of polyphenols. Earlier measurements and ratings by the United States Department of Agriculture were withdrawn in 2012 as biologically irrelevant to human health, referring to an absence of physiological evidence for polyphenols having antioxidant properties in vivo. Consequently, the ORAC method, derived only from in vitro experiments, is no longer considered relevant to human diets or biology, as of 2010.

Alternative in vitro measurements of antioxidant content in foods – also based on the presence of polyphenols – include the Folin-Ciocalteu reagent, and the Trolox equivalent antioxidant capacity assay.

History

As part of their adaptation from marine life, terrestrial plants began producing non-marine antioxidants such as ascorbic acid (vitamin C), polyphenols and tocopherols. The evolution of angiosperm plants between 50 and 200 million years ago resulted in the development of many antioxidant pigments – particularly during the Jurassic period – as chemical defences against reactive oxygen species that are byproducts of photosynthesis. Originally, the term antioxidant specifically referred to a chemical that prevented the consumption of oxygen. In the late 19th and early 20th centuries, extensive study concentrated on the use of antioxidants in important industrial processes, such as the prevention of metal corrosion, the vulcanization of rubber, and the polymerization of fuels in the fouling of internal combustion engines.

Early research on the role of antioxidants in biology focused on their use in preventing the oxidation of unsaturated fats, which is the cause of rancidity. Antioxidant activity could be measured simply by placing the fat in a closed container with oxygen and measuring the rate of oxygen consumption. However, it was the identification of vitamins C and E as antioxidants that revolutionized the field and led to the realization of the importance of antioxidants in the biochemistry of living organisms. The possible mechanisms of action of antioxidants were first explored when it was recognized that a substance with anti-oxidative activity is likely to be one that is itself readily oxidized. Research into how vitamin E prevents the process of lipid peroxidation led to the identification of antioxidants as reducing agents that prevent oxidative reactions, often by scavenging reactive oxygen species before they can damage cells.

Origami

From Wikipedia, the free encyclopedia

A group of Japanese schoolchildren dedicate their contribution of Thousand origami cranes at the Sadako Sasaki memorial in Hiroshima.

Origami (折り紙, Japanese pronunciation: [oɾiɡami] or [oɾiꜜɡami], from ori meaning "folding", and kami meaning "paper" (kami changes to gami due to rendaku)) is the art of paper folding, which is often associated with Japanese culture. In modern usage, the word "origami" is used as an inclusive term for all folding practices, regardless of their culture of origin. The goal is to transform a flat square sheet of paper into a finished sculpture through folding and sculpting techniques. Modern origami practitioners generally discourage the use of cuts, glue, or markings on the paper. Origami folders often use the Japanese word kirigami to refer to designs which use cuts.

The small number of basic origami folds can be combined in a variety of ways to make intricate designs. The best-known origami model is the Japanese paper crane. In general, these designs begin with a square sheet of paper whose sides may be of different colors, prints, or patterns. Traditional Japanese origami, which has been practiced since the Edo period (1603–1867), has often been less strict about these conventions, sometimes cutting the paper or using nonsquare shapes to start with. The principles of origami are also used in stents, packaging, and other engineering applications.

History

The folding of two origami cranes linked together, from the first known book on origami, Hiden senbazuru orikata, published in Japan in 1797

Distinct paperfolding traditions arose in Europe, China, and Japan which have been well-documented by historians. These seem to have been mostly separate traditions, until the 20th century.

In China, traditional funerals often include the burning of folded paper, most often representations of gold nuggets (yuanbao). The practice of burning paper representations instead of full-scale wood or clay replicas dates from the Song Dynasty (905–1125 CE), though it is not clear how much folding was involved.

In Japan, the earliest unambiguous reference to a paper model is in a short poem by Ihara Saikaku in 1680 which mentions a traditional butterfly design used during Shinto weddings. Folding filled some ceremonial functions in Edo period Japanese culture; noshi were attached to gifts, much like greeting cards are used today. This developed into a form of entertainment; the first two instructional books published in Japan are clearly recreational.

In Europe, there was a well-developed genre of napkin folding, which flourished during the 17th and 18th centuries. After this period, this genre declined and was mostly forgotten; historian Joan Sallas attributes this to the introduction of porcelain, which replaced complex napkin folds as a dinner-table status symbol among nobility. However, some of the techniques and bases associated with this tradition continued to be a part of European culture; folding was a significant part of Friedrich Fröbel's "Kindergarten" method, and the designs published in connection with his curriculum are stylistically similar to the napkin fold repertoire. Another example of early origami in Europe is the "pajarita," a stylized bird whose origins date from at least the nineteenth century.

When Japan opened its borders in the 1860s, as part of a modernization strategy, they imported Fröbel's Kindergarten system—and with it, German ideas about paperfolding. This included the ban on cuts, and the starting shape of a bicolored square. These ideas, and some of the European folding repertoire, were integrated into the Japanese tradition. Before this, traditional Japanese sources use a variety of starting shapes, often had cuts; and if they had color or markings, these were added after the model was folded.

In the early 1900s, Akira Yoshizawa, Kosho Uchiyama, and others began creating and recording original origami works. Akira Yoshizawa in particular was responsible for a number of innovations, such as wet-folding and the Yoshizawa–Randlett diagramming system, and his work inspired a renaissance of the art form. During the 1980s a number of folders started systematically studying the mathematical properties of folded forms, which led to a rapid increase in the complexity of origami models.

Starting in the late 20th century, there has been a renewed interest in understanding the behavior of folding matter, both artistically and scientifically. The "new origami," which distinguishes it from old craft practices, has had a rapid evolution due to the contribution of computational mathematics and the development of techniques such as box-pleating, tessellations and wet-folding. Artists like Robert J. Lang, Erik Demaine, Sipho Mabona, Giang Dinh, Paul Jackson, and others, are frequently cited for advancing new applications of the art. The computational facet and the interchanges through social networks, where new techniques and designs are introduced, have raised the profile of origami in the 21st century.

Techniques and materials

Techniques

A list of nine basic origami folds: the valley (or mountain), the pleat, the rabbit ear, the outside reverse, the inside reverse, the crimp, the squash, the sink and the petal
 

Many origami books begin with a description of basic origami techniques which are used to construct the models. This includes simple diagrams of basic folds like valley and mountain folds, pleats, reverse folds, squash folds, and sinks. There are also standard named bases which are used in a wide variety of models, for instance the bird base is an intermediate stage in the construction of the flapping bird. Additional bases are the preliminary base (square base), fish base, waterbomb base, and the frog base.

Origami paper

A crane and papers of the same size used to fold it

Almost any laminar (flat) material can be used for folding; the only requirement is that it should hold a crease.

Origami paper, often referred to as "kami" (Japanese for paper), is sold in prepackaged squares of various sizes ranging from 2.5 cm (1 in) to 25 cm (10 in) or more. It is commonly colored on one side and white on the other; however, dual coloured and patterned versions exist and can be used effectively for color-changed models. Origami paper weighs slightly less than copy paper, making it suitable for a wider range of models.

Normal copy paper with weights of 70–90 g/m2 (19–24 lb) can be used for simple folds, such as the crane and waterbomb. Heavier weight papers of 100 g/m2 (approx. 25 lb) or more can be wet-folded. This technique allows for a more rounded sculpting of the model, which becomes rigid and sturdy when it is dry.

Foil-backed paper, as its name implies, is a sheet of thin foil glued to a sheet of thin paper. Related to this is tissue foil, which is made by gluing a thin piece of tissue paper to kitchen aluminium foil. A second piece of tissue can be glued onto the reverse side to produce a tissue/foil/tissue sandwich. Foil-backed paper is available commercially, but not tissue foil; it must be handmade. Both types of foil materials are suitable for complex models.

Washi (和紙) is the traditional origami paper used in Japan. Washi is generally tougher than ordinary paper made from wood pulp, and is used in many traditional arts. Washi is commonly made using fibres from the bark of the gampi tree, the mitsumata shrub (Edgeworthia papyrifera), or the paper mulberry but can also be made using bamboo, hemp, rice, and wheat.

Artisan papers such as unryu, lokta, hanji, gampi, kozo, saa, and abaca have long fibers and are often extremely strong. As these papers are floppy to start with, they are often backcoated or resized with methylcellulose or wheat paste before folding. Also, these papers are extremely thin and compressible, allowing for thin, narrowed limbs as in the case of insect models.

Paper money from various countries is also popular to create origami with; this is known variously as Dollar Origami, Orikane, and Money Origami.

Tools

Bone folders

It is common to fold using a flat surface, but some folders like doing it in the air with no tools, especially when displaying the folding. Some folders believe that no tool should be used when folding. However a couple of tools can help especially with the more complex models. For instance a bone folder allows sharp creases to be made in the paper easily, paper clips can act as extra pairs of fingers, and tweezers can be used to make small folds. When making complex models from origami crease patterns, it can help to use a ruler and ballpoint embosser to score the creases. Completed models can be sprayed so that they keep their shape better, and a spray is needed when wet folding.

Types

Action origami

In addition to the more common still-life origami, there are also moving object designs; origami can move. Action origami includes origami that flies, requires inflation to complete, or, when complete, uses the kinetic energy of a person's hands, applied at a certain region on the model, to move another flap or limb. Some argue that, strictly speaking, only the latter is really "recognized" as action origami. Action origami, first appearing with the traditional Japanese flapping bird, is quite common. One example is Robert Lang's instrumentalists; when the figures' heads are pulled away from their bodies, their hands will move, resembling the playing of music.

Modular origami

A stellated icosahedron made from custom papers
 

Modular origami consists of putting a number of identical pieces together to form a complete model. Often the individual pieces are simple, but the final assembly may be more difficult. Many modular origami models are decorative folding balls such as kusudama, which differ from classical origami in that the pieces may be held together using thread or glue.

Chinese paper folding, a cousin of origami, includes a similar style called golden venture folding where large numbers of pieces are put together to create elaborate models. This style is most commonly known as "3D origami". However, that name did not appear until Joie Staff published a series of books titled 3D Origami, More 3D Origami, and More and More 3D Origami. This style originated from some Chinese refugees while they were detained in America and is also called Golden Venture folding from the ship they came on.

Wet-folding

Wet-folding is an origami technique for producing models with gentle curves rather than geometric straight folds and flat surfaces. The paper is dampened so it can be moulded easily, the final model keeps its shape when it dries. It can be used, for instance, to produce very natural looking animal models. Size, an adhesive that is crisp and hard when dry, but dissolves in water when wet and becoming soft and flexible, is often applied to the paper either at the pulp stage while the paper is being formed, or on the surface of a ready sheet of paper. The latter method is called external sizing and most commonly uses Methylcellulose, or MC, paste, or various plant starches.

Pureland origami

Pureland origami adds the restrictions that only simple mountain/valley folds may be used, and all folds must have straightforward locations. It was developed by John Smith in the 1970s to help inexperienced folders or those with limited motor skills. Some designers also like the challenge of creating within the very strict constraints.

Origami tessellations

Origami tessellation is a branch that has grown in popularity after 2000. A tessellation is a collection of figures filling a plane with no gaps or overlaps. In origami tessellations, pleats are used to connect molecules such as twist folds together in a repeating fashion. During the 1960s, Shuzo Fujimoto was the first to explore twist fold tessellations in any systematic way, coming up with dozens of patterns and establishing the genre in the origami mainstream. Around the same time period, Ron Resch patented some tessellation patterns as part of his explorations into kinetic sculpture and developable surfaces, although his work was not known by the origami community until the 1980s. Chris Palmer is an artist who has extensively explored tessellations after seeing the Zilij patterns in the Alhambra, and has found ways to create detailed origami tessellations out of silk. Robert Lang and Alex Bateman are two designers who use computer programs to create origami tessellations. The first international convention devoted to origami tessellations was hosted in Brasília (Brazil) in 2006, and the first instruction book on tessellation folding patterns was published by Eric Gjerde in 2008. Since then, the field has grown very quickly. Tessellation artists include Polly Verity (Scotland); Joel Cooper, Christine Edison, Ray Schamp and Goran Konjevod from the USA; Roberto Gretter (Italy); Christiane Bettens (Switzerland); Carlos Natan López (Mexico); and Jorge C. Lucero (Brazil).

Kirigami

Kirigami is a Japanese term for paper cutting. Cutting was often used in traditional Japanese origami, but modern innovations in technique have made the use of cuts unnecessary. Most origami designers no longer consider models with cuts to be origami, instead using the term Kirigami to describe them. This change in attitude occurred during the 1960s and 70s, so early origami books often use cuts, but for the most part they have disappeared from the modern origami repertoire; most modern books don't even mention cutting.

Strip folding

Strip folding is a combination of paper folding and paper weaving. A common example of strip folding is called the Lucky Star, also called Chinese lucky star, dream star, wishing star, or simply origami star. Another common fold is the Moravian Star which is made by strip folding in 3-dimensional design to include 16 spikes.

Teabag folding

Example of folded "tea bag" paper

Teabag folding is credited to Dutch artist Tiny van der Plas, who developed the technique in 1992 as a papercraft art for embellishing greeting cards. It uses small square pieces of paper (e.g., a tea bag wrapper) bearing symmetrical designs that are folded in such a way that they interlock and produce a three-dimensional version of the underlying design. The basic kite fold is used to produce rosettes that are a 3 dimensional version of the 2D design.

The basic rosette design requires eight matching squares to be folded into the 'kite' design. Mathematics teachers find the designs very useful as a practical way of demonstrating some basic properties of symmetry.

Mathematics and technical origami

Mathematics and practical applications

Spring Into Action, designed by Jeff Beynon, made from a single rectangular piece of paper
 

The practice and study of origami encapsulates several subjects of mathematical interest. For instance, the problem of flat-foldability (whether a crease pattern can be folded into a 2-dimensional model) has been a topic of considerable mathematical study.

A number of technological advances have come from insights obtained through paper folding. For example, techniques have been developed for the deployment of car airbags and stent implants from a folded position.

The problem of rigid origami ("if we replaced the paper with sheet metal and had hinges in place of the crease lines, could we still fold the model?") has great practical importance. For example, the Miura map fold is a rigid fold that has been used to deploy large solar panel arrays for space satellites.

Origami can be used to construct various geometrical designs not possible with compass and straightedge constructions. For instance paper folding may be used for angle trisection and doubling the cube.

Technical origami

Technical origami, known in Japanese as origami sekkei (折り紙設計), is an origami design approach in which the model is conceived as an engineered crease pattern, rather than developed through trial-and-error. With advances in origami mathematics, the basic structure of a new origami model can be theoretically plotted out on paper before any actual folding even occurs. This method of origami design was developed by Robert Lang, Meguro Toshiyuki and others, and allows for the creation of extremely complex multi-limbed models such as many-legged centipedes, human figures with a full complement of fingers and toes, and the like.

The crease pattern is a layout of the creases required to form the structure of the model. Paradoxically enough, when origami designers come up with a crease pattern for a new design, the majority of the smaller creases are relatively unimportant and added only towards the completion of the model. What is more important is the allocation of regions of the paper and how these are mapped to the structure of the object being designed. By opening up a folded model, you can observe the structures that comprise it; the study of these structures led to a number of crease-pattern-oriented design approaches

The pattern of allocations is referred to as the 'circle-packing' or 'polygon-packing'. Using optimization algorithms, a circle-packing figure can be computed for any uniaxial base of arbitrary complexity. Once this figure is computed, the creases which are then used to obtain the base structure can be added. This is not a unique mathematical process, hence it is possible for two designs to have the same circle-packing, and yet different crease pattern structures.

As a circle encloses the maximum amount of area for a given perimeter, circle packing allows for maximum efficiency in terms of paper usage. However, other polygonal shapes can be used to solve the packing problem as well. The use of polygonal shapes other than circles is often motivated by the desire to find easily locatable creases (such as multiples of 22.5 degrees) and hence an easier folding sequence as well. One popular offshoot of the circle packing method is box-pleating, where squares are used instead of circles. As a result, the crease pattern that arises from this method contains only 45 and 90 degree angles, which often makes for a more direct folding sequence.

Origami-related computer programs

A number of computer aids to origami such as TreeMaker and Oripa, have been devised. TreeMaker allows new origami bases to be designed for special purposes and Oripa tries to calculate the folded shape from the crease pattern.

Ethics and copyright

Copyright in origami designs and the use of models has become an increasingly important issue in the origami community, as the internet has made the sale and distribution of pirated designs very easy. It is considered good etiquette to always credit the original artist and the folder when displaying origami models. It has been claimed that all commercial rights to designs and models are typically reserved by origami artists; however, the degree to which this can be enforced has been disputed. Under such a view, a person who folds a model using a legally obtained design could publicly display the model unless such rights were specifically reserved, whereas folding a design for money or commercial use of a photo for instance would require consent. The Origami Authors and Creators group was set up to represent the copyright interests of origami artists and facilitate permissions requests.

However, a court in Japan has asserted that the folding method of an origami model "comprises an idea and not a creative expression, and thus is not protected under the copyright law". Further, the court stated that "the method to folding origami is in the public domain; one cannot avoid using the same folding creases or the same arrows to show the direction in which to fold the paper". Therefore, it is legal to redraw the folding instructions of a model of another author even if the redrawn instructions share similarities to the original ones, as long as those similarities are "functional in nature". The redrawn instructions may be published (and even sold) without necessity of any permission from the original author.

Gallery

These pictures show examples of various types of origami.

In popular culture

  • In House of Cards season 1, episode 6, Claire Underwood gives a homeless man cash, and he later returns it folded into the shape of a bird. Claire then begins making origami animals, and in episode 7 she gives several to Peter Russo for his children.
  • In Blade Runner, Gaff folds origami throughout the movie, and an origami unicorn he folds forms a major plot point.
  • The philosophy and plot of the science fiction story "Ghostweight" by Yoon Ha Lee revolve around origami. In it, origami serves as a metaphor for history: "It is not true that the dead cannot be folded. Square becomes kite becomes swan; history becomes rumor becomes song. Even the act of remembrance creases the truth". A major element of the plot is the weaponry called jerengjen of space mercenaries, which unfold from flat shapes: "In the streets, jerengjen unfolded prettily, expanding into artillery with dragon-shaped shadows and sleek four-legged assault robots with wolf-shaped shadows. In the skies, jerengjen unfolded into bombers with kestrel-shaped shadows." The story says that the word means the art of paper folding in the mercenaries' main language. In an interview, when asked about the subject, the author tells that he became fascinated with dimensions since reading the novel Flatland.
  • The 2010 video game Heavy Rain has an antagonist known as the origami killer.
  • In the BBC television program QI, it is reported that origami in the form it is commonly known, where paper is folded without being cut or glued likely originated in Germany and was imported to Japan as late as 1860 when Japan opened its borders (However, it is confirmed that paper cranes using this technique have existed in Japan since the Edo period before 1860).
  • Paper Mario: The Origami King is a 2020 Nintendo Switch game featuring Mario series characters in an origami-themed world.

Chemical ecology

From Wikipedia, the free encyclopedia

Chemical ecology is the study of chemically-mediated interactions between living organisms, and the effects of those interactions on the demography, behavior and ultimately evolution of the organisms involved. It is thus a vast and highly interdisciplinary field. Chemical ecologists seek to identify the specific molecules (i.e. semiochemicals) that function as signals mediating community or ecosystem processes and to understand the evolution of these signals. The substances that serve in such roles are typically small, readily-diffusible organic molecules, but can also include larger molecules and small peptides.

In practice, chemical ecology relies extensively on chromatographic techniques, such as thin-layer chromatography, high performance liquid chromatography, and gas chromatography, to isolate and identify bioactive metabolites. To identify molecules with the sought-after activity, chemical ecologists often make use of bioassay-guided fractionation. Today, chemical ecologists also incorporate genetic and genomic techniques to understand the biosynthetic and signal transduction pathways underlying chemically-mediated interactions.

Plant chemical ecology

Monarch butterfly caterpillar on milkweed plant.

Plant chemical ecology focuses on the role of chemical cues and signals in mediating interactions of plants with their biotic environment (e.g. microorganisms, phytophagous insects, and pollinators).

Plant-insect interactions

left
Series from a study by Eisner and colleagues investigating defensive spray in bombardier beetles. The paper is specially treated to have a color reaction with the spray, which is normally clear.

The chemical ecology of plant-insect interaction is a significant subfield of chemical ecology. In particular, plants and insects are often involved in a chemical evolutionary arms race. As plants develop chemical defenses to herbivory, insects which feed on them evolve immunity to these poisons, and in some cases, repurpose these poisons for their own chemical defense against predators. For example, caterpillars of the monarch butterfly sequester cardenolide toxins from their milkweed host-plants and are able to use them as an anti-predator defense. Whereas most insects are killed by cardenolides, which are potent inhibitors of the Na+/K+-ATPase, monarchs have evolved resistance to the toxin over their long evolutionary history with milkweeds. Other examples of sequestration include the tobacco hornworm Manduca sexta, which use nicotine sequestered from tobacco plants in predator defense; and the bella moth, which secretes a quinone-containing froth to deter predators obtained from feeding on Crotalaria plants as a caterpillar.

Chemical ecologists also study chemical interactions involved in indirect defenses of plants, such as the attraction of predators and parasitoids through herbivore-induced volatile organic compounds (VOCs).

Plant-microbe interactions

Plant interactions with microorganisms are also mediated by chemistry. Both constitutive and induced secondary metabolites are involved in plant defense against pathogens and chemical signals are also important in the establishment and maintenance of resource mutualisms. For example, both rhizobia and mycorrhizae depend on chemical signals, such as strigolactones and flavanoids exuded from plant roots, in order to find a suitable host.

For microbes to gain access to the plant, they must be able to penetrate the layer of wax that forms a hydrophobic barrier on the plant's surface. Many plant-pathogenic microbes secrete enzymes that break down these cuticular waxes. Mutualistic microbes on the other hand may be granted access. For example, rhizobia secrete Nod factors that trigger the formation of an infection thread in receptive plants. The rhizobial symbionts can then travel through this infection thread to gain entrance to root cells.

Mycorrhizae and other fungal endophytes may also benefit their host plants by producing antibiotics or other secondary metabolites that ward off harmful fungi, bacteria and herbivores in the soil. Some entomopathogenic fungi can also form endophytic relationships with plants and may even transfer nitrogen directly to plants from insects they consume in the surrounding soil.

Plant-plant interactions

Allelopathy

Many plants produce secondary metabolites (known as allelochemicals) that can inhibit the growth of neighboring plants. Many examples of allelopathic competition have been controversial due to the difficulty of positively demonstrating a causal link between allelopathic substances and plant performance under natural conditions, but it is widely accepted that phytochemicals are involved in competitive interactions between plants. One of the clearest examples of allelopathy is the production of juglone by walnut trees, whose strong competitive effects on neighboring plants were recognized in the ancient world as early as 36 BC.

Plant-plant communication

Plants communicate with each other through both airborne and below-ground chemical cues. For example, when damaged by an herbivore, many plants emit an altered bouquet of volatile organic compounds (VOCs). Various C6 fatty acids and alcohols (sometimes known as green leaf volatiles) are often emitted from damaged leaves, since they are break-down products of plant cell membranes. These compounds (familiar to many as the smell of freshly mown grass) can be perceived by neighboring plants where they may trigger the induction of plant defenses. It is debated to what extent this communication reflects a history of active selection due to mutual benefit as opposed to "eavesdropping" on cues unintentionally emitted by neighboring plants.

Marine chemical ecology

Defense

Zoanthus sociatus produces palytoxin

The use of chemicals are often used a means of survival for marine organisms. Some crustaceans and mesograzers, such as the Pseudamphithoides incurvaria, use particular algae and seaweeds as a means of deterrence by covering their bodies in these plants. These plants produce alcohols such as pachydictyol-A and dictyol-E, which prevent the predation of the crustacean. When this seaweed is absent or another seaweed without these alcohols are worn, the rate at which these crustaceans are eaten is much higher. Other crustaceans use their natural defenses in conjuncture with produced chemicals to defend themselves. Chemicals within their urine help coordinate them into groups. This combined with their spikes make them a much harder target for predators. Others secrete mucus or toxins that make it difficult for predators to eat them, such as the finless sole, Pardachirus marmoratus, which uses a toxin capable of paralyzing the jaws of a would-be predator. Many zoanthids produce potent toxins, such as palytoxin, which is one of the most poisonous known substances. Some species of zooanthids are very brightly colored, which may be indicative of aposematic defense.

Reproduction

Chemical communication is very important to the reproduction of marine organisms. Some processes are relatively simple, such as attracting one individual to another. Male sea lampreys attract ovulating females by emitting a bile that can be detected many meters downstream. Other processes can be more complex, such as the mating habits of crabs. Due to the fact that mating can only be done shortly after the female moults from her shell, pheromones are produced and spread via urine before and after the molting process. Male crabs will detect these and defend their potential mate she has molted. However, due to the cannibalistic tendencies of crabs, an additional pheromone is produced by the female to suppresses this urge. These pheromones are very potent, and have led to examples where male crabs have attempted to copulate with rocks or sponges exposed to these pheromones.

Dominance

American lobster (Homarus americanus)

Determining dominance among crustaceans are very closely tied to chemical cues. When crustaceans fight to determine dominance they release urine, which helps to determine the victor. After a fight is concluded, both individuals will recognize each other in the future through urine, remembering who is the dominant of the two and thereby avoiding a fight. This can also have an impact on future fights. When an individual is exposed to the urine of a dominant crustacean, it will act more submissive, and oppositely when exposed to the urine of a subdominant individual. When individuals are unable to communicate through urine, fights can be longer and more unpredictable.

Applications of chemical ecology

Pheromone trap used to catch the pest Lymantria monacha.

Pest Control

Chemical ecology has been utilized in the development of sustainable pest control strategies. Semiochemicals (especially insect sex pheromones) are widely used in integrated pest management for surveillance, trapping and mating disruption of pest insects. Unlike conventional insecticides, pheromone-based methods of pest control are generally species-specific, non-toxic and extremely potent. In forestry, mass trapping has been used successfully to reduce tree mortality from bark beetle infestations in spruce and pine forests and from palm weevils in palm plantations. In an aquatic system, a sex pheromone from the invasive sea lamprey has been registered by the United States Environmental Protection Agency for deployment in traps. A strategy has been developed in Kenya to protect cattle from trypanosomiasis spread by Tsetse fly by applying a mixture of repellent odors derived from a non-host animal, the waterbuck.

The successful push-pull agricultural pest management system makes use of chemical cues from intercropped plants to sustainably increase agricultural yields. The efficacy of push-pull agriculture relies on multiple forms of chemical communication. Though the push-pull technique was invented as a strategy to control stem-boring moths, such as Chilo partellus, through the manipulation of volatile host-finding cues, it was later discovered that allelopathic substances exuded by the roots of Desmodium spp. also contribute to the suppression of the damaging parasitic weed, Striga.

Drug development and biochemistry discoveries

A large proportion of commercial drugs (e.g. aspirin, ivermectin, cyclosporin, taxol) are derived from natural products that evolved due to their involvement in ecological interactions. While it has been proposed that the study of natural history could contribute to the discovery of new drug leads, most drugs derived from natural products were not discovered due to prior knowledge of their ecological functions. However, many fundamental biological discoveries have been facilitated by the study of plant toxins. For example, the characterization of the nicotinic acetylcholine receptor, the first neurotransmitter receptor to be identified, ensued from investigations into the mechanisms of action of curare and nicotine. Similarly, the muscarinic acetylcholine receptor takes its name from the fungal toxin muscarine.

History of chemical ecology

After 1950

Silk moth (Bombyx mori)

In 1959, Adolf Butenandt identified the first intraspecific chemical signal (bombykol) from the silk moth, Bombyx mori, with material obtained by grinding up 500,000 moths. The same year, Karlson and Lüscher proposed the term 'pheromone' to describe this type of signal. Also in 1959, Gottfried S. Fraenkel also published his landmark paper, "The Raison d'être of Secondary Plant Substances", arguing that plant secondary metabolites are not metabolic waste products, but actually evolved to protect plants from consumers. Together, these papers marked the beginning of modern chemical ecology. In 1964, Paul R. Ehrlich and Peter H. Raven coauthored a paper proposing their influential theory of escape and radiate coevolution, which suggested that an evolutionary "arms-race" between plants and insects can explain the extreme diversification of plants and insects. The idea that plant metabolites could not only contribute to the survival of individual plants, but could also influence broad macroevolutionary patterns, would turn out to be highly influential.

In the 1960s and 1970s, a number of plant biologists, ecologists, and entomologists expanded this line of research on the ecological roles of plant secondary metabolites. During this period, Thomas Eisner and his close collaborator Jerrold Meinwald published a series seminal papers on chemical defenses in plants and insects. A number of other scientists at Cornell were also working on topics related to chemical ecology during this period, including Paul Feeny, Wendell L. Roelofs, Robert Whittaker and Richard B. Root. In 1968, the first course in chemical ecology was initiated at Cornell. In 1970, Eisner, Whittaker and the ant biologist William L. Brown, Jr. coined the terms allomone (to describe semiochemicals that benefit the emitter, but not the receiver) and kairomone (to describe semiochemicals that benefit the receiver only). Whittaker and Feeny published an influential review paper in Science the following year, summarizing the recent research on the ecological roles of chemical defenses in a wide variety of plants and animals and likely introducing Whittaker's new taxonomy of semiochemicals to a broader scientific audience. Around this time, Lincoln Brower also published a series of important ecological studies on monarch sequestration of cardenolides. Brower has been credited with popularizing the term "ecological chemistry" which appeared in the title of a paper he published in Science in 1968 and again the following year in an article he wrote for Scientific American, where the term also appeared on the front cover under an image of a giant bluejay towering over two monarch butterflies.

The specialized Journal of Chemical Ecology was established in 1975 and the journal, Chemoecology, was founded in 1990. In 1984, the International Society of Chemical Ecology was established and in 1996, the Max Planck Institute of Chemical Ecology was founded in Jena, Germany.

Distance education

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Distance_...